搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铷-氙气室原子磁力仪系统磁场测量能力的标定

李辉 江敏 朱振南 徐文杰 徐旻翔 彭新华

引用本文:
Citation:

铷-氙气室原子磁力仪系统磁场测量能力的标定

李辉, 江敏, 朱振南, 徐文杰, 徐旻翔, 彭新华

Calibration of magnetic field measurement capability of rubidium-xenon vapor cell atomic magnetometer

Li Hui, Jiang Min, Zhu Zhen-Nan, Xu Wen-Jie, Xu Min-Xiang, Peng Xin-Hua
PDF
HTML
导出引用
  • 本文针对微弱磁场精密测量问题, 在自主研制的铷-氙气室原子磁力仪系统上, 探讨了两种磁场测量的方式, 分别实现了对交流磁场与静磁场的测量, 并对它们的磁场测量能力进行了实验标定. 交流磁场测量原理是基于测量外磁场对87Rb原子极化的影响, 实验标定结果为在2100 Hz频率范围内磁场测量的灵敏度约为$ 1.5\;{{{\rm{pT}}} / {\sqrt {{\rm{Hz}}} }} $, 带宽约为2.8 kHz; 静磁场测量原理是基于测量铷-氙气室内超极化129Xe的拉莫进动频率, 实验上首先测得超极化129Xe的横向、纵向弛豫时间分别约为20.6和21.5 s, 然后通过标定给出静磁场测量精度约为9.4 pT, 测量范围超过50 μT. 相比无自旋交换弛豫原子磁力仪, 该磁力仪在同一体系内实现了交流磁场与静磁场的测量, 且交流磁场测量具有更大的带宽, 静磁场测量可在地磁场下正常工作, 将有望应用于地磁测量、基础物理等方面的研究.
    The precise measurement of weak magnetic fields by using high-sensitivity magnetometers is not only widely used, but also promotes the development of many research fields. The magnetic field measurement capability of the magnetometer determines the potential and scope of its application, which means that research on its magnetic field measurement capability is essential.In this work, we develop a rubidium-xenon vapor cell atomic magnetometer. The cell filled with 5-torr 129Xe, 250-torr N2 and a droplet of enriched 87Rb is placed in the center of a five-layer magnetic shield with four sets of inner coils to control the internal magnetic field environment. In the cell, 129Xe is polarized by spin exchange collisions with 87Rb atoms, which are pumped with a circularly polarized laser beam at the D1 transition. If magnetic fields or pulses are applied to the cell, the polarization state of 87Rb and 129Xe will change and evolve, whose evolution process can be described by a pair of Bloch equations. The analysis of the Bloch equations indicates that the rubidium-xenon vapor cell atomic magnetometer can measure magnetic fields by two different methods. The magnetic field measurement capabilities of the two methods are experimentally calibrated respectively. The first method is to measure the alternating current (AC) magnetic fields by measuring the influence of the external magnetic fields on the polarization of the 87Rb atoms. The experimental results show that the sensitivity of the AC magnetic field measurement is about $1.5\;{{{\rm{pT}}} / {\sqrt {{\rm{Hz}}} }} $ in a frequency range of 2100 Hz, and the bandwidth is about 2.8 kHz. The second method is to measure the static magnetic fields by measuring the Larmor frequency of the hyperpolarized 129Xe in the cell. Considering that its measurement accuracy is limited by the relaxation of the hyperpolarized 129Xe, the transverse and longitudinal relaxation time are measured to be about 20.6 s and 21.5 s, respectively. Then, the experimental calibration results indicate that the static magnetic field measurement precision is about 9.4 pT and the measurement range exceeds 50 μT, which prove that the static magnetic field measurement can still be performed under geomagnetic field (50 μT). The rubidium-xenon vapor cell atomic magnetometer enables the measurement of AC magnetic fields and static magnetic fields in the same system. Compared with the spin exchange relaxation free (SERF) atomic magnetometer, the rubidium-xenon vapor cell atomic magnetometer has some unique advantages. For AC magnetic field measurement, it has a wider frequency range. For static magnetic field measurement, it can be performed under geomagnetic field and can give the magnetic field measurement value without using the calibration parameters of the system. These characteristics make the rubidium-xenon vapor cell atomic magnetometer have broad application prospects. It is expected to be applied to geomagnetic surveys, basic physics and other aspects of research.
      通信作者: 彭新华, xhpeng@ustc.edu.cn
    • 基金项目: 国家重点研究发展计划(批准号: 2018YFA0306600)、国家自然科学基金(批准号: 11425523, 11661161018)和安徽量子信息技术首创(批准号: AHY050000)资助的课题.
      Corresponding author: Peng Xin-Hua, xhpeng@ustc.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFA0306600), the National Natural Science Foundation of China (Grant Nos. 11425523, 11661161018), and Anhui Initiative in Quantum Information Technologies, China (Grant No. AHY050000).
    [1]

    Primdahl F 1979 J. Phys. E 12 241Google Scholar

    [2]

    杨波, 卜雄洙, 王新征, 于靖 2014 物理学报 63 200702Google Scholar

    Yang B, Bu X Z, Wang X Z, Yu J 2014 Acta Phys. Sin. 63 200702Google Scholar

    [3]

    张裕恒, 李玉芝, 郑捷飞 1984 物理学报 33 58Google Scholar

    Zhang Y H, Li Y Z, Zheng J F 1984 Acta Phys. Sin. 33 58Google Scholar

    [4]

    Lee L P, Char K, Colclough M S, Zaharchuk G 1991 Appl. Phys. Lett. 59 3051Google Scholar

    [5]

    刘新元, 谢飞翔, 孟树超, 马平, 杨涛, 聂瑞娟, 王守证, 王福仁, 戴远东 2003 物理学报 52 2580Google Scholar

    Liu X Y, Xie F X, Meng S C, Ma P, Yang T, Nie R J, Wang S Z, Wang F R, Dai Y D 2003 Acta Phys. Sin. 52 2580Google Scholar

    [6]

    Kominis I K, Kornack T W, Allred J C, Romalis M V 2003 Nature 422 596Google Scholar

    [7]

    Dang H B, Maloof A C, Romalis M V 2010 Appl. Phys. Lett. 97 151110Google Scholar

    [8]

    Savukov I M 2017 in High Sensitivity Magnetometers (Switzerland: Springer) pp 451–491

    [9]

    李曙光, 周翔, 曹晓超, 盛继腾, 徐云飞, 王兆英, 林强 2010 物理学报 59 877Google Scholar

    Li S G, Zhou X, Cao X C, Sheng J T, Xu Y F, Wang Z Y, Lin Q 2010 Acta Phys. Sin. 59 877Google Scholar

    [10]

    顾源, 石荣晔, 王延辉 2014 物理学报 63 110701Google Scholar

    Gu Y, Shi R Y, Wang Y H 2014 Acta Phys. Sin. 63 110701Google Scholar

    [11]

    汪之国, 罗晖, 樊振方, 谢元平 2016 物理学报 65 210702Google Scholar

    Wang Z G, Luo H, Fan Z F, Xie Y P 2016 Acta Phys. Sin. 65 210702Google Scholar

    [12]

    缪培贤, 杨世宇, 王剑祥, 廉吉庆, 涂建辉, 杨炜, 崔敬忠 2017 物理学报 66 160701Google Scholar

    Miao P X, Yang S Y, Wang J X, Lian J Q, Tu J H, Yang W, Cui J Z 2017 Acta Phys. Sin. 66 160701Google Scholar

    [13]

    陈伯韬, 江敏, 季云兰, 边纪, 徐文杰, 张晗, 彭新华 2017 中国激光 44 1004001

    Chen B T, Jiang M, Ji Y L, Bian J, Xu W J, Zhang H, Peng X H 2017 Chin. J. Lasers 44 1004001

    [14]

    Wang P F, Yuan Z H, Huang P, Rong X, Wang M Q, Xu X K, Ju C Y, Shi F Z, Du J F 2015 Nat. Commun. 6 6631Google Scholar

    [15]

    彭世杰, 刘颖, 马文超, 石发展, 杜江峰 2018 物理学报 67 167601Google Scholar

    Peng S J, Liu Y, Ma W C, Shi F Z, Du J F 2018 Acta Phys. Sin. 67 167601Google Scholar

    [16]

    王成杰, 石发展, 王鹏飞, 段昌奎, 杜江峰 2018 物理学报 67 130701Google Scholar

    Wang C J, Shi F Z, Wang P F, Duan C K, Du J F 2018 Acta Phys. Sin. 67 130701Google Scholar

    [17]

    李路思, 李红蕙, 周黎黎, 杨炙盛, 艾清 2017 物理学报 66 230601Google Scholar

    Li L S, Li H H, Zhou L L, Yang Z S, Ai Q 2017 Acta Phys. Sin. 66 230601Google Scholar

    [18]

    Jiang F J, Ye J F, Jiao Z, Jiang J, Ma K, Yan X H, Lv H J 2018 Chin. Phys. B 27 57602Google Scholar

    [19]

    Happer W, Miron E, Schaefer S, Schreiber D, Van Wijngaarden W A, Zeng X 1984 Phys. Rev. A 29 3092Google Scholar

    [20]

    Walker T G, Happer W 1997 Rev. Mod. Phys. 69 629Google Scholar

    [21]

    Walker T G 1989 Phys. Rev. A 40 4959Google Scholar

    [22]

    Appelt S, Baranga A B A, Erickson C J, Romalis M V, Young A R, Happer W 1998 Phys. Rev. A 58 1412Google Scholar

    [23]

    李森麟, 唐天荣, 孙献平, 曾锡之, 刘煜炎, 王枫 1988 科学通报 16 3

    Li S L, Tang T R, Sun X P, Zeng X Z, Liu Y Y, Wang F 1988 Sci. Bull. 16 3

    [24]

    Parnell S R, Deppe M H, Parra-Robles J, Wild J M 2010 J. Appl. Phys. 108 064908Google Scholar

    [25]

    Jiang P, Wang Z G, Luo H 2017 Optik (Stuttg) 138 341Google Scholar

    [26]

    Zhan X, Jiang Q Y, Wang Z G, Luo H, Zhao H C 2018 AIP Adv. 8 95104Google Scholar

    [27]

    Jiang M, Li H, Zhu Z N, Peng X H, Budker D 2019 arXiv Prepr. arXiv1901 00970

    [28]

    Seltzer S J 2008 Ph. D. Dissertation (Princeton: Princeton University

    [29]

    Kornack T W, Ghosh R K, Romalis M V 2005 Phys. Rev. Lett. 95 230801Google Scholar

    [30]

    Savukov I M, Romalis M V 2005 Phys. Rev. A 71 23405Google Scholar

    [31]

    Barskiy D A, Coffey A M, Nikolaou P, Mikhaylov D M, Goodson B M, Branca R T, Lu G J, Shapiro M G, Telkki V, Zhivonitko V V 2017 Chem. Eur. J. 23 725Google Scholar

    [32]

    Goodson B. M 2002 J. Magn. Reson 155 157Google Scholar

    [33]

    Ma Z L, Sorte E G, Saam B 2011 Phys. Rev. Lett. 106 193005Google Scholar

    [34]

    Jau Y Y, Kuzma N N, Happer W 2002 Phys. Rev. A 66 52710Google Scholar

    [35]

    Rosenberry M A, Chupp T E 2001 Phys. Rev. Lett. 86 22Google Scholar

    [36]

    Regan B C, Commins E D, Schmidt C J, DeMille D 2002 Phys. Rev. Lett. 88 071805Google Scholar

    [37]

    Fang J C, Qin J, Wan S A, Chen Y, Li R J 2013 Chin. Sci. Bull. 58 1512Google Scholar

    [38]

    Arvanitaki A, Geraci A A 2014 Phys. Rev. Lett. 113 161801Google Scholar

    [39]

    Bulatowicz M, Griffith R, Larsen M, Mirijanian J, Fu C B, Smith E, Snow W M, Yan H, Walker T G 2013 Phys. Rev. Lett. 111 102001Google Scholar

  • 图 1  铷-氙气室原子磁力仪装置示意图

    Fig. 1.  Schematic diagram of the rubidium-xenon vapor cell atomic magnetometer.

    图 2  (a) 铷-氙气室原子磁力仪频率响应曲线; (b) 300 Hz定标磁场噪声曲线; (c) 1200 Hz定标磁场噪声曲线; (d) 1200 Hz定标磁场噪声曲线

    Fig. 2.  (a) The frequency response curve of rubidium-xenon vapor cell atomic magnetometer; (b) the calibration magnetic field noise curve at frequency 300 Hz; (c) the calibration magnetic field noise curve at frequency 1200 Hz; (d) the calibration magnetic field noise curve at frequency 2100 Hz

    图 3  (a) 超极化$^{129}{\rm{Xe}}$的FID信号; (b) FID信号的FFT

    Fig. 3.  (a) FID signal of the hyperpolarized $^{129}{\rm{Xe}}$; (b) FFT of the FID signal.

    图 4  超极化$^{129}{\rm{Xe}}$信号强度随时间τ的变化曲线

    Fig. 4.  The curve of the hyperpolarized $^{129}{\rm{Xe}}$ signal strength versus time τ.

    图 5  超极化$^{129}{\rm{Xe}}$拉莫频率的概率密度统计分布直方图 (a) 由铷-氙气室原子磁力仪系统本身与电流源不稳定性导致; (b) 由电流源不稳定性导致

    Fig. 5.  Probability density statistical distribution histogram of the Larmor frequency of the hyperpolarized $^{129}{\rm{Xe}}$: (a) Caused by the rubidium-xenon vapor cell atomic magnetometer system itself and the current source instability; (b) caused by the current source instability.

    图 6  超极化$^{129}{\rm{Xe}}$信号强度随静磁场强度的变化曲线

    Fig. 6.  The curve of the hyperpolarized $^{129}{\rm{Xe}}$ signal strength versus the static magnetic field strength.

  • [1]

    Primdahl F 1979 J. Phys. E 12 241Google Scholar

    [2]

    杨波, 卜雄洙, 王新征, 于靖 2014 物理学报 63 200702Google Scholar

    Yang B, Bu X Z, Wang X Z, Yu J 2014 Acta Phys. Sin. 63 200702Google Scholar

    [3]

    张裕恒, 李玉芝, 郑捷飞 1984 物理学报 33 58Google Scholar

    Zhang Y H, Li Y Z, Zheng J F 1984 Acta Phys. Sin. 33 58Google Scholar

    [4]

    Lee L P, Char K, Colclough M S, Zaharchuk G 1991 Appl. Phys. Lett. 59 3051Google Scholar

    [5]

    刘新元, 谢飞翔, 孟树超, 马平, 杨涛, 聂瑞娟, 王守证, 王福仁, 戴远东 2003 物理学报 52 2580Google Scholar

    Liu X Y, Xie F X, Meng S C, Ma P, Yang T, Nie R J, Wang S Z, Wang F R, Dai Y D 2003 Acta Phys. Sin. 52 2580Google Scholar

    [6]

    Kominis I K, Kornack T W, Allred J C, Romalis M V 2003 Nature 422 596Google Scholar

    [7]

    Dang H B, Maloof A C, Romalis M V 2010 Appl. Phys. Lett. 97 151110Google Scholar

    [8]

    Savukov I M 2017 in High Sensitivity Magnetometers (Switzerland: Springer) pp 451–491

    [9]

    李曙光, 周翔, 曹晓超, 盛继腾, 徐云飞, 王兆英, 林强 2010 物理学报 59 877Google Scholar

    Li S G, Zhou X, Cao X C, Sheng J T, Xu Y F, Wang Z Y, Lin Q 2010 Acta Phys. Sin. 59 877Google Scholar

    [10]

    顾源, 石荣晔, 王延辉 2014 物理学报 63 110701Google Scholar

    Gu Y, Shi R Y, Wang Y H 2014 Acta Phys. Sin. 63 110701Google Scholar

    [11]

    汪之国, 罗晖, 樊振方, 谢元平 2016 物理学报 65 210702Google Scholar

    Wang Z G, Luo H, Fan Z F, Xie Y P 2016 Acta Phys. Sin. 65 210702Google Scholar

    [12]

    缪培贤, 杨世宇, 王剑祥, 廉吉庆, 涂建辉, 杨炜, 崔敬忠 2017 物理学报 66 160701Google Scholar

    Miao P X, Yang S Y, Wang J X, Lian J Q, Tu J H, Yang W, Cui J Z 2017 Acta Phys. Sin. 66 160701Google Scholar

    [13]

    陈伯韬, 江敏, 季云兰, 边纪, 徐文杰, 张晗, 彭新华 2017 中国激光 44 1004001

    Chen B T, Jiang M, Ji Y L, Bian J, Xu W J, Zhang H, Peng X H 2017 Chin. J. Lasers 44 1004001

    [14]

    Wang P F, Yuan Z H, Huang P, Rong X, Wang M Q, Xu X K, Ju C Y, Shi F Z, Du J F 2015 Nat. Commun. 6 6631Google Scholar

    [15]

    彭世杰, 刘颖, 马文超, 石发展, 杜江峰 2018 物理学报 67 167601Google Scholar

    Peng S J, Liu Y, Ma W C, Shi F Z, Du J F 2018 Acta Phys. Sin. 67 167601Google Scholar

    [16]

    王成杰, 石发展, 王鹏飞, 段昌奎, 杜江峰 2018 物理学报 67 130701Google Scholar

    Wang C J, Shi F Z, Wang P F, Duan C K, Du J F 2018 Acta Phys. Sin. 67 130701Google Scholar

    [17]

    李路思, 李红蕙, 周黎黎, 杨炙盛, 艾清 2017 物理学报 66 230601Google Scholar

    Li L S, Li H H, Zhou L L, Yang Z S, Ai Q 2017 Acta Phys. Sin. 66 230601Google Scholar

    [18]

    Jiang F J, Ye J F, Jiao Z, Jiang J, Ma K, Yan X H, Lv H J 2018 Chin. Phys. B 27 57602Google Scholar

    [19]

    Happer W, Miron E, Schaefer S, Schreiber D, Van Wijngaarden W A, Zeng X 1984 Phys. Rev. A 29 3092Google Scholar

    [20]

    Walker T G, Happer W 1997 Rev. Mod. Phys. 69 629Google Scholar

    [21]

    Walker T G 1989 Phys. Rev. A 40 4959Google Scholar

    [22]

    Appelt S, Baranga A B A, Erickson C J, Romalis M V, Young A R, Happer W 1998 Phys. Rev. A 58 1412Google Scholar

    [23]

    李森麟, 唐天荣, 孙献平, 曾锡之, 刘煜炎, 王枫 1988 科学通报 16 3

    Li S L, Tang T R, Sun X P, Zeng X Z, Liu Y Y, Wang F 1988 Sci. Bull. 16 3

    [24]

    Parnell S R, Deppe M H, Parra-Robles J, Wild J M 2010 J. Appl. Phys. 108 064908Google Scholar

    [25]

    Jiang P, Wang Z G, Luo H 2017 Optik (Stuttg) 138 341Google Scholar

    [26]

    Zhan X, Jiang Q Y, Wang Z G, Luo H, Zhao H C 2018 AIP Adv. 8 95104Google Scholar

    [27]

    Jiang M, Li H, Zhu Z N, Peng X H, Budker D 2019 arXiv Prepr. arXiv1901 00970

    [28]

    Seltzer S J 2008 Ph. D. Dissertation (Princeton: Princeton University

    [29]

    Kornack T W, Ghosh R K, Romalis M V 2005 Phys. Rev. Lett. 95 230801Google Scholar

    [30]

    Savukov I M, Romalis M V 2005 Phys. Rev. A 71 23405Google Scholar

    [31]

    Barskiy D A, Coffey A M, Nikolaou P, Mikhaylov D M, Goodson B M, Branca R T, Lu G J, Shapiro M G, Telkki V, Zhivonitko V V 2017 Chem. Eur. J. 23 725Google Scholar

    [32]

    Goodson B. M 2002 J. Magn. Reson 155 157Google Scholar

    [33]

    Ma Z L, Sorte E G, Saam B 2011 Phys. Rev. Lett. 106 193005Google Scholar

    [34]

    Jau Y Y, Kuzma N N, Happer W 2002 Phys. Rev. A 66 52710Google Scholar

    [35]

    Rosenberry M A, Chupp T E 2001 Phys. Rev. Lett. 86 22Google Scholar

    [36]

    Regan B C, Commins E D, Schmidt C J, DeMille D 2002 Phys. Rev. Lett. 88 071805Google Scholar

    [37]

    Fang J C, Qin J, Wan S A, Chen Y, Li R J 2013 Chin. Sci. Bull. 58 1512Google Scholar

    [38]

    Arvanitaki A, Geraci A A 2014 Phys. Rev. Lett. 113 161801Google Scholar

    [39]

    Bulatowicz M, Griffith R, Larsen M, Mirijanian J, Fu C B, Smith E, Snow W M, Yan H, Walker T G 2013 Phys. Rev. Lett. 111 102001Google Scholar

  • [1] 李恺翔, 刘润聪. 运动感应涡流磁场检测中的激励磁场优化设计方法. 物理学报, 2023, 72(16): 168105. doi: 10.7498/aps.72.20230064
    [2] 陈池婷, 吴磊, 王霞, 王婷, 刘延君, 蒋军, 董晨钟. B2+和B+离子的静态偶极极化率和超极化率的理论研究. 物理学报, 2023, 72(14): 143101. doi: 10.7498/aps.72.20221990
    [3] 王婷, 蒋丽, 王霞, 董晨钟, 武中文, 蒋军. Be+离子和Li原子极化率和超极化率的理论研究. 物理学报, 2021, 70(4): 043101. doi: 10.7498/aps.70.20201386
    [4] 韩波, 梁雅琼. 质子成像法测量电容线圈靶磁场. 物理学报, 2020, 69(17): 175202. doi: 10.7498/aps.69.20200215
    [5] 张若舟, 秦明阳, 张露, 尤立星, 董超, 沙鹏, 袁洁, 金魁. 超导薄膜磁场穿透深度的双线圈互感测量. 物理学报, 2020, 69(4): 047401. doi: 10.7498/aps.69.20191758
    [6] 刘婉馨, 陈瑞, 刘永杰, 王俊峰, 韩小涛, 杨明. 脉冲强磁场下的电极化测量系统. 物理学报, 2020, 69(5): 057502. doi: 10.7498/aps.69.20191520
    [7] 杨晨, 左冠华, 田壮壮, 张玉驰, 张天才. 线极化Bell-Bloom测磁系统中抽运光对磁场灵敏度的影响. 物理学报, 2019, 68(9): 090701. doi: 10.7498/aps.68.20190030
    [8] 张越, 侯飞雁, 刘涛, 张晓斐, 张首刚, 董瑞芳. 基于II类周期极化铌酸锂波导的通信波段小型化频率纠缠源产生及其量子特性测量. 物理学报, 2018, 67(14): 144204. doi: 10.7498/aps.67.20180329
    [9] 邓东阁, 武新军, 左苏. 基于永磁恒定磁场激励的起始磁化曲线测量. 物理学报, 2016, 65(14): 148101. doi: 10.7498/aps.65.148101
    [10] 冯高平, 孙羽, 郑昕, 胡水明. 氦原子精密光谱实验中的精密磁场设计与测量. 物理学报, 2014, 63(12): 123201. doi: 10.7498/aps.63.123201
    [11] 荆庆丽, 杜春光, 高健存. 表面等离子共振现象的新应用——微弱磁场的测量. 物理学报, 2013, 62(3): 037302. doi: 10.7498/aps.62.037302
    [12] 文峰, 武保剑, 李智, 李述标. 基于全光纤萨格纳克干涉仪的温度不敏感磁场测量. 物理学报, 2013, 62(13): 130701. doi: 10.7498/aps.62.130701
    [13] 陈杰, 鲁习文. 舰船感应磁场预测的一种新方法. 物理学报, 2010, 59(1): 239-245. doi: 10.7498/aps.59.239
    [14] 朱菁, 吕昌贵, 洪旭升, 崔一平. 分子一阶超极化率溶剂效应的理论研究. 物理学报, 2010, 59(4): 2850-2854. doi: 10.7498/aps.59.2850
    [15] 逯振平, 韩 奎, 李海鹏, 张文涛, 黄志敏, 沈晓鹏, 张兆慧, 白 磊. 4-N-甲基苯乙烯砒啶盐衍生物振动超极化率的理论研究. 物理学报, 2007, 56(10): 5843-5848. doi: 10.7498/aps.56.5843
    [16] 李海鹏, 韩 奎, 逯振平, 沈晓鹏, 黄志敏, 张文涛, 白 磊. 有机分子第一超极化率色散效应和双光子共振增强理论研究. 物理学报, 2006, 55(4): 1827-1831. doi: 10.7498/aps.55.1827
    [17] 张彦鹏, 甘琛利, 朱京平, 唐天同, 傅盘铭. 利用相位共轭极化拍频光谱术测量原子能级差与激光绝对频率. 物理学报, 1999, 48(9): 1667-1675. doi: 10.7498/aps.48.1667
    [18] 朱贤方, 水嘉鹏. 自由衰减法测量线性内耗的准确公式. 物理学报, 1996, 45(6): 1010-1015. doi: 10.7498/aps.45.1010
    [19] 吴杭生, 吉光达, 刘福绥. 磁场对微波感应台阶高度的影响. 物理学报, 1977, 26(4): 353-362. doi: 10.7498/aps.26.353
    [20] 魏荣爵. 低频声音在水雾中衰减的测量. 物理学报, 1954, 10(3): 187-208. doi: 10.7498/aps.10.187
计量
  • 文章访问数:  10597
  • PDF下载量:  189
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-04
  • 修回日期:  2019-06-13
  • 上网日期:  2019-08-01
  • 刊出日期:  2019-08-20

/

返回文章
返回