搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

快速傅里叶变换在阿秒束线光路稳定控制中的应用

江昱佼 高亦谈 黄沛 赵昆 许思源 朱江峰 方少波 滕浩 侯洵 魏志义

引用本文:
Citation:

快速傅里叶变换在阿秒束线光路稳定控制中的应用

江昱佼, 高亦谈, 黄沛, 赵昆, 许思源, 朱江峰, 方少波, 滕浩, 侯洵, 魏志义

Phase control and stabilization in attosecond beamline with fast Fourier transform

Jiang Yu-Jiao, Gao Yi-Tan, Huang Pei, Zhao Kun, Xu Si-Yuan, Zhu Jiang-Feng, Fang Shao-Bo, Teng Hao, Hou Xun, Wei Zhi-Yi
PDF
HTML
导出引用
  • 本文报道了将快速傅里叶变换算法应用于抽运探测系统和倍频光谱干涉系统(f-2f interferometry), 对光路进行反馈控制的原理和结果, 分别得到相对臂长抖动均方根1.24 nm (对应时间为4.1 as)的抽运-探测光路锁定和积分时间3 ms下相对相移均方根227 mrad的慢环载波包络相位(carrier envelop phase, CEP)锁定. 这样的锁定精度可以保证产生阿秒脉冲的飞秒激光脉冲拥有稳定的CEP, 并且为后续阿秒抽运探测提供了稳定的实验条件.
    With the unveiling of molecular and atomic dynamics, scientists crave finer and faster tools to communicate with the microworld. Attosecond pump-probe enjoys its reputation as the fastest camera, hinting ultrafast movements in the delay graph. To employ this camera, the stability and delay control should have very great accuracy comparable to the camera resolution. It is also of significant importance for stabilizing the carrier envelope phase (CEP) in few-cycle laser field. When dealing with a huge quantity of data, conventional Fourier transform algorism is challenging in high-speed control. Here we put forward the efficient calculation method, fast Fourier transform (FFT) algorism in Mach-Zehnder interferometer for arm length locking and f-2f for CEP locking. In the interferometer locking, 532 nm continuous wave laser is used in the Mach-Zehnder interferometer, and the phase of the FFT term corresponding to the delay between the two arms of the interferometer serves as a feedback signal on piezo transducer (PZT) in the delay line to reduce the change of the arm length. In the CEP control experiment, data to be analyzed are the f-2f spectrum interference fringes recorded by the spectrometer. The CEP values are obtained from the first order of FFT module output of the integrated spectrum interference fringes, and a labview program examines the relative phase drift and sends a feedback voltage signal to the PZT through the proportion integration differentiation module to compensate slow CEP drift after the chirped pulse amplification system by changing the insert length of a prism pair. The results show that the root mean square (RMS) of the arm length difference is 1.24 nm (4.1 attosecond for light to travel) per meter in the interferometer locking over 12 h, and the RMS of CEP is 227 mrad under 3 ms integration time in the CEP locking over 20 min. These results are able to meet the requirement of the accuracy for attosecond pulse generation and attosecond pump-probe experiments. We also use FFT to stabilize the CEP and relative time simultaneously in the waveform synthesis for 8 h (Huang P, Fang S, Gao Y, Zhao K, Hou X, Wei Z 2019 Appl. Phys. Lett. 115 031102), the phase-locking system results in a CEP stability of 280 mrad and a relative time stability of 110 as at a repetition rate of 1 kHz. These results imply that the FFT is versatile and reliable in ultrafast control.
      通信作者: 赵昆, zhaokun@iphy.ac.cn ; 魏志义, zywei@iphy.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2017 YFB0405202, 2017 YFC0110301)、国家自然科学基金重大项目(批准号: 61690221)、国家自然科学基金重点项目(批准号: 11434016, 91850209)、国家自然科学基金(批准号:11574384, 61575219, 11774277)、中国科学院仪器研制项目(批准号: YZ201658)、中国科学院前沿科学重点研究计划(批准号: QYZDJ-SSW-JSC006)和中国科学院青年创新促进会(批准号: 2018007)资助的课题
      Corresponding author: Zhao Kun, zhaokun@iphy.ac.cn ; Wei Zhi-Yi, zywei@iphy.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFB0405202, 2017YFC0110301), the Major Program of the National Natural Science Foundation of China (Grant No. 61690221), the Key Program of the National Natural Science Foundation of China (Grant Nos. 11434016, 91850209), the National Natural Science Foundation of China (Grant Nos. 11574384, 61575219, 11774277), the Instrument Developing Project of the Chinese Academy of Sciences (Grant No. YZ201658), the Frontier Science Key Research Project of the Chinese Academy of Sciences (Grant No. QYZDJ-SSW-JSC006), and the Youth Innovation Promotion Association, Chinese Academy of Sciences, China (Grant No. 2018007)
    [1]

    Bloembergen N 1999 Rev. Mod. Phys. 71 283Google Scholar

    [2]

    Auston D 1988 Top. Appl. Phys. 60 183

    [3]

    Drescher M, Hentschel M, Kienberger R, Tempea G, Spielmann C, Reider G, Corkum P, Krausz F 2001 Science 291 5510

    [4]

    Zhao K, Zhang Q, Chini M, Wu Y, Wang X W, Chang Z 2012 Opt. Lett. 37 3891Google Scholar

    [5]

    Li J, Ren X, Yin Y, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S, Wu Y, Chini M, Chang Z 2017 Nat. Commun. 8 186

    [6]

    Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Wörner H 2017 Opt. Express 25 27506Google Scholar

    [7]

    Itatani J, Quéré F, Yudin G, Ivanov M, Krausz F, Corkum P 2002 Phys. Rev. Lett. 88 173903

    [8]

    Eppink A, Parker D 1997 Rev. Sci. Instrum. 68 3477Google Scholar

    [9]

    Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidt-Bögcking H 2000 Phys. Rep. 330 95Google Scholar

    [10]

    Luu T, Garg M, Kruchinin S, Moulet A, Hassan M, Goulielmakis E 2015 Nature 521 498Google Scholar

    [11]

    Goulielmakis E, Loh Z, Wirth A, Santra R, Rohringe N, Yakovlev V, Zherebtsov S, Pfeifer T, Azzeer A, Kling M, Leone S, Krausz F 2010 Nature 466 739Google Scholar

    [12]

    Jones D, Diddams S, Ranka J, Stentz A, Windeler S, Hall J, Cundiff S 2000 Science 288 635Google Scholar

    [13]

    Schibli T, Kim J, Kuzucu O, Gopinath J, Tandon S, Petrich G, Kolodziejski L, Fujimoto J, Ippen E, Kaertner F 2003 Opt. Lett. 28 947

    [14]

    Chini M, Wang X, Cheng Y, Wu Y, Zhao K, Zhang Q, Cunningham E, Wang Y, Zang H, Chang Z 2012 25 th IEEE Photonics Conference Burlingame, CA, USA, September 23–27, 2012 p622

    [15]

    Kaldun A, Blättermann A, Stooß V, Donsa S, Wei H, Pazourek R, Nagele S, Ott C, Lin C, Burgdörfer J, Pfeifer T 2016 Science 354 738

    [16]

    Ishii N, Xia P, Kanai T, Itatani J 2019 Opt. Express 27 11447Google Scholar

    [17]

    Cooley J, Tukey J 1965 Math. Comp. 19 297Google Scholar

    [18]

    Seres E, Seres J, Serrat C, Namba S 2016 Phys. Rev. B 94 165125Google Scholar

    [19]

    Feng X, Gilbertson S, Mashiko H, Wang H, Khan S, Chini M, Wu Y, Zhao K, Chang Z 2009 Phys. Rev. Lett. 103 183901Google Scholar

    [20]

    Pertot Y, Schmidt C, Matthews M, Chauvet A, Huppert M, Svoboda V, Conta A, Tehlar A, Baykusheva D, Wolf J, Wörner H 2017 Science 355 264Google Scholar

    [21]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163Google Scholar

    [22]

    Rathje T, Johnson N, Moller M, Sussmann F, Adolph D, Kubel M, Kienberger R, Kling M, Paulus G, Sayler A 2012 J. Phys. B 45 074003

    [23]

    Yu Z, Han H, Xie Y, Teng H, Wang Z, Wei Z 2016 Chin. Phys. B 25 044205Google Scholar

    [24]

    Wittmann T, Horvath B, Helml W, Schatzel M, Gu X, Cavalieri A, Paulus G, Kienberger R 2009 Nat. Phys. 5 5Google Scholar

    [25]

    Xu L, Spielmann C, Poppe A, Brabec T, Krausz F, Hansch T 1996 Opt. Lett. 21 24Google Scholar

    [26]

    Kakehata M, Takada H, Kobayashi Y, Torizuka K, Fujihira Y, Homma T, Takahashi H 2001 Opt. Lett. 26 1436

    [27]

    张伟 2013 博士学位论文 (北京: 中国科学院大学)

    Zhang W 2013 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [28]

    Huang P, Fang S, Gao Y, Zhao K, Hou X, Wei Z 2019 Appl. Phys. Lett. 115 031102Google Scholar

  • 图 1  抽运探测实验示意图 (m1−m15, 平面高反镜; f1, 平凹透镜; f2, f3, 凸透镜)

    Fig. 1.  Sketch of the pump-probe setup (m1−m15, flat mirror; f1, flat-concave lens; f2, f3, convex lens).

    图 2  用532 nm连续激光干涉锁定光路示意图(M1, 凹透镜; M2, 凸透镜; BS, 分束片; M3−M10, 平面银镜; P, 偏振片; ${\rm{\lambda }}/2$, 半波片; FL, 凸透镜; CW, 连续)

    Fig. 2.  Arm length stabilization of a Mach-Zehnder interferometer (M1, concave lens; M2, convex lens; M3−M10, plane mirrors; P, polarizer; ${\rm{\lambda }}/2$, half wave plate; FL, focusing lens; CW, continuous wave).

    图 3  用532 nm连续激光干涉锁定12 h的稳定性, 其中均方差为14.6 mrad, 插图为未锁定下的相对相位漂移

    Fig. 3.  Interferometer locking stability over 12 hours. Inset is the relative phase drift when armlength is not locked.

    图 4  在同一脉冲包络下不同CEP值所对应的实际电场(CEP对少周期脉冲电场实际形状影响显著)

    Fig. 4.  Actual electric field of a few cycle laser pulse under different CEP values, which affect the electric field significantly.

    图 5  f-2f装置光路图(采用共线设计以避免延时变化)

    Fig. 5.  f-2f setup diagram, where collinear design is applied to avoid delay variation.

    图 6  f-2f锁定CEP20分钟的效果(均方差为227 mrad)

    Fig. 6.  CEP offset over 20 minutes when CEP is locked using f-2f.

  • [1]

    Bloembergen N 1999 Rev. Mod. Phys. 71 283Google Scholar

    [2]

    Auston D 1988 Top. Appl. Phys. 60 183

    [3]

    Drescher M, Hentschel M, Kienberger R, Tempea G, Spielmann C, Reider G, Corkum P, Krausz F 2001 Science 291 5510

    [4]

    Zhao K, Zhang Q, Chini M, Wu Y, Wang X W, Chang Z 2012 Opt. Lett. 37 3891Google Scholar

    [5]

    Li J, Ren X, Yin Y, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S, Wu Y, Chini M, Chang Z 2017 Nat. Commun. 8 186

    [6]

    Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Wörner H 2017 Opt. Express 25 27506Google Scholar

    [7]

    Itatani J, Quéré F, Yudin G, Ivanov M, Krausz F, Corkum P 2002 Phys. Rev. Lett. 88 173903

    [8]

    Eppink A, Parker D 1997 Rev. Sci. Instrum. 68 3477Google Scholar

    [9]

    Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidt-Bögcking H 2000 Phys. Rep. 330 95Google Scholar

    [10]

    Luu T, Garg M, Kruchinin S, Moulet A, Hassan M, Goulielmakis E 2015 Nature 521 498Google Scholar

    [11]

    Goulielmakis E, Loh Z, Wirth A, Santra R, Rohringe N, Yakovlev V, Zherebtsov S, Pfeifer T, Azzeer A, Kling M, Leone S, Krausz F 2010 Nature 466 739Google Scholar

    [12]

    Jones D, Diddams S, Ranka J, Stentz A, Windeler S, Hall J, Cundiff S 2000 Science 288 635Google Scholar

    [13]

    Schibli T, Kim J, Kuzucu O, Gopinath J, Tandon S, Petrich G, Kolodziejski L, Fujimoto J, Ippen E, Kaertner F 2003 Opt. Lett. 28 947

    [14]

    Chini M, Wang X, Cheng Y, Wu Y, Zhao K, Zhang Q, Cunningham E, Wang Y, Zang H, Chang Z 2012 25 th IEEE Photonics Conference Burlingame, CA, USA, September 23–27, 2012 p622

    [15]

    Kaldun A, Blättermann A, Stooß V, Donsa S, Wei H, Pazourek R, Nagele S, Ott C, Lin C, Burgdörfer J, Pfeifer T 2016 Science 354 738

    [16]

    Ishii N, Xia P, Kanai T, Itatani J 2019 Opt. Express 27 11447Google Scholar

    [17]

    Cooley J, Tukey J 1965 Math. Comp. 19 297Google Scholar

    [18]

    Seres E, Seres J, Serrat C, Namba S 2016 Phys. Rev. B 94 165125Google Scholar

    [19]

    Feng X, Gilbertson S, Mashiko H, Wang H, Khan S, Chini M, Wu Y, Zhao K, Chang Z 2009 Phys. Rev. Lett. 103 183901Google Scholar

    [20]

    Pertot Y, Schmidt C, Matthews M, Chauvet A, Huppert M, Svoboda V, Conta A, Tehlar A, Baykusheva D, Wolf J, Wörner H 2017 Science 355 264Google Scholar

    [21]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163Google Scholar

    [22]

    Rathje T, Johnson N, Moller M, Sussmann F, Adolph D, Kubel M, Kienberger R, Kling M, Paulus G, Sayler A 2012 J. Phys. B 45 074003

    [23]

    Yu Z, Han H, Xie Y, Teng H, Wang Z, Wei Z 2016 Chin. Phys. B 25 044205Google Scholar

    [24]

    Wittmann T, Horvath B, Helml W, Schatzel M, Gu X, Cavalieri A, Paulus G, Kienberger R 2009 Nat. Phys. 5 5Google Scholar

    [25]

    Xu L, Spielmann C, Poppe A, Brabec T, Krausz F, Hansch T 1996 Opt. Lett. 21 24Google Scholar

    [26]

    Kakehata M, Takada H, Kobayashi Y, Torizuka K, Fujihira Y, Homma T, Takahashi H 2001 Opt. Lett. 26 1436

    [27]

    张伟 2013 博士学位论文 (北京: 中国科学院大学)

    Zhang W 2013 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [28]

    Huang P, Fang S, Gao Y, Zhao K, Hou X, Wei Z 2019 Appl. Phys. Lett. 115 031102Google Scholar

  • [1] 李月, 李竣, 薛正跃, 王晶晶, 王贵师, 高晓明, 谈图. 本振光功率锁定方法应用于激光外差辐射计的研究. 物理学报, 2023, 72(9): 093201. doi: 10.7498/aps.72.20230261
    [2] 陈经纬, 罗斌, 曾小明, 母杰, 王逍. 光参量啁啾脉冲放大数值模拟平台中超短脉冲聚焦模拟算法. 物理学报, 2023, 72(9): 094204. doi: 10.7498/aps.72.20222387
    [3] 徐昭, 周昕, 白星, 李聪, 陈洁, 倪洋. 基于深度学习的相位截断傅里叶变换非对称加密系统攻击方法. 物理学报, 2021, 70(14): 144202. doi: 10.7498/aps.70.20202075
    [4] 徐靖翔, 孔明, 许新科. 基于旋转不变技术信号参数估计的激光扫频干涉测量方法. 物理学报, 2021, 70(3): 034205. doi: 10.7498/aps.70.20201135
    [5] 杨增强, 张力达. 红外激光载波包络相位对氦原子的极紫外光(XUV)吸收谱的量子调控研究. 物理学报, 2015, 64(13): 133203. doi: 10.7498/aps.64.133203
    [6] 尤良芳, 令维军, 李可, 张明霞, 左银燕, 王屹山. 基于单个BBO晶体载波包络相位稳定的高效率光参量放大器. 物理学报, 2014, 63(21): 214203. doi: 10.7498/aps.63.214203
    [7] 张岩, 于旭东, 邸克, 李卫, 张靖. 压缩态光场平衡零拍探测的位相锁定. 物理学报, 2013, 62(8): 084204. doi: 10.7498/aps.62.084204
    [8] 田原野, 魏珊珊, 郭福明, 李苏宇, 杨玉军. 共振条件下载波包络相位效应对阈上电离谱的影响. 物理学报, 2013, 62(15): 153202. doi: 10.7498/aps.62.153202
    [9] 周庆勇, 姬剑锋, 任红飞. 非等间隔计时数据的X射线脉冲星周期快速搜索算法. 物理学报, 2013, 62(1): 019701. doi: 10.7498/aps.62.019701
    [10] 韩庆生, 乔耀军, 李蔚. 基于全光时域分数阶傅里叶变换的光脉冲最小损伤传输新方法. 物理学报, 2011, 60(1): 014219. doi: 10.7498/aps.60.014219
    [11] 王建良, 张春梅, 宋立伟, 冷雨欣. 双光路测量红外飞秒激光脉冲的载波包络相位稳定性. 物理学报, 2009, 58(6): 3966-3970. doi: 10.7498/aps.58.3966
    [12] 盖 琦, 王明伟, 李智磊, 翟宏琛. 基于离散四元数傅里叶变换的双随机相位加密技术. 物理学报, 2008, 57(11): 6955-6961. doi: 10.7498/aps.57.6955
    [13] 朱江峰, 杜 强, 王向林, 滕 浩, 韩海年, 魏志义, 侯 洵. 飞秒钛宝石放大激光脉冲的载波包络相位测量与控制. 物理学报, 2008, 57(12): 7753-7757. doi: 10.7498/aps.57.7753
    [14] 邓玉强, 曹士英, 于 靖, 徐 涛, 王清月, 张志刚. 小波变换提取放大超短脉冲载波-包络相位的研究. 物理学报, 2008, 57(11): 7017-7021. doi: 10.7498/aps.57.7017
    [15] 雷 兵, 冯 莹, 刘泽金. 利用全光纤耦合环实现三路光纤激光器的相位锁定. 物理学报, 2008, 57(10): 6419-6424. doi: 10.7498/aps.57.6419
    [16] 韩海年, 赵研英, 张 炜, 朱江峰, 王 鹏, 魏志义, 李师群. PPLN晶体差频测量飞秒激光脉冲的载波包络相移. 物理学报, 2007, 56(5): 2756-2759. doi: 10.7498/aps.56.2756
    [17] 毕 磊, 包景东. 非线性耗散对亚稳态系统量子衰变速率的影响. 物理学报, 2007, 56(4): 1919-1923. doi: 10.7498/aps.56.1919
    [18] 邓玉强, 王清月, 吴祖斌, 张志刚. 载波-包络相位对于基频光与其自身倍频光脉冲合成的影响. 物理学报, 2006, 55(2): 737-742. doi: 10.7498/aps.55.737
    [19] 韩海年, 魏志义, 张 军, 聂玉昕. 飞秒钛宝石激光脉冲的载波包络相移测量研究. 物理学报, 2005, 54(1): 155-158. doi: 10.7498/aps.54.155
    [20] 马建国, 郭应焕, 王蕴玉. 正电子湮没寿命谱分析的快速傅里叶变换解法. 物理学报, 1994, 43(4): 547-554. doi: 10.7498/aps.43.547
计量
  • 文章访问数:  8569
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-29
  • 修回日期:  2019-08-20
  • 上网日期:  2019-11-01
  • 刊出日期:  2019-11-05

/

返回文章
返回