搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微纳尺度体点导热的拓扑优化

李含灵 曹炳阳

引用本文:
Citation:

微纳尺度体点导热的拓扑优化

李含灵, 曹炳阳

Topology optimization of the volume-to-point heat conduction problem at micro- and nano-scale

Li Han-Ling, Cao Bing-Yang
PDF
HTML
导出引用
  • 体点导热问题是电子器件散热优化方面的基础问题之一, 已有研究大多建立在傅里叶导热定律的基础上, 但随着电子器件的特征尺度降低到微纳米量级, 导热优化需要考虑非傅里叶效应. 本文结合声子玻尔兹曼方程的数值解和对声子平均自由程进行插值的固体各向同性材料惩罚方法, 发展了微纳米尺度下弹道-扩散导热的拓扑优化方法. 在弹道-扩散导热机制下, 体点导热的拓扑优化得到的材料分布明显不同于扩散导热下的树状分布, 且会随努森数的变化而变化, 与拓扑优化的插值方式和声子弹道输运有关. 随着弹道效应的增强, 尺寸效应使得材料分布中微小结构的等效热导率低于粗壮结构, 因而拓扑优化结果朝着增多粗壮结构、减少微小结构的方向发展. 弹道效应足够强时, 填充材料聚集在低温边界附近, 主干和枝合并, 呈团状分布.
    The volume-to-point (VP) heat conduction problem is one of the fundamental problems of cooling for electronic devices. The existed reports about the VP problem are mainly based on the Fourier’s law which works well at the macroscopic scale. However, the length scale of modern electronic devices has reduced to micro- and nano-scale, at which optimization methods that are capable of dealing with the non-Fourier heat conduction are desired now. In this paper, phonon Boltzmann transport equation (BTE) and solid isotropic material with penalization (SIMP) method are coupled to develop a topology optimization method for ballistic-diffusive heat conduction. Phonon BTE is transformed into equation of phonon radiative transport, which is solved by the discrete ordinate method. To realize the topology optimization, SIMP method is adopted to penalize the phonon extinction coefficient, which equals to the reciprocal of phonon mean-free-path, and an explicit constraint on the global gradient of the nominal material density is used to ensure the solutions being well-posed and mesh-independent. By using the developed topology optimization method, it is found that the optimal material distributions for the VP problem in ballistic-diffusive heat conduction significantly deviate from the traditional tree-like structure obtained in diffusive heat conduction, and the results vary with the Knudsen number (Kn). This is related to the different coefficient interpolation ways in the SIMP method and phonon ballistic transport. When Kn → 0, instead of converging to the conventional tree-like structure which fully stretches into the interior zone, the new method gradually produces the result obtained by the topology optimization which interpolates the reciprocal of the thermal conductivity in diffusive heat conduction. As Kn increases, the high thermal-conductive filling materials show a trend to gather around the low-temperature boundary, and there are more thick and strong trunk structures, less tiny and thin branch structures in the optimized material distributions. In addition, the ratio of the optimized average temperature to the value of the uniform material distribution $\left( {T_{{\rm{ave}},{\rm{opt}}}^{\rm{*}}/T_{{\rm{ave}},{\rm{uni}}}^{\rm{*}}} \right)$ also increases. The dependence of the topology optimization results on Kn can be attributed to the size effect of the thermal conductivity caused by phonon ballistic transport. In the diffusive heat conduction, filling materials with different length scales have the same efficiency to build high thermal-conductive channels. However, with ballistic effect enhancing, size effect makes the effective thermal conductivities of the branch structure lower than those of the trunk structure, as the former is smaller than the latter. As a result, the branch structures are less efficient compared with the trunk structures in terms of building high thermal-conductive channels, and the optimal material distributions have more trunk structures and fewer branch structures. When the ballistic effect becomes significant enough, say at Kn = 0.1, the topology optimization gets a dough-like material distribution in which branches merge into trunks. The proposed topology optimization method have the potential to provide guidance in designing nanoscale electronic devices for improving the heat dissipation capability.
      通信作者: 曹炳阳, caoby@tsinghua.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51825601, 51676108, 51621062)资助的课题.
      Corresponding author: Cao Bing-Yang, caoby@tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51825601, 51676108, 51621062).
    [1]

    Bagnall K R, Wang E N 2018 IEEE Trans. Comp. Pack. Man. 8 606

    [2]

    Ahmed H E, Salman B H, Kherbeet A S, Ahmed M I 2018 Int. J. Heat Mass Transf. 118 129Google Scholar

    [3]

    Narendran N, Gu Y, Freyssinier J P, Yu H, Deng L 2004 J. Cryst. Growth 268 449Google Scholar

    [4]

    Pop E 2010 Nano Res. 3 147Google Scholar

    [5]

    Garimella S V, Persoons T, Weibel J A, Gektin V 2017 IEEE Trans. Comp. Pack. Man. 7 1191

    [6]

    Hua Y C, Li H L, Cao B Y 2019 IEEE Trans. Electron Dev. 66 3296

    [7]

    Yang M, Cao B Y 2019 Appl. Therm. Eng. 159 113896Google Scholar

    [8]

    Bejan A 1997 Int. J. Heat Mass Transf. 40 799Google Scholar

    [9]

    Cheng X G, Li Z X, Guo Z Y 2003 Sci. China: Technol. Sci. 46 296

    [10]

    Gersborg-Hansen A, Bendsøe M P, Sigmund O 2006 Struct. Multidiscip. O. 31 251Google Scholar

    [11]

    Zhang Y C, Liu S T 2008 Heat Mass Transf. 44 1217Google Scholar

    [12]

    Dirker J, Meyer J P 2013 J. Heat Transf. 135 111010Google Scholar

    [13]

    Dbouk T 2017 Appl. Therm. Eng. 112 841Google Scholar

    [14]

    Xu X H, Liang X G, Ren J X 2007 Int. J. Heat Mass Transf. 50 1675Google Scholar

    [15]

    Sigmund O, Maute K 2013 Struct. Multidiscip. O. 48 1031Google Scholar

    [16]

    Cahill D G, Braun P V, Chen G, Clarke D R, Fan S, Goodson K E, Keblinski P, King W P, Mahan G D, Majumdar A 2014 Appl. Phys. Rev. 1 11305Google Scholar

    [17]

    Volz S, Shiomi J, Nomura M, Miyazaki K 2016 J. Therm. Sci. Tech.-Jpn 11 T1Google Scholar

    [18]

    Bao H, Chen J, Gu X K, Cao B Y 2018 ES Energy Environ. 1 16

    [19]

    Xie G F, Ju Z F, Zhou K K, Wei X L, Guo Z X, Cai Y Q, Zhang G 2018 npj Comput. Mater. 4 21Google Scholar

    [20]

    Guo Z Y 2018 ES Energy Environ. 1 4

    [21]

    Lu Z X, Ruan X L 2019 ES Energy Environ. 4 5

    [22]

    Yao W J, Cao B Y 2016 Phys. Lett. A 380 2105Google Scholar

    [23]

    Ziman J M 2001 Electrons and Phonons: the Theory of Transport Phenomena in Solids (Oxford: Clarendon Press) pp1–51

    [24]

    Chen G 2001 Phys. Rev. Lett. 86 2297Google Scholar

    [25]

    Hua Y C, Cao B Y 2014 Int. J. Heat Mass Transf. 78 755Google Scholar

    [26]

    Hua Y C, Cao B Y 2016 Int. J. Therm. Sci. 101 126Google Scholar

    [27]

    Li H L, Cao B Y 2019 Nanoscale Microscale Thermophys. Eng. 23 10Google Scholar

    [28]

    Li B W, Wang J 2003 Phys. Rev. Lett. 91 44301Google Scholar

    [29]

    Schleeh J, Mateos J, Íñiguez-de-la-Torre I, Wadefalk N, Nilsson P A, Grahn J, Minnich A J 2014 Nat. Mater. 14 187

    [30]

    Hua Y C, Cao B Y 2017 Nanoscale Microscale Thermophys. Eng. 3 159

    [31]

    Li H L, Hua Y C, Cao B Y 2018 Int. J. Heat Mass Transf. 127 1014

    [32]

    Luckyanova M N, Garg J, Esfarjani K, Jandl A, Bulsara M T, Schmidt A J, Minnich A J, Chen S, Dresselhaus M S, Ren Z 2012 Science 338 936Google Scholar

    [33]

    Chen X K, Xie Z X, Zhou W X, Tang L M, Chen K Q 2016 Appl. Phys. Lett. 109 23101Google Scholar

    [34]

    Chen X K, Liu J, Peng Z H, Du D, Chen K Q 2017 Appl. Phys. Lett. 110 91907Google Scholar

    [35]

    Xie G F, Ding D, Zhang G 2018 Adv. Phys. X 3 1480417

    [36]

    Kazan M, Guisbiers G, Pereira S, Correia M R, Masri P, Bruyant A, Volz S, Royer P 2010 J. Appl. Phys. 107 83503Google Scholar

    [37]

    Ju Y S, Goodson K E 1999 Appl. Phys. Lett. 74 3005Google Scholar

    [38]

    Evgrafov A, Maute K, Yang R G, Dunn M L 2009 Int. J. Numer. Meth. Eng. 77 285Google Scholar

    [39]

    Murthy J Y, Mathur S R 2002 J. Heat Transf. 124 1176Google Scholar

    [40]

    Narumanchi S V, Murthy J Y, Amon C H 2003 J. Heat Transf. 125 896Google Scholar

    [41]

    Hamian S, Yamada T, Faghri M, Park K 2015 Int. J. Heat Mass Transf. 80 781Google Scholar

    [42]

    Majumdar A 1993 J. Heat Transf. 115 7Google Scholar

    [43]

    Chen G 1998 Phys. Rev. B 57 14958Google Scholar

    [44]

    Sobolev S L 2018 Phys. Rev. E 97 22122Google Scholar

    [45]

    华钰超, 董源, 曹炳阳 2013 物理学报 62 244401Google Scholar

    Hua Y C, Dong Y, Cao B Y 2013 Acta Phys. Sin. 62 244401Google Scholar

    [46]

    Hua Y C, Cao B Y 2016 Int. J. Heat Mass Transf. 92 995Google Scholar

    [47]

    Peterson R B 1994 J. Heat Transf. 116 815Google Scholar

    [48]

    杜建镔 2015 结构优化及其在振动和声学设计中的应用 (北京: 清华大学出版社) 第115页

    Du J B 2015 Structural Optimization and Its Applications in Vibration and Acoustic Designs (Beijing: Tsinghua University Press) p115 (in Chinese)

    [49]

    Bendsøe M P 1989 Struct. Optimization 1 193Google Scholar

    [50]

    Sigmund O, Petersson J 1998 Struct. Optimization 16 68Google Scholar

    [51]

    Zhang Y C, Liu S T 2008 Prog. Nat. Sci. 18 665Google Scholar

    [52]

    Petersson J, Sigmund O 1998 Int. J. Numer. Meth. Eng. 41 1417Google Scholar

    [53]

    Bendsoe M P, Sigmund O 2004 Topology Optimization: Theory, Methods, and Applications (Berlin: Springer) p17

    [54]

    Svanberg K 1987 Int. J. Numer. Meth. Eng. 24 359Google Scholar

    [55]

    Hua Y C, Cao B Y 2018 J. Appl. Phys. 123 114304Google Scholar

    [56]

    Alaili K, Ordonez-Miranda J, Ezzahri Y 2018 Int. J. Therm. Sci. 131 40Google Scholar

  • 图 1  体点导热问题示意图

    Fig. 1.  The schematic diagram of the VP problem.

    图 2  体点导热拓扑优化的流程图

    Fig. 2.  The flow chart of topology optimization for the VP problem.

    图 3  扩散导热下不同插值方式对材料分布和温度分布的影响 (a)插值k; (b)插值${k^{ - 1}}$

    Fig. 3.  The effect of interpolation ways on the material distributions and temperature distributions in diffusive heat conduction: (a) Interpolating k; (b) interpolating ${k^{ - 1}}$.

    图 4  扩散导热下拓扑优化得到的材料分布随$\alpha $n的变化

    Fig. 4.  The material distributions obtained by topology optimization in diffusive heat conduction varying with $\alpha $ and n.

    图 5  弹道-扩散导热下拓扑优化的材料分布和温度云图随$Kn$的变化 (a) Kn = 0.002; (b) Kn = 0.01; (c) Kn = 0.1

    Fig. 5.  The topology optimization obtained material distributions and temperature distributions varying with Kn in ballistic-diffusive heat conduction: (a) Kn = 0.002; (b) Kn = 0.01; (c) Kn = 0.1.

    图 6  扩散导热下插值${k^{ - 1}}$的拓扑优化所得的材料分布在$Kn = 0.1$时的温度分布

    Fig. 6.  The temperature distribution for the material distribution obtained by topology optimization which interpolates ${k^{ - 1}}$ in diffusive heat conduction at $Kn = 0.1$.

    表 1  不同材料分布在不同努森数下对应的无量纲温度平均值

    Table 1.  The average dimensionless temperature of different material distributions at different Knudsen numbers.

    Kn$T_{{\rm{ave}}}^*$(括号内数据为$T_{{\rm{ave}}}^*/T_{{\rm{ave}},{\rm{uni}}}^*$)
    均匀分布
    分布1
    分布2
    分布3
    分布4
    分布5
    0.0020.98(100.0%)0.33 (33.7%)0.21 (21.4%)0.11 (11.2%)0.12 (12.2%)0.21 (21.4%)
    0.011.07(100.0%)0.57 (53.2%)0.41(38.3%)0.30 (28.0%)0.29 (27.1%)0.33 (30.8%)
    0.12.29(100.0%)1.97 (86.0%)1.84 (80.3%)1.64 (71.6%)1.62 (70.7%)1.60 (69.9%)
    注: 分布1和2分别是扩散导热条件下插值k的拓扑优化结果、插值${k^{ - 1}}$的拓扑优化结果, 分布3—5分别是弹道-扩散导热条件下$Kn$为0.002, 0.01, 0.1时的拓扑优化结果.
    下载: 导出CSV
  • [1]

    Bagnall K R, Wang E N 2018 IEEE Trans. Comp. Pack. Man. 8 606

    [2]

    Ahmed H E, Salman B H, Kherbeet A S, Ahmed M I 2018 Int. J. Heat Mass Transf. 118 129Google Scholar

    [3]

    Narendran N, Gu Y, Freyssinier J P, Yu H, Deng L 2004 J. Cryst. Growth 268 449Google Scholar

    [4]

    Pop E 2010 Nano Res. 3 147Google Scholar

    [5]

    Garimella S V, Persoons T, Weibel J A, Gektin V 2017 IEEE Trans. Comp. Pack. Man. 7 1191

    [6]

    Hua Y C, Li H L, Cao B Y 2019 IEEE Trans. Electron Dev. 66 3296

    [7]

    Yang M, Cao B Y 2019 Appl. Therm. Eng. 159 113896Google Scholar

    [8]

    Bejan A 1997 Int. J. Heat Mass Transf. 40 799Google Scholar

    [9]

    Cheng X G, Li Z X, Guo Z Y 2003 Sci. China: Technol. Sci. 46 296

    [10]

    Gersborg-Hansen A, Bendsøe M P, Sigmund O 2006 Struct. Multidiscip. O. 31 251Google Scholar

    [11]

    Zhang Y C, Liu S T 2008 Heat Mass Transf. 44 1217Google Scholar

    [12]

    Dirker J, Meyer J P 2013 J. Heat Transf. 135 111010Google Scholar

    [13]

    Dbouk T 2017 Appl. Therm. Eng. 112 841Google Scholar

    [14]

    Xu X H, Liang X G, Ren J X 2007 Int. J. Heat Mass Transf. 50 1675Google Scholar

    [15]

    Sigmund O, Maute K 2013 Struct. Multidiscip. O. 48 1031Google Scholar

    [16]

    Cahill D G, Braun P V, Chen G, Clarke D R, Fan S, Goodson K E, Keblinski P, King W P, Mahan G D, Majumdar A 2014 Appl. Phys. Rev. 1 11305Google Scholar

    [17]

    Volz S, Shiomi J, Nomura M, Miyazaki K 2016 J. Therm. Sci. Tech.-Jpn 11 T1Google Scholar

    [18]

    Bao H, Chen J, Gu X K, Cao B Y 2018 ES Energy Environ. 1 16

    [19]

    Xie G F, Ju Z F, Zhou K K, Wei X L, Guo Z X, Cai Y Q, Zhang G 2018 npj Comput. Mater. 4 21Google Scholar

    [20]

    Guo Z Y 2018 ES Energy Environ. 1 4

    [21]

    Lu Z X, Ruan X L 2019 ES Energy Environ. 4 5

    [22]

    Yao W J, Cao B Y 2016 Phys. Lett. A 380 2105Google Scholar

    [23]

    Ziman J M 2001 Electrons and Phonons: the Theory of Transport Phenomena in Solids (Oxford: Clarendon Press) pp1–51

    [24]

    Chen G 2001 Phys. Rev. Lett. 86 2297Google Scholar

    [25]

    Hua Y C, Cao B Y 2014 Int. J. Heat Mass Transf. 78 755Google Scholar

    [26]

    Hua Y C, Cao B Y 2016 Int. J. Therm. Sci. 101 126Google Scholar

    [27]

    Li H L, Cao B Y 2019 Nanoscale Microscale Thermophys. Eng. 23 10Google Scholar

    [28]

    Li B W, Wang J 2003 Phys. Rev. Lett. 91 44301Google Scholar

    [29]

    Schleeh J, Mateos J, Íñiguez-de-la-Torre I, Wadefalk N, Nilsson P A, Grahn J, Minnich A J 2014 Nat. Mater. 14 187

    [30]

    Hua Y C, Cao B Y 2017 Nanoscale Microscale Thermophys. Eng. 3 159

    [31]

    Li H L, Hua Y C, Cao B Y 2018 Int. J. Heat Mass Transf. 127 1014

    [32]

    Luckyanova M N, Garg J, Esfarjani K, Jandl A, Bulsara M T, Schmidt A J, Minnich A J, Chen S, Dresselhaus M S, Ren Z 2012 Science 338 936Google Scholar

    [33]

    Chen X K, Xie Z X, Zhou W X, Tang L M, Chen K Q 2016 Appl. Phys. Lett. 109 23101Google Scholar

    [34]

    Chen X K, Liu J, Peng Z H, Du D, Chen K Q 2017 Appl. Phys. Lett. 110 91907Google Scholar

    [35]

    Xie G F, Ding D, Zhang G 2018 Adv. Phys. X 3 1480417

    [36]

    Kazan M, Guisbiers G, Pereira S, Correia M R, Masri P, Bruyant A, Volz S, Royer P 2010 J. Appl. Phys. 107 83503Google Scholar

    [37]

    Ju Y S, Goodson K E 1999 Appl. Phys. Lett. 74 3005Google Scholar

    [38]

    Evgrafov A, Maute K, Yang R G, Dunn M L 2009 Int. J. Numer. Meth. Eng. 77 285Google Scholar

    [39]

    Murthy J Y, Mathur S R 2002 J. Heat Transf. 124 1176Google Scholar

    [40]

    Narumanchi S V, Murthy J Y, Amon C H 2003 J. Heat Transf. 125 896Google Scholar

    [41]

    Hamian S, Yamada T, Faghri M, Park K 2015 Int. J. Heat Mass Transf. 80 781Google Scholar

    [42]

    Majumdar A 1993 J. Heat Transf. 115 7Google Scholar

    [43]

    Chen G 1998 Phys. Rev. B 57 14958Google Scholar

    [44]

    Sobolev S L 2018 Phys. Rev. E 97 22122Google Scholar

    [45]

    华钰超, 董源, 曹炳阳 2013 物理学报 62 244401Google Scholar

    Hua Y C, Dong Y, Cao B Y 2013 Acta Phys. Sin. 62 244401Google Scholar

    [46]

    Hua Y C, Cao B Y 2016 Int. J. Heat Mass Transf. 92 995Google Scholar

    [47]

    Peterson R B 1994 J. Heat Transf. 116 815Google Scholar

    [48]

    杜建镔 2015 结构优化及其在振动和声学设计中的应用 (北京: 清华大学出版社) 第115页

    Du J B 2015 Structural Optimization and Its Applications in Vibration and Acoustic Designs (Beijing: Tsinghua University Press) p115 (in Chinese)

    [49]

    Bendsøe M P 1989 Struct. Optimization 1 193Google Scholar

    [50]

    Sigmund O, Petersson J 1998 Struct. Optimization 16 68Google Scholar

    [51]

    Zhang Y C, Liu S T 2008 Prog. Nat. Sci. 18 665Google Scholar

    [52]

    Petersson J, Sigmund O 1998 Int. J. Numer. Meth. Eng. 41 1417Google Scholar

    [53]

    Bendsoe M P, Sigmund O 2004 Topology Optimization: Theory, Methods, and Applications (Berlin: Springer) p17

    [54]

    Svanberg K 1987 Int. J. Numer. Meth. Eng. 24 359Google Scholar

    [55]

    Hua Y C, Cao B Y 2018 J. Appl. Phys. 123 114304Google Scholar

    [56]

    Alaili K, Ordonez-Miranda J, Ezzahri Y 2018 Int. J. Therm. Sci. 131 40Google Scholar

  • [1] 冯晶森, 闵敬春. 直通道内两相流动的格子玻尔兹曼方法模拟. 物理学报, 2023, 72(8): 084701. doi: 10.7498/aps.72.20222421
    [2] 罗天麟, 丁亚飞, 韦宝杰, 杜建迎, 沈翔瀛, 朱桂妹, 李保文. 低维微纳尺度体系声子热传导和热调控: 来自芯片散热的非平衡统计物理问题. 物理学报, 2023, 72(23): 234401. doi: 10.7498/aps.72.20231546
    [3] 邱钰珺, 李亨宣, 李亚涛, 黄春朴, 李卫华, 张旭涛, 刘英光. 基于纳米点嵌入的界面导热性能优化. 物理学报, 2023, 72(11): 113102. doi: 10.7498/aps.72.20230314
    [4] 刘金品, 王秉中, 陈传升, 王任. 基于深度物理启发神经网络的微波波导器件逆设计方法. 物理学报, 2023, 72(8): 080201. doi: 10.7498/aps.72.20230031
    [5] 史鹏飞, 马馨莹, 向川, 赵宏革, 李渊, 高仁璟, 刘书田. 幅值可控的逆反射和镜像反射双通道超表面结构拓扑优化设计. 物理学报, 2023, 72(24): 247801. doi: 10.7498/aps.72.20230775
    [6] 桑迪, 徐明峰, 安强, 付云起. 基于拓扑优化的自由形状波分复用超光栅. 物理学报, 2022, 71(22): 224204. doi: 10.7498/aps.71.20221013
    [7] 张乾毅, 韦华健, 李华兵. 基于晶格玻尔兹曼方法的多段淋巴管模型. 物理学报, 2021, 70(21): 210501. doi: 10.7498/aps.70.20210514
    [8] 邱克鹏, 骆越, 张卫红. 新型手性电磁超材料非对称传输性能设计分析. 物理学报, 2020, 69(21): 214101. doi: 10.7498/aps.69.20200728
    [9] 贾鼎, 葛勇, 袁寿其, 孙宏祥. 基于蜂窝晶格声子晶体的双频带声拓扑绝缘体. 物理学报, 2019, 68(22): 224301. doi: 10.7498/aps.68.20190951
    [10] 莫漫漫, 马武伟, 庞永强, 陈润华, 张笑梅, 柳兆堂, 李想, 郭万涛. 基于拓扑优化设计的宽频吸波复合材料. 物理学报, 2018, 67(21): 217801. doi: 10.7498/aps.67.20181170
    [11] 冯黛丽, 冯妍卉, 石珺. 介孔复合材料声子输运的格子玻尔兹曼模拟. 物理学报, 2016, 65(24): 244401. doi: 10.7498/aps.65.244401
    [12] 罗小元, 李昊, 马巨海. 基于最小刚性图代数特性的无线网络拓扑优化算法. 物理学报, 2016, 65(24): 240201. doi: 10.7498/aps.65.240201
    [13] 刘飞飞, 魏守水, 魏长智, 任晓飞. 基于速度源修正的浸入边界-晶格玻尔兹曼法研究仿生微流体驱动模型. 物理学报, 2014, 63(19): 194704. doi: 10.7498/aps.63.194704
    [14] 薛泽, 施娟, 王立龙, 周锦阳, 谭惠丽, 李华兵. 粒子在锥形管中运动的晶格玻尔兹曼方法研究. 物理学报, 2013, 62(8): 084702. doi: 10.7498/aps.62.084702
    [15] 孙东科, 项楠, 陈科, 倪中华. 格子玻尔兹曼方法模拟弯流道中粒子的惯性迁移行为. 物理学报, 2013, 62(2): 024703. doi: 10.7498/aps.62.024703
    [16] 陈林根, 冯辉君, 谢志辉, 孙丰瑞. 微、纳米尺度下圆盘(火积)耗散率最小构形优化. 物理学报, 2013, 62(13): 134401. doi: 10.7498/aps.62.134401
    [17] 王文霞, 施娟, 邱冰, 李华兵. 用晶格玻尔兹曼方法研究微结构表面的疏水性能. 物理学报, 2010, 59(12): 8371-8376. doi: 10.7498/aps.59.8371
    [18] 周丰茂, 孙东科, 朱鸣芳. 偏晶合金液-液相分离的格子玻尔兹曼方法模拟. 物理学报, 2010, 59(5): 3394-3401. doi: 10.7498/aps.59.3394
    [19] 施娟, 李剑, 邱冰, 李华兵. 用晶格玻尔兹曼方法研究颗粒在涡流中的运动. 物理学报, 2009, 58(8): 5174-5178. doi: 10.7498/aps.58.5174
    [20] 邓敏艺, 施 娟, 李华兵, 孔令江, 刘慕仁. 用晶格玻尔兹曼方法研究螺旋波的产生机制和演化行为. 物理学报, 2007, 56(4): 2012-2017. doi: 10.7498/aps.56.2012
计量
  • 文章访问数:  10009
  • PDF下载量:  180
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-15
  • 修回日期:  2019-08-16
  • 上网日期:  2019-10-01
  • 刊出日期:  2019-10-20

/

返回文章
返回