搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间电子辐射环境中绝缘介质电荷沉积特性及陷阱参数研究综述

李国倡 李盛涛

引用本文:
Citation:

空间电子辐射环境中绝缘介质电荷沉积特性及陷阱参数研究综述

李国倡, 李盛涛

Review of charge deposition characteristics and trap parameters of dielectric in space electron radiation environment

Li Guo-Chang, Li Sheng-Tao
PDF
HTML
导出引用
  • 空间电子辐射环境中绝缘介质充放电特性与介质表面电荷交换过程或内部电荷迁移过程密切相关. 介质表面/内部电荷运动很大程度上取决于材料的微观特性, 空间电荷与陷阱是反映绝缘介质微观特性的重要参数. 本文综述了电子辐射环境中绝缘介质内部空间电荷和陷阱的形成、作用机理、测量方法、存在的问题及国内外研究现状. 首先, 简要介绍了入射电子与介质材料的相互作用机理及沉积电荷的形成; 分析了电子束辐射下介质内部电荷迁移模型, 辐射诱导电导模型(RIC模型)和电子-空穴对的产生/复合模型(GR模型)的优缺点; 对比分析了经典电声脉冲法(PEA)以及适用于电子束辐射下空间电荷测量的“短路PEA”和“开路PEA”, 并总结了电子辐射下PEA装置设计中存在的主要技术难点; 其次, 简要介绍了电子束辐射下陷阱的形成及作用机理, 分析了聚合物介质陷阱参数的提取方法, 如热刺激电流法、表面电位衰减法(电晕注入方式或电子辐射方式)、空间电荷衰减法, 指出在同一真空环境中完成电子注入和表面电位测量的方法较适合空间介质材料陷阱参数的表征, 并以聚酰亚胺为例, 进行了陷阱参数提取; 最后, 从理论模型、参数表征和测量技术等方面, 展望了空间绝缘介质亟需解决的科学问题.
    Charging and discharging characteristics of dielectric in space electron radiation environment are closely related to the surface charge exchange process and internal charge transfer process. Surface or internal charge movement of dielectric depends largely on the microscopic characteristics of the material, and space charge and trap are important parameters reflecting the microscopic characteristics of dielectric. In this work, the formation, mechanism, measurement method, existing problems and research status of space charge and trap in insulation material in electronic radiation environment are reviewed. Firstly, the interaction mechanism between incident electron and dielectric material and the formation of deposition charge are briefly introduced. The advantages and disadvantages of radiation-induced conductance model and electron-hole pair generation/recombination model are analyzed. The classical electro-acoustic pulse method (PEA) and " short circuit PEA” and " open circuit PEA” which are suitable for space charge measurement under electron beam radiation are compared with each other and analyzed, and further, the main technical difficulties in designing PEA device under electron beam radiation are reviewed. Secondly, the methods of extracting trap parameters, including thermal stimulation current method, surface potential decay method, space charge decay method are compared with each other. It is pointed out that the method of injecting the electrons and the method of measuring the surface potential in the same vacuum environment are more suitable for measuring the trap parameters of space dielectric materials. Finally, the scientific problems that need solving in space insulation are prospected from the aspects of theoretical model, parameter characterization and measurement technology.
      通信作者: 李盛涛, sli@mail.xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51907095, 11575140)、中国博士后科学基金(批准号: 2019M653629)和青岛市应用基础研究计划(批准号: 18-2-2-23-jch)资助的课题
      Corresponding author: Li Sheng-Tao, sli@mail.xjtu.edu.cn
    • Funds: Project supported by National Natural Science Foundation of China (Grant Nos. 51907095, 11575140), the China Postdoctoral Science Foundation (Grant No. 2019M653629), and the Qingdao Applied Foundation Basic Research Program, China (Grant No. 18-2-2-23-jch)
    [1]

    Lai S T 2011 Fundamentals of Spacecraft Charging (New Jersey: Princeton University Press) pp156–167

    [2]

    黎树添 著 (李盛涛, 郑晓泉, 陈玉, 闵道敏 译) 2015 航天器带电原理 (北京: 科学出版社) 第 135—141页

    Lai S T (translated by Li S T, Zheng X Q, Chen Y, Min D M) 2015 Fundamentals of Spacecraft Charging (Beijing: Science Press) pp135–141 (in Chinese)

    [3]

    Gupta S B, Kalaria K R, Vaghela N P 2014 IEEE Trans. Plasma Sci. 42 1072Google Scholar

    [4]

    李盛涛, 李国倡 2017 科学通报 62 990

    Li S T, Li G C 2017 Chin. Sci. Bull. 62 990

    [5]

    Koons H C, Mazur J E, Selesnick R S, Blake J B, Frnnell J F, Rober J L, Anderson P C 2000 6th Spacecraft Charging Technology Conference Massachusetts, United States, Sep. 1–4, 2000 p7

    [6]

    周远翔, 王宁华, 王云杉, 孙清, 梁曦东, 关志成 2008 电工技术学报 23 16Google Scholar

    Zhou Y X, Wang N H, Wang Y S, Sun Q, Liang X D, Guan Z C 2008 Transactions of China Electrotechnical Society 23 16Google Scholar

    [7]

    辛正亮, 吴广宁, 徐慧慧, 罗杨, 曹开江 2011 绝缘材料 44 59Google Scholar

    Xin X L, Wu G N, Xu H H, Luo Y, Cao K J 2011 Insulating Materials 44 59Google Scholar

    [8]

    李国倡, 李盛涛, 闵道敏, 朱远惟 2013 中国科学 43 375

    Li G C, Li S T, Min D M, Zhu Y W 2013 Sci. China 43 375

    [9]

    廖瑞金, 周天春, Chen G, 杨丽君 2012 物理学报 61 017201Google Scholar

    Liao R J, Zhou T C, Chen G, Yang L J 2012 Acta Phys. Sin. 61 017201Google Scholar

    [10]

    Zhou T C, Chen G, Liao R J, Xu Z Q, 2009 J. Appl. Phys. 110 043724

    [11]

    Laurent C, Teyssedre G, Le R S, Baudoin F 2013 IEEE Trans. Dielectr. Electr. Insul. 20 357Google Scholar

    [12]

    杨百屯, 屠德民, 刘耀南 1992 应用科学学报 10 233

    Yang B T, Tu D M, Liu Y N 1992 J. Appl. Phys. 10 233

    [13]

    Haque N, Dalai S, Chatterjee B, Chakravorti S 2017 IEEE Trans. Electr. Insul. 24 1896Google Scholar

    [14]

    Din D M, Mengu C, Arifur R K, Li S T 2012 IEEE Trans. Dielectr. Electr. Insul. 19 600Google Scholar

    [15]

    Severine L R, Teyssedre G, Laurent C, Segur P 2006 J. Phys. D: Appl. Phys. 39 298

    [16]

    Perrin C, Griseri V, Laurent C, Fukunaga K, Maeno T, Levy L, Payan D, Schwander D 2008 High Performance Polymers 20 535Google Scholar

    [17]

    Perrin C, Griseri V, Laurent C, Fukunaga K 2008 IEEE Trans. Dielectr. Electr. Insul. 15 958Google Scholar

    [18]

    Griseri V, Fukunaga K, Maeno T, Laurent C, Levy L 2004 IEEE Trans. Dielectr. Electr. Insul. 11 891Google Scholar

    [19]

    Hodges J L, Dennison J R, Dekany J, Wilson G, Evans A, Sim A 2014 IEEE Trans. Plasma Sci. 42 255Google Scholar

    [20]

    Dennison J R, Brunson J, Swaminathan P, Green N W, Frederickson A R 2006 IEEE Trans. Plasma Sci. 34 2191Google Scholar

    [21]

    黄建国, 陈东 2004 地球物理学报 47 392Google Scholar

    Huang J G, Chen D 2004 Chin. J. Geophys. 47 392Google Scholar

    [22]

    黄建国, 陈东 2004 物理学报 53 961Google Scholar

    Huang J G, Chen D 2004 Acta Phys. Sin. 53 961Google Scholar

    [23]

    全荣辉, 韩建伟, 张振龙 2013 物理学报 64 245205Google Scholar

    Quan R H, Han J W, Zhang Z L 2013 Acta Phys. Sin. 64 245205Google Scholar

    [24]

    秦晓刚, 贺德衍, 王骥 2009 物理学报 58 684Google Scholar

    Qin X G, He D Y, Wang J 2009 Acta Phys. Sin. 58 684Google Scholar

    [25]

    陈益峰, 杨生胜, 秦晓刚, 柳青, 史亮, 孔风连, 汤道坦, 李存惠 2010 真空与低温 16 167

    Chen Y F, Yang S S, Qin X G, Liu Q, Shi L, Kong F L, Tang D T, Li C H 2010 Vacuum and Cryogenics 16 167

    [26]

    李盛涛, 李国倡, 闵道敏, 赵妮 2013 物理学报 62 059401Google Scholar

    Li S T, Li G C, Min D M, Zhao N 2013 Acta Phys. Sin. 62 059401Google Scholar

    [27]

    李国倡, 闵道敏, 李盛涛, 郑晓泉, 茹佳胜 2014 物理学报 63 209401Google Scholar

    Li G C, Min D M, Li S T, Zheng X Q, Ru J S 2014 Acta Phys. Sin. 63 209401Google Scholar

    [28]

    李国倡 2017 博士学位论文 (西安: 西安交通大学)

    Li G C 2017 Ph. D. Dissertation (Xi’an: Xi’an Jiaotong University) (in Chinese)

    [29]

    李维勤, 郝杰, 张海波 2015 物理学报 64 086801Google Scholar

    Li W Q, Hao J, Zhang H B 2015 Acta Phys. Sin. 64 086801Google Scholar

    [30]

    易忠, 王松, 唐小金, 武占成, 张超 2015 物理学报 64 125201Google Scholar

    Yi Z, Wang S, Tang X J, Wu Z C, Zhang C 2015 Acta Phys. Sin. 64 125201Google Scholar

    [31]

    曹鹤飞, 刘尚合, 孙永卫, 原青云 2013 物理学报 62 149402Google Scholar

    Cao H F, Liu S H, Sun Y W, Yuan Q Y 2013 Acta Phys. Sin. 62 149402Google Scholar

    [32]

    曹鹤飞, 刘尚合, 孙永卫, 原青云 2013 物理学报 62 149401Google Scholar

    Cao H F, Liu S F, Sun Y W, Yuan Q Y 2013 Acta Phys. Sin. 62 149401Google Scholar

    [33]

    范亚杰, 张希军, 孙永卫, 周立栋 2018 强激光与粒子束 30 114002

    Fan Y J, Sun X J, Sun Y W, Zhou L D 2018 High Power Laser and Particle Beams. 30 114002

    [34]

    Li G C, Li S T, Pan S M, Min D M 2016 IEEE Trans. Dielectr. Electr. Insul. 23 2393Google Scholar

    [35]

    Min D M, Cho M, Li S T 2012 IEEE Trans. Dielectr. Electr. Insul. 19 2206Google Scholar

    [36]

    Baudoin F, Le Roy S, Teyssedre G 2008 J. Phys. D: Appl. Phys. 41 025306Google Scholar

    [37]

    Le Roy S, Baudoin F, Griseri V, Laurent C, Teyssedre G 2010 J. Phys. D: Appl. Phys. 43 315402Google Scholar

    [38]

    Le Roy S, Baudoin F, Griseri V 2012 J. Appl. Phys. 112 023704Google Scholar

    [39]

    Teyssedre G, Laurent C 2005 IEEE Trans. Dielectr. Electr. Insul. 12 857Google Scholar

    [40]

    Boufayed F, Teyssèdre G, Laurent C 2006 J. Appl. Phys. 100 104105Google Scholar

    [41]

    刘晓东, 郑晓泉, 张要强, 杨生胜, 秦晓刚, 王立 2007 电工电能新技术 26 55Google Scholar

    Liu X D, Zheng X Q, Zhang Y Q, Yang S S, Qin X G, Wang L 2007 Electrical and Electrical Technology 26 55Google Scholar

    [42]

    马丽婵, 郑晓泉, 刘晓东, 张要强 2007 中国电机工程学报 27 32Google Scholar

    Ma L C, Zheng X Q, Liu X D, Zhang Y Q, Ma L C 2007 Proc. CSEE 27 32Google Scholar

    [43]

    Li G C, Li S T, Pan S M 2016 IEEE Trans. Dielectr. Electr. Insul. 23 1846Google Scholar

    [44]

    高宇, 王小芳, 李楠, 许棒棒, 王继隆, 杜伯学 2019 高电压技术 45 2219

    Gao Y, Wang X F, Li N, Xu B B, Wang J L, Du B X 2019 High Voltage 45 2219

    [45]

    Shen W W, Mu H B, Zhang G J 2013 J. Appl. Phys. 113 083706Google Scholar

    [46]

    Simmons J G, Tam M C 1973 Phys. Rev. B 7 3706Google Scholar

    [47]

    Wei Y H, Chen G, Zhang G J, Liu N, Li G C 2016 AIP Adv. 6 075120Google Scholar

    [48]

    张振军, 苗军, 王学强, 吴文斌, 杨沛, 郑晓泉 2014 高电压技术 40 117

    Zhang Z J, Miao J, Wang X Q, Wu W B, Yang P, Zheng X Q 2014 High Voltage Engineering 40 117

  • 图 1  入射电子与介质材料相互作用及能量损失示意图 (a) 入射电子与介质材料相互作用示意图; (b)阻止能量与穿透深度关系图

    Fig. 1.  Schematic diagram of interaction between incident electron and dielectric material and energy loss: (a) Interaction between incident electron and dielectric material; (b) diagram of stopping power and penetration depth.

    图 2  典型绝缘介质内部电荷沉积速率分布

    Fig. 2.  The charge deposition rate distributions in typical insulation dielectric.

    图 3  电子束辐射下介质内部电荷迁移模型示意图 (a) RIC模型; (b) GR模型

    Fig. 3.  Schematic diagram of charge transfer model under electron beam radiation: (a) RIC model; (b) GR model.

    图 4  电子辐射处理后PI空间电荷衰减曲线 (a) 电子辐射处理试样上表面; (b) 电子辐射处理试样下表面

    Fig. 4.  Space charge decay curve of polyimide treated by electron radiation treatment: (a) The upper surface of the sample is treated; (b) the bottom surface of the sample is treated.

    图 5  电子束辐射下绝缘介质空间电荷原位测量装置示意图 (a) 短路PEA; (b) 开路PEA

    Fig. 5.  Schematic diagram of space charge in situ measurement setup under electron beam radiation: (a) Short circuit PEA; (b) open circuit PEA.

    图 6  电子辐射下绝缘介质表面电位测量系统

    Fig. 6.  Surface potential measuring system of insulation under electron radiation.

    图 7  不同能量电子辐射下PI陷阱能谱分布图[34]

    Fig. 7.  Trap energy spectrum distribution of PI under electron radiation with different energies[34].

    表 1  绝缘介质陷阱参数提取方法对比

    Table 1.  Comparison of calculation methods of trap parameters.

    方法基本原理优缺点
    等温表面电位衰减法(ISPD)采用电晕注入或电子辐射方式向介质表层注入电荷, 通过测量等温电位衰减曲线, 提取陷阱参数. 优点: 可以区分电子陷阱和空穴陷阱[39,45]; 电子辐射注入方
    式更适合空间介质材料陷阱参数的测量[28,34].
    缺点: 电荷注入深度较浅(约1—2 μm), 主要反映材料表面
    或 表层陷阱信息; 不适用于较厚试样[46].
    热刺激电流法(TSC)采用热刺激或光刺激使介质内部被捕获电荷脱陷, 通过分析电流特征峰, 提取陷阱参数. 优点: 反映材料内部陷阱信息; 可以区分陷阱能级[39,47].
    缺点: 无法区分陷阱类型.
    电声脉冲法(PEA)通过分析去压后总电荷量随时间的衰减规律, 提取陷阱参数. 优点: 可以反映介质内部电荷动态过程[9,10,47].
    缺点: 无法区分陷阱类型; 计算模型有待完善.
    下载: 导出CSV
  • [1]

    Lai S T 2011 Fundamentals of Spacecraft Charging (New Jersey: Princeton University Press) pp156–167

    [2]

    黎树添 著 (李盛涛, 郑晓泉, 陈玉, 闵道敏 译) 2015 航天器带电原理 (北京: 科学出版社) 第 135—141页

    Lai S T (translated by Li S T, Zheng X Q, Chen Y, Min D M) 2015 Fundamentals of Spacecraft Charging (Beijing: Science Press) pp135–141 (in Chinese)

    [3]

    Gupta S B, Kalaria K R, Vaghela N P 2014 IEEE Trans. Plasma Sci. 42 1072Google Scholar

    [4]

    李盛涛, 李国倡 2017 科学通报 62 990

    Li S T, Li G C 2017 Chin. Sci. Bull. 62 990

    [5]

    Koons H C, Mazur J E, Selesnick R S, Blake J B, Frnnell J F, Rober J L, Anderson P C 2000 6th Spacecraft Charging Technology Conference Massachusetts, United States, Sep. 1–4, 2000 p7

    [6]

    周远翔, 王宁华, 王云杉, 孙清, 梁曦东, 关志成 2008 电工技术学报 23 16Google Scholar

    Zhou Y X, Wang N H, Wang Y S, Sun Q, Liang X D, Guan Z C 2008 Transactions of China Electrotechnical Society 23 16Google Scholar

    [7]

    辛正亮, 吴广宁, 徐慧慧, 罗杨, 曹开江 2011 绝缘材料 44 59Google Scholar

    Xin X L, Wu G N, Xu H H, Luo Y, Cao K J 2011 Insulating Materials 44 59Google Scholar

    [8]

    李国倡, 李盛涛, 闵道敏, 朱远惟 2013 中国科学 43 375

    Li G C, Li S T, Min D M, Zhu Y W 2013 Sci. China 43 375

    [9]

    廖瑞金, 周天春, Chen G, 杨丽君 2012 物理学报 61 017201Google Scholar

    Liao R J, Zhou T C, Chen G, Yang L J 2012 Acta Phys. Sin. 61 017201Google Scholar

    [10]

    Zhou T C, Chen G, Liao R J, Xu Z Q, 2009 J. Appl. Phys. 110 043724

    [11]

    Laurent C, Teyssedre G, Le R S, Baudoin F 2013 IEEE Trans. Dielectr. Electr. Insul. 20 357Google Scholar

    [12]

    杨百屯, 屠德民, 刘耀南 1992 应用科学学报 10 233

    Yang B T, Tu D M, Liu Y N 1992 J. Appl. Phys. 10 233

    [13]

    Haque N, Dalai S, Chatterjee B, Chakravorti S 2017 IEEE Trans. Electr. Insul. 24 1896Google Scholar

    [14]

    Din D M, Mengu C, Arifur R K, Li S T 2012 IEEE Trans. Dielectr. Electr. Insul. 19 600Google Scholar

    [15]

    Severine L R, Teyssedre G, Laurent C, Segur P 2006 J. Phys. D: Appl. Phys. 39 298

    [16]

    Perrin C, Griseri V, Laurent C, Fukunaga K, Maeno T, Levy L, Payan D, Schwander D 2008 High Performance Polymers 20 535Google Scholar

    [17]

    Perrin C, Griseri V, Laurent C, Fukunaga K 2008 IEEE Trans. Dielectr. Electr. Insul. 15 958Google Scholar

    [18]

    Griseri V, Fukunaga K, Maeno T, Laurent C, Levy L 2004 IEEE Trans. Dielectr. Electr. Insul. 11 891Google Scholar

    [19]

    Hodges J L, Dennison J R, Dekany J, Wilson G, Evans A, Sim A 2014 IEEE Trans. Plasma Sci. 42 255Google Scholar

    [20]

    Dennison J R, Brunson J, Swaminathan P, Green N W, Frederickson A R 2006 IEEE Trans. Plasma Sci. 34 2191Google Scholar

    [21]

    黄建国, 陈东 2004 地球物理学报 47 392Google Scholar

    Huang J G, Chen D 2004 Chin. J. Geophys. 47 392Google Scholar

    [22]

    黄建国, 陈东 2004 物理学报 53 961Google Scholar

    Huang J G, Chen D 2004 Acta Phys. Sin. 53 961Google Scholar

    [23]

    全荣辉, 韩建伟, 张振龙 2013 物理学报 64 245205Google Scholar

    Quan R H, Han J W, Zhang Z L 2013 Acta Phys. Sin. 64 245205Google Scholar

    [24]

    秦晓刚, 贺德衍, 王骥 2009 物理学报 58 684Google Scholar

    Qin X G, He D Y, Wang J 2009 Acta Phys. Sin. 58 684Google Scholar

    [25]

    陈益峰, 杨生胜, 秦晓刚, 柳青, 史亮, 孔风连, 汤道坦, 李存惠 2010 真空与低温 16 167

    Chen Y F, Yang S S, Qin X G, Liu Q, Shi L, Kong F L, Tang D T, Li C H 2010 Vacuum and Cryogenics 16 167

    [26]

    李盛涛, 李国倡, 闵道敏, 赵妮 2013 物理学报 62 059401Google Scholar

    Li S T, Li G C, Min D M, Zhao N 2013 Acta Phys. Sin. 62 059401Google Scholar

    [27]

    李国倡, 闵道敏, 李盛涛, 郑晓泉, 茹佳胜 2014 物理学报 63 209401Google Scholar

    Li G C, Min D M, Li S T, Zheng X Q, Ru J S 2014 Acta Phys. Sin. 63 209401Google Scholar

    [28]

    李国倡 2017 博士学位论文 (西安: 西安交通大学)

    Li G C 2017 Ph. D. Dissertation (Xi’an: Xi’an Jiaotong University) (in Chinese)

    [29]

    李维勤, 郝杰, 张海波 2015 物理学报 64 086801Google Scholar

    Li W Q, Hao J, Zhang H B 2015 Acta Phys. Sin. 64 086801Google Scholar

    [30]

    易忠, 王松, 唐小金, 武占成, 张超 2015 物理学报 64 125201Google Scholar

    Yi Z, Wang S, Tang X J, Wu Z C, Zhang C 2015 Acta Phys. Sin. 64 125201Google Scholar

    [31]

    曹鹤飞, 刘尚合, 孙永卫, 原青云 2013 物理学报 62 149402Google Scholar

    Cao H F, Liu S H, Sun Y W, Yuan Q Y 2013 Acta Phys. Sin. 62 149402Google Scholar

    [32]

    曹鹤飞, 刘尚合, 孙永卫, 原青云 2013 物理学报 62 149401Google Scholar

    Cao H F, Liu S F, Sun Y W, Yuan Q Y 2013 Acta Phys. Sin. 62 149401Google Scholar

    [33]

    范亚杰, 张希军, 孙永卫, 周立栋 2018 强激光与粒子束 30 114002

    Fan Y J, Sun X J, Sun Y W, Zhou L D 2018 High Power Laser and Particle Beams. 30 114002

    [34]

    Li G C, Li S T, Pan S M, Min D M 2016 IEEE Trans. Dielectr. Electr. Insul. 23 2393Google Scholar

    [35]

    Min D M, Cho M, Li S T 2012 IEEE Trans. Dielectr. Electr. Insul. 19 2206Google Scholar

    [36]

    Baudoin F, Le Roy S, Teyssedre G 2008 J. Phys. D: Appl. Phys. 41 025306Google Scholar

    [37]

    Le Roy S, Baudoin F, Griseri V, Laurent C, Teyssedre G 2010 J. Phys. D: Appl. Phys. 43 315402Google Scholar

    [38]

    Le Roy S, Baudoin F, Griseri V 2012 J. Appl. Phys. 112 023704Google Scholar

    [39]

    Teyssedre G, Laurent C 2005 IEEE Trans. Dielectr. Electr. Insul. 12 857Google Scholar

    [40]

    Boufayed F, Teyssèdre G, Laurent C 2006 J. Appl. Phys. 100 104105Google Scholar

    [41]

    刘晓东, 郑晓泉, 张要强, 杨生胜, 秦晓刚, 王立 2007 电工电能新技术 26 55Google Scholar

    Liu X D, Zheng X Q, Zhang Y Q, Yang S S, Qin X G, Wang L 2007 Electrical and Electrical Technology 26 55Google Scholar

    [42]

    马丽婵, 郑晓泉, 刘晓东, 张要强 2007 中国电机工程学报 27 32Google Scholar

    Ma L C, Zheng X Q, Liu X D, Zhang Y Q, Ma L C 2007 Proc. CSEE 27 32Google Scholar

    [43]

    Li G C, Li S T, Pan S M 2016 IEEE Trans. Dielectr. Electr. Insul. 23 1846Google Scholar

    [44]

    高宇, 王小芳, 李楠, 许棒棒, 王继隆, 杜伯学 2019 高电压技术 45 2219

    Gao Y, Wang X F, Li N, Xu B B, Wang J L, Du B X 2019 High Voltage 45 2219

    [45]

    Shen W W, Mu H B, Zhang G J 2013 J. Appl. Phys. 113 083706Google Scholar

    [46]

    Simmons J G, Tam M C 1973 Phys. Rev. B 7 3706Google Scholar

    [47]

    Wei Y H, Chen G, Zhang G J, Liu N, Li G C 2016 AIP Adv. 6 075120Google Scholar

    [48]

    张振军, 苗军, 王学强, 吴文斌, 杨沛, 郑晓泉 2014 高电压技术 40 117

    Zhang Z J, Miao J, Wang X Q, Wu W B, Yang P, Zheng X Q 2014 High Voltage Engineering 40 117

  • [1] 潘佳萍, 张冶文, 李俊, 吕天华, 郑飞虎. 结合电子束辐照与压电压力波法空间电荷分布实时测量的空间电荷包迁移行为的研究. 物理学报, 2024, 73(2): 027701. doi: 10.7498/aps.73.20231353
    [2] 徐晗, 张璐. 考虑空间电荷层效应的氧离子导体电解质内载流子传输特性. 物理学报, 2021, 70(6): 068801. doi: 10.7498/aps.70.20201651
    [3] 郭榕榕, 林金海, 刘莉莉, 李世韦, 王尘, 林海军. CdZnTe晶体中深能级缺陷对空间电荷分布特性的影响. 物理学报, 2020, 69(22): 226103. doi: 10.7498/aps.69.20200553
    [4] 袁端磊, 闵道敏, 黄印, 谢东日, 王海燕, 杨芳, 朱志豪, 费翔, 李盛涛. 掺杂含量对环氧纳米复合电介质陷阱与空间电荷的影响. 物理学报, 2017, 66(9): 097701. doi: 10.7498/aps.66.097701
    [5] 李丽丽, 张晓虹, 王玉龙, 国家辉. 电场和温度对聚合物空间电荷陷阱性能的影响. 物理学报, 2017, 66(8): 087201. doi: 10.7498/aps.66.087201
    [6] 孙雅丽, 张冶文, Stephane Hole, 马朋, 郭聪, 郑飞虎, 安振连. 同轴结构中压力波法测量空间电荷分布的物理模型研究. 物理学报, 2017, 66(12): 127701. doi: 10.7498/aps.66.127701
    [7] 毕欣, 黄林, 杜劲松, 齐伟智, 高扬, 荣健, 蒋华北. 脉冲微波辐射场空间分布的热声成像研究. 物理学报, 2015, 64(1): 014301. doi: 10.7498/aps.64.014301
    [8] 刘康淋, 廖瑞金, 赵学童. 声脉冲法空间电荷测量系统的研究. 物理学报, 2015, 64(16): 164301. doi: 10.7498/aps.64.164301
    [9] 安振连, 刘晨霞, 陈暄, 郑飞虎, 张冶文. 表层氟化聚乙烯中的空间电荷. 物理学报, 2012, 61(9): 098201. doi: 10.7498/aps.61.098201
    [10] 於黄忠. 空间电荷限制电流法测量共混体系中空穴的迁移率. 物理学报, 2012, 61(8): 087204. doi: 10.7498/aps.61.087204
    [11] 廖瑞金, 伍飞飞, 刘兴华, 杨帆, 杨丽君, 周之, 翟蕾. 大气压直流正电晕放电暂态空间电荷分布仿真研究. 物理学报, 2012, 61(24): 245201. doi: 10.7498/aps.61.245201
    [12] 廖瑞金, 周天春, George Chen, 杨丽君. 聚合物材料空间电荷陷阱模型及参数. 物理学报, 2012, 61(1): 017201. doi: 10.7498/aps.61.017201
    [13] 李飞, 肖刘, 刘濮鲲, 易红霞, 万晓声. 同心球之间空间电荷限制电流的简单理论. 物理学报, 2011, 60(9): 097901. doi: 10.7498/aps.60.097901
    [14] 陈曦, 王霞, 吴锴, 彭宗仁, 成永红. 温度梯度场对电声脉冲法空间电荷测量波形的影响. 物理学报, 2010, 59(10): 7327-7332. doi: 10.7498/aps.59.7327
    [15] 赵敏, 安振连, 姚俊兰, 解晨, 夏钟福. 孔洞聚丙烯驻极体膜中空间电荷与孔洞击穿电荷的俘获特性. 物理学报, 2009, 58(1): 482-487. doi: 10.7498/aps.58.482
    [16] 肖春, 张冶文, 林家齐, 郑飞虎, 安振连, 雷清泉. 聚乙烯薄膜中空间电荷短路放电复合率的发光法研究. 物理学报, 2009, 58(9): 6459-6464. doi: 10.7498/aps.58.6459
    [17] 杨 强, 安振连, 郑飞虎, 张冶文. 线性低密度聚乙烯中空间电荷陷阱的能量分布与空间分布的关系. 物理学报, 2008, 57(6): 3834-3839. doi: 10.7498/aps.57.3834
    [18] 郑飞虎, 张冶文, 吴长顺, 李吉晓, 夏钟福. 用于固体介质中空间电荷的压电压力波法与电声脉冲法. 物理学报, 2003, 52(5): 1137-1142. doi: 10.7498/aps.52.1137
    [19] 古元新, 葛培文, 赵雅琴, 胡伯清, 吴兰生, 傅全贵. X射线形貌法观察空间电荷缀饰的α—LiIO3单晶的缺陷. 物理学报, 1980, 29(6): 711-717. doi: 10.7498/aps.29.711
    [20] 谢家麟. 多次聚束的空间电荷波理论. 物理学报, 1957, 13(1): 16-29. doi: 10.7498/aps.13.16
计量
  • 文章访问数:  10480
  • PDF下载量:  158
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-19
  • 修回日期:  2019-09-11
  • 上网日期:  2019-11-27
  • 刊出日期:  2019-12-05

/

返回文章
返回