搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非均匀等离子体中1/4临界密度附近受激散射的非线性演化

吴钟书 赵耀 翁苏明 陈民 盛政明

引用本文:
Citation:

非均匀等离子体中1/4临界密度附近受激散射的非线性演化

吴钟书, 赵耀, 翁苏明, 陈民, 盛政明

Nonlinear evolution of stimulated scattering near 1/4 critical density

Wu Charles F., Zhao Yao, Weng Su-Ming, Chen Min, Sheng Zheng-Ming
PDF
HTML
导出引用
  • 本文采用粒子模拟方法, 针对长脉冲激光在非均匀等离子体中的传输过程, 特别是在1/4临界密度附近, 等离子体中受激散射的非线性演化现象, 进行了细致的模拟研究. 研究结果表明: 在1/4临界面附近所产生的受激拉曼散射不稳定性, 其散射光在等离子体中被捕获, 并在该区域形成电磁孤子. 电磁孤子的振幅随着不稳定性的发展而提高, 并由此而产生一个有质动力场驱动周围的电子运动, 离子随后被电荷分离场加速, 最终形成准中性的密度坑. 在单个密度坑形成后, 由于该密度坑周围等离子体密度和温度产生了变化, 使得等离子体中逐渐形成更多的密度坑. 这些密度坑将等离子体分割成不连续的密度分布, 而这种密度分布最终明显地抑制了受激拉曼散射和受激布里渊散射不稳定性的发展.
    Based on particle-in-cell simulations, the propagation of intense long pulse lasers in non-uniform plasma, and particularly, the formation of plasma density cavities caused by the nonlinear evolution of stimulated Raman scattering (SRS) near the quarter critical density, and its effects on parametric instabilities have been studied. It is found that the stimulated Raman scattering instability developed near the quarter critical density leads to the trapping of scattered light and subsequent formation of a local electromagnetic solitary wave. Its amplitude increases with the development of the SRS instability, which pushes surrounding electrons and ions to form a quasi-neutral density cavity. When the first density cavity is formed, the plasma density evolves in such a way that more density cavities are formed during the laser interaction and subsequently the plasma is split into a few discontinuous portions. This new density profile finally tends to suppress the development of both SRS and the stimulated Brillouin scattering (SBS) instabilities considerably.
      通信作者: 赵耀, yaozhao@siom.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11775144)和上海市自然科学基金(批准号: 19YF1453200)资助的课题
      Corresponding author: Zhao Yao, yaozhao@siom.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11775144) and the Natural Science Foundation of Shanghai, China (Grant No. 19YF1453200)
    [1]

    Kruer W 1988 The Physics of Laser Plasma Interactions (New York: Addison-Wesley) p74

    [2]

    Kaw P K 2017 Rev. Mod. Plasma Phys. 1 2Google Scholar

    [3]

    Cheung P Y, Wong A Y, Darrow C B, Qian S Z 1982 Phys. Rev. Lett. 48 1348Google Scholar

    [4]

    Borghesi M, Bulanov S, Campbell D H, Clarke R J, Esirkepov T Zh, Galimberti M, Gizzi L A, MacKinnon A J, Naumova N M, Pegoraro F, Ruhl H, Schiavi A, Willi O 2002 Phys. Rev. Lett. 88 135002Google Scholar

    [5]

    Langdon A B, Lasinski B F 1983 Phys. Fluids 26 582Google Scholar

    [6]

    Weber S, Riconda C, Tikhonchuk V 2005 Phys. Rev. Lett. 94 055005Google Scholar

    [7]

    Klimo O, Weber S, Tikhonchuk V T, Limpouch J 2010 Plasma Phys. Control. Fusion 52 055013Google Scholar

    [8]

    Zhao Y, Sheng Z M, Weng S M, Ji S Z, Zhu J Q 2019 High Power Laser Sci. Eng. 7 e20Google Scholar

    [9]

    Klimo O, Tikhonchuk V T 2013 Plasma Phys. Control. Fusion 55 095002Google Scholar

    [10]

    Eliasson B 2013 Mod. Phys. Lett. B 27 1330005

    [11]

    Esirkepov T, Nishihara K, Bulanov S V, Pegoraro F 2002 Phys. Rev. Lett. 89 275002Google Scholar

    [12]

    盛政明, 张杰, 余玮 2003 物理学报 52 125Google Scholar

    Sheng Z M, Zhang J, Yu W 2003 Acta Phys. Sin. 52 125Google Scholar

    [13]

    Sheng Z M, Zhang J, Umstadter D 2003 Appl. Phys. B 77 673

    [14]

    Yu L L, Sheng Z M, Zhang J 2009 J. Opt. Soc. Am. B 26 2095Google Scholar

    [15]

    Xiao C Z, Liu Z J, Wu D, Zheng C Y, He X T 2015 Phys. Plasmas 22 052121Google Scholar

    [16]

    Craxton R S, Anderson K S, Boehly T R, Goncharov V N, Harding D R, Knauer J P, McCrory R L, McKenty P W, Meyerhofer D D, Myatt J F, Schmitt A J, Sethian J D, Short R W, Skupsky S, Theobald W, Kruer W L, Tanaka K, Betti R, Collins T J B, Delettrez J A, Hu S X, Marozas J A, Maximov A V, Michel D T, Radha P B, Regan S P, Sangster T C, Seka W, Solodov A A, Soures J M, Stoeckl C, Zuegel J D 2015 Phys. Plasmas 22 110501Google Scholar

    [17]

    Kaw P K, Kruer W L, Liu C S, Nishikawa K 1976 Advances in Plasma Physics (Vol. 6) (New York: John Wiley and Sons, Inc.)

    [18]

    Liu C S, Tripathi V K, Eliasson B 2019 High-Power Laser-Plasma Interaction (Cambridge: Cambridge University Press)

    [19]

    Pesme D, Laval G, Pellat R 1973 Phys. Rev. Lett. 31 203Google Scholar

    [20]

    Wang Y X, Wang Q, Zheng C Y, Liu Z J, Liu C S, He X T 2018 Phys. Plasmas 25 100702Google Scholar

    [21]

    Rosenbluth M N 1972 Phys. Rev. Lett. 29 565Google Scholar

    [22]

    Liu C S, Rosenbluth M N, White R B 1974 Phys. Fluids 17 1211Google Scholar

    [23]

    Zakharov V E 1972 Sov. Phys. JETP 35 908

    [24]

    Zhao Y, Yu L L, Weng S M, Ren C, Liu C S, Sheng Z M 2017 Phys. Plasmas 24 092116Google Scholar

    [25]

    Brady C 2014 Users Manual for the EPOCH PIC Codes (Coventry: University of Warwick) pp12-50

    [26]

    Naumova N M, Bulanov S V, Esirkepov T Zh, Farina D, Nishihara K, Pegoraro F, Ruhl H, Sakharov A S 2001 Phys. Rev. Lett. 87 185004Google Scholar

    [27]

    Esirkepov T Zh, Kamenets F F 1999 JETP Lett. 68 36

    [28]

    White R, Kaw P, Pesme D, Rosenbluth M N, Laval G, Huff R, Varma R 1974 Nucl. Fusion 14 45Google Scholar

    [29]

    Zhao Y, Zheng J, Chen M, Yu L L, Weng S M, Ren C, Liu C S, Sheng Z M 2014 Phys. Plasmas 21 112114Google Scholar

    [30]

    DuBois D F, Forslund D W 1974 Phys. Rev. Lett. 33 1013Google Scholar

    [31]

    Sheng Z M, Nishihara K, Honda T, Sentoku Y, Mima K, Bulanov S V 2001 Phys. Rev. E 64 066409Google Scholar

  • 图 1  (a)随时间变化的离子密度分布; (b) 2100T0时刻的离子密度分布

    Fig. 1.  (a) Temporal and spatial variation of ion density distribution; (b) the ion density distribution at 2100T0. The red dotted line marks the density cavity with the width of 2λ0.

    图 2  (a)归一化电场Ey的时空演化图, 其中的归一化量纲El为入射激光的电场强度; (b) 0−2000T0, 200−400 μm等离子体中的电场Eykω空间中的分布; (c) 2000T0−4000T0, 200−400 μm等离子体中的电场Eykω空间中的分布

    Fig. 2.  (a) Spatio-temporal evolution of the electric field Ey, Ey is normalized to El, which is the electric field intensity of incident laser; (b) distribution of electric field in (k, ω) space corresponding to the time window [0−2000]T0 and the space window [200−400] μm; (c) distribution of electric field in (k, ω) space corresponding to the time window [2000−4000]T0 and the space window [200−400] μm.

    图 3  (a)在不同的初始电子温度下, 1/4临界密度处等离子体密度坑的产生时间对比; (b)在不同的初始离子温度下, 1/4临界密度处等离子体密度坑的产生时间对比

    Fig. 3.  (a) Comparison of the generation time of plasma density cavity with different initial electron temperatures at quarter critical density; (b) comparison of the generation time of plasma density cavity with different initial ion temperatures at quarter critical density.

    图 4  (a)随时空变化的离子密度分布; (b)密度坑产生后, 在3200T0时刻, 密度坑附近的离子被加速到较高的能量

    Fig. 4.  (a) Temporal and spatial variation of ion density distribution; (b) after the formation of density cavities, the ions near the density cavities have been accelerated to a higher energy at the moment of 3200T0.

    图 5  (a), (c), (e)不同时间段中的离子密度在xt空间中的分布; (b), (d), (f)不同时间段中的纵向电场Exxω空间中的分布; 这些离子密度以及纵向电场的分布, 分别反映了不稳定区域或激光等离子体不稳定性的发展情况

    Fig. 5.  (a), (c), (e) Temporal and spatial variation of ion density distribution in different time windows; (b), (d), (f) the longitudinal field Ex in (x, ω) space. The ion and Ex distribution represent the development of instability regions and parametric instability, respectively.

    图 6  (a), (c) 0−2000T0纵场Exk-ω空间的分布; (b), (d) 2000T0−4000T0纵场Exkω空间的分布, 相应频率与波矢的纵场Ex, 分别对应了SBS和SRS不稳定性的发展

    Fig. 6.  (a), (c) The Ex distribution in (k, ω) space corresponding to the time window [0−2000]T0; (b), (d) the Ex distribution in (k, ω) space corresponding to the time window [2000T0−4000]T0. The longitudinal field Ex represents the development of SRS and SBS instabilities in the different time windows, respectively.

    图 7  (a)左行波在频率空间中随时间的变化; (b) SRS的份额随时间的变化; (c) SBS的份额随时间的变化

    Fig. 7.  (a) The temporal evolution of left traveling wave in frequency space; (b) the temporal evolution of SRS; (c) the temporal evolution of SBS.

  • [1]

    Kruer W 1988 The Physics of Laser Plasma Interactions (New York: Addison-Wesley) p74

    [2]

    Kaw P K 2017 Rev. Mod. Plasma Phys. 1 2Google Scholar

    [3]

    Cheung P Y, Wong A Y, Darrow C B, Qian S Z 1982 Phys. Rev. Lett. 48 1348Google Scholar

    [4]

    Borghesi M, Bulanov S, Campbell D H, Clarke R J, Esirkepov T Zh, Galimberti M, Gizzi L A, MacKinnon A J, Naumova N M, Pegoraro F, Ruhl H, Schiavi A, Willi O 2002 Phys. Rev. Lett. 88 135002Google Scholar

    [5]

    Langdon A B, Lasinski B F 1983 Phys. Fluids 26 582Google Scholar

    [6]

    Weber S, Riconda C, Tikhonchuk V 2005 Phys. Rev. Lett. 94 055005Google Scholar

    [7]

    Klimo O, Weber S, Tikhonchuk V T, Limpouch J 2010 Plasma Phys. Control. Fusion 52 055013Google Scholar

    [8]

    Zhao Y, Sheng Z M, Weng S M, Ji S Z, Zhu J Q 2019 High Power Laser Sci. Eng. 7 e20Google Scholar

    [9]

    Klimo O, Tikhonchuk V T 2013 Plasma Phys. Control. Fusion 55 095002Google Scholar

    [10]

    Eliasson B 2013 Mod. Phys. Lett. B 27 1330005

    [11]

    Esirkepov T, Nishihara K, Bulanov S V, Pegoraro F 2002 Phys. Rev. Lett. 89 275002Google Scholar

    [12]

    盛政明, 张杰, 余玮 2003 物理学报 52 125Google Scholar

    Sheng Z M, Zhang J, Yu W 2003 Acta Phys. Sin. 52 125Google Scholar

    [13]

    Sheng Z M, Zhang J, Umstadter D 2003 Appl. Phys. B 77 673

    [14]

    Yu L L, Sheng Z M, Zhang J 2009 J. Opt. Soc. Am. B 26 2095Google Scholar

    [15]

    Xiao C Z, Liu Z J, Wu D, Zheng C Y, He X T 2015 Phys. Plasmas 22 052121Google Scholar

    [16]

    Craxton R S, Anderson K S, Boehly T R, Goncharov V N, Harding D R, Knauer J P, McCrory R L, McKenty P W, Meyerhofer D D, Myatt J F, Schmitt A J, Sethian J D, Short R W, Skupsky S, Theobald W, Kruer W L, Tanaka K, Betti R, Collins T J B, Delettrez J A, Hu S X, Marozas J A, Maximov A V, Michel D T, Radha P B, Regan S P, Sangster T C, Seka W, Solodov A A, Soures J M, Stoeckl C, Zuegel J D 2015 Phys. Plasmas 22 110501Google Scholar

    [17]

    Kaw P K, Kruer W L, Liu C S, Nishikawa K 1976 Advances in Plasma Physics (Vol. 6) (New York: John Wiley and Sons, Inc.)

    [18]

    Liu C S, Tripathi V K, Eliasson B 2019 High-Power Laser-Plasma Interaction (Cambridge: Cambridge University Press)

    [19]

    Pesme D, Laval G, Pellat R 1973 Phys. Rev. Lett. 31 203Google Scholar

    [20]

    Wang Y X, Wang Q, Zheng C Y, Liu Z J, Liu C S, He X T 2018 Phys. Plasmas 25 100702Google Scholar

    [21]

    Rosenbluth M N 1972 Phys. Rev. Lett. 29 565Google Scholar

    [22]

    Liu C S, Rosenbluth M N, White R B 1974 Phys. Fluids 17 1211Google Scholar

    [23]

    Zakharov V E 1972 Sov. Phys. JETP 35 908

    [24]

    Zhao Y, Yu L L, Weng S M, Ren C, Liu C S, Sheng Z M 2017 Phys. Plasmas 24 092116Google Scholar

    [25]

    Brady C 2014 Users Manual for the EPOCH PIC Codes (Coventry: University of Warwick) pp12-50

    [26]

    Naumova N M, Bulanov S V, Esirkepov T Zh, Farina D, Nishihara K, Pegoraro F, Ruhl H, Sakharov A S 2001 Phys. Rev. Lett. 87 185004Google Scholar

    [27]

    Esirkepov T Zh, Kamenets F F 1999 JETP Lett. 68 36

    [28]

    White R, Kaw P, Pesme D, Rosenbluth M N, Laval G, Huff R, Varma R 1974 Nucl. Fusion 14 45Google Scholar

    [29]

    Zhao Y, Zheng J, Chen M, Yu L L, Weng S M, Ren C, Liu C S, Sheng Z M 2014 Phys. Plasmas 21 112114Google Scholar

    [30]

    DuBois D F, Forslund D W 1974 Phys. Rev. Lett. 33 1013Google Scholar

    [31]

    Sheng Z M, Nishihara K, Honda T, Sentoku Y, Mima K, Bulanov S V 2001 Phys. Rev. E 64 066409Google Scholar

  • [1] 龙欣宇, 王佩佩, 安红海, 熊俊, 谢志勇, 方智恒, 孙今人, 王琛. 宽带激光辐照平面薄膜靶的近前向散射. 物理学报, 2024, 73(12): 125202. doi: 10.7498/aps.73.20231613
    [2] 刘庆康, 张旭, 蔡洪波, 张恩浩, 高妍琦, 朱少平. 强度调制宽带激光对受激拉曼散射动理学爆发的抑制. 物理学报, 2024, 73(5): 055202. doi: 10.7498/aps.73.20231679
    [3] 史久林, 许锦, 罗宁宁, 王庆, 张余宝, 张巍巍, 何兴道. 水中受激拉曼散射的能量增强及受激布里渊散射的光学抑制. 物理学报, 2019, 68(4): 044201. doi: 10.7498/aps.68.20181548
    [4] 邓万涛, 赵刚, 夏惠军, 张茂, 杨艺帆. 非相干合成阵列激光倾斜像差校正方法. 物理学报, 2019, 68(23): 234205. doi: 10.7498/aps.68.20190961
    [5] 王明军, 魏亚飞, 柯熙政. 复杂大气背景下机载通信终端与无人机目标之间的激光传输特性研究. 物理学报, 2019, 68(9): 094203. doi: 10.7498/aps.68.20182052
    [6] 邹长林, 叶文华, 卢新培. 一维动理学数值模拟激光与等离子体的相互作用. 物理学报, 2014, 63(8): 085207. doi: 10.7498/aps.63.085207
    [7] 汪胜晗, 李占龙, 孙成林, 里佐威, 门志伟. 激光诱导等离子体对水OH伸缩振动受激拉曼散射的影响. 物理学报, 2014, 63(20): 205204. doi: 10.7498/aps.63.205204
    [8] 刘小亮, 孙少华, 曹瑜, 孙铭泽, 刘情操, 胡碧涛. 飞秒激光低压N2等离子体特性的实验研究. 物理学报, 2013, 62(4): 045201. doi: 10.7498/aps.62.045201
    [9] 王红霞, 竹有章, 田涛, 李爱君. 激光在不同类型气溶胶中传输特性研究. 物理学报, 2013, 62(2): 024214. doi: 10.7498/aps.62.024214
    [10] 李占龙, 王一丁, 周密, 门志伟, 孙成林, 里佐威. 水的低频受激拉曼散射. 物理学报, 2012, 61(6): 064217. doi: 10.7498/aps.61.064217
    [11] 张蕾, 董全力, 赵静, 王首钧, 盛政明, 何民卿, 张杰. 激光等离子体相互作用的受激拉曼散射饱和效应. 物理学报, 2009, 58(3): 1833-1837. doi: 10.7498/aps.58.1833
    [12] 胡大伟, 王正平, 张怀金, 许心光, 王继扬, 邵宗书. YbVO4晶体的受激拉曼散射. 物理学报, 2008, 57(3): 1714-1718. doi: 10.7498/aps.57.1714
    [13] 栾仕霞, 张秋菊, 桂维玲. 交叉传播激光脉冲与等离子体相互作用产生的等离子体密度光栅. 物理学报, 2008, 57(11): 7030-7037. doi: 10.7498/aps.57.7030
    [14] 邓 莉, 孙真荣, 林位株, 文锦辉. 亚10 fs激光脉冲产生中的受激拉曼散射与四波混频效应. 物理学报, 2008, 57(12): 7668-7673. doi: 10.7498/aps.57.7668
    [15] 臧竞存, 谢丽艳, 李 晓, 张东香, 冯宝华. 钨酸锌晶体的受激拉曼散射和光致发光研究. 物理学报, 2007, 56(5): 2689-2692. doi: 10.7498/aps.56.2689
    [16] 刘占军, 朱少平, 曹莉华, 郑春阳. 利用一维Vlasov和Maxwell方程模拟激光等离子体相互作用. 物理学报, 2007, 56(12): 7084-7089. doi: 10.7498/aps.56.7084
    [17] 梁慧敏, 杜惊雷, 王宏波, 王治华, 罗时荣, 杨经国, 郑万国, 魏晓峰, 朱启华, 黄晓军, 王晓东, 郭 仪. 不同波长激光激发下C6H12受激拉曼散射模式竞争. 物理学报, 2007, 56(12): 6994-6998. doi: 10.7498/aps.56.6994
    [18] 普小云, 杨 睿, 王亚丽, 陈天江, 江 楠. 用染料激光增益降低二元混合物中少量化合物的受激拉曼散射可探测浓度. 物理学报, 2004, 53(8): 2509-2514. doi: 10.7498/aps.53.2509
    [19] 普小云, 杨 正, 江 楠, 陈永康, 戴 宏. 用激光增益获取弱增益拉曼模式的受激拉曼散射光谱. 物理学报, 2003, 52(10): 2443-2448. doi: 10.7498/aps.52.2443
    [20] 张喜和, 王兆民, 万春明. 光纤-氮系统的受激拉曼散射. 物理学报, 2002, 51(6): 1251-1255. doi: 10.7498/aps.51.1251
计量
  • 文章访问数:  9559
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-08
  • 修回日期:  2019-07-26
  • 上网日期:  2019-10-01
  • 刊出日期:  2019-10-05

/

返回文章
返回