搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

淬火动力学中的拓扑不变量

杨超 陈澍

引用本文:
Citation:

淬火动力学中的拓扑不变量

杨超, 陈澍

Topological invariant in quench dynamics

Yang Chao, Chen Shu
PDF
HTML
导出引用
  • 本文主要介绍了近期关于一维拓扑能带系统中淬火动力学的研究. 从两能带模型入手介绍了动力学陈数, 并给出它与初末态拓扑不变量之间的关系. 进而通过将一维含时波函数看作为1 + 1维母哈密顿量的基态, 给出了Altland-Zirnbauer分类对应的动力学拓扑分类, 并简要介绍了动力学的体边对应以及空间无序和能带色散对纠缠谱交叉的影响. 最后还介绍了利用超导量子比特模拟观测到动力学陈数.
    In this review, we give a brief review on the recent progress in the theoretical research of quench dynamics in topological band systems. Beginning with two band models, we introduce conception of dynamical Chern number and give the connection between the dynamical Chern number and topological invariant in the corresponding equilibrium systems. Then by studying the 1 + 1 dimensional parent Hamiltonian, we show the complete dynamical classification of Altland-Zirnbauer classes, and show the crossing of entanglement spectrum as a feature of dynamical bulk edge correspondence. Furthermore, we consider the impact of the disorder and band dispersion. At last, we show the experimental simulation of dynamical Chern number by a superconducting qubit system.
      通信作者: 杨超, yangchao@iphy.ac.cn ; 陈澍, schen@iphy.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2016YFA0300600)和国家自然科学基金(批准号: 11425419, 11974413)资助的课题.
      Corresponding author: Yang Chao, yangchao@iphy.ac.cn ; Chen Shu, schen@iphy.ac.cn
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2016YFA0300600) and the National Natural Science Foundation of China (Grant Nos. 11425419, 11974413)
    [1]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [2]

    Thouless D J, Kohmoto M, Nightingale M P, Nijs M den Nijs 1982 Phys. Rev. Lett. 49 405Google Scholar

    [3]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [4]

    Qi X, Zhang S 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [5]

    Chiu C, Teo J C Y, Schnyder A P, Ryu S 2016 Rev. Mod. Phys. 88 035005Google Scholar

    [6]

    Atala M, Aidelsburger M, Barreiro J T, Abanin D, Kitagawa T, Demler E, Bloch I 2013 Nat. Phys. 9 795Google Scholar

    [7]

    Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, Esslinger T 2014 Nature (London) 515 237Google Scholar

    [8]

    Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J, Pan J W 2016 Science 354 83Google Scholar

    [9]

    Aidelsburger M, Atala M, Lohse M, Barreiro J T, Paredes B, Bloch I 2013 Phys. Rev. Lett. 111 185301Google Scholar

    [10]

    Aidelsburger M, Lohse M, Schweizer C, Atala M, Barreiro J T, Nascimbne S, Cooper N R, Bloch I, Goldman N 2015 Nat. Phys. 11 162Google Scholar

    [11]

    Miyake H, Siviloglou G A, Kennedy C J, Burton W C, Ketterle W 2013 Phys. Rev. Lett. 111 185302Google Scholar

    [12]

    Caio M D, Cooper N R, Bhaseen M J 2015 Phys. Rev. Lett. 115 236403Google Scholar

    [13]

    Alessio L D, Rigol M 2015 Nat. Commun. 6 8336Google Scholar

    [14]

    Hu Y, Zoller P, Budich J C 2016 Phys. Rev. Lett. 117 126083

    [15]

    Wilson J H, Song J C W, Refael G 2016 Phys. Rev. Lett. 117 235032

    [16]

    McGinley M, Cooper N R 2018 Phys. Rev. Lett. 121 090401Google Scholar

    [17]

    McGinley M, Cooper N R 2019 Phys. Rev. B 99 075418Google Scholar

    [18]

    Wang C, Zhang P, Chen X, Yu J, Zhai H 2017 Phys. Rev. Lett. 118 185701Google Scholar

    [19]

    Chen X, Wang C, Yu J 2019 arXiv: 1907.08840

    [20]

    Tarnowski M, Unal F N, Flaschner N, Rem B S, Eckardt A, Sengstock K, Weitenberg C 2019 Nat. Commun. 10 1728Google Scholar

    [21]

    Yang C, Li L, Chen S 2018 Phys. Rev. B(R) 97 060304Google Scholar

    [22]

    Guo X Y, Yang C, Zeng Y, Peng Y, Li H K, Deng H, Jin Y R, Chen S, Zheng D N, Fan H 2019 Phys. Rev. Applied 11 044080Google Scholar

    [23]

    Gong Z, Ueda M 2018 Phys. Rev. Lett. 121 250601Google Scholar

    [24]

    Zhang L, Zhang L, Niu S, Liu X J 2018 Science Bulletin 63 1385Google Scholar

    [25]

    Zhang L, Zhang L, Liu X J 2019 Phys. Rev. A 99 053606Google Scholar

    [26]

    Zhang L, Zhang L, Liu X J 2019 arXiv: 1907.08840

    [27]

    Sun W, Yi C R, Wang B Z, Zhang W W, Sanders B C, Xu X T, Wang Z Y, Schmiedmayer J, Deng Y J, Liu X J, Chen S, Pan J W 2019 Phys. Rev. Lett. 121 250403

    [28]

    Lieb E H, Robinson D W 1972 Commun. Math. Phys. 28 251Google Scholar

    [29]

    Gong Z, Kura N, Sato M, Ueda M 2019 arXiv: 1904.12464

    [30]

    Altland A, Zirnbauer M R 1997 Phys. Rev. B 55 1142Google Scholar

    [31]

    Schnyder A P, Ryu S, Furusaki A, Ludwig A W W 2008 Phys. Rev. B 78 2208

    [32]

    Kitaev A 2009 AIP Conf. Proc. 22 1134

    [33]

    Kitaev A 2001 Ann. Phys. (NY) 303 2

    [34]

    Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698Google Scholar

    [35]

    Li L, Yang C, Chen S 2016 Eur. Phys. J. B 89 195Google Scholar

    [36]

    Teo J C Y, Kane C L 2010 Phys. Rev. B 82 115120Google Scholar

    [37]

    Shiozaki K, Sato M 2014 Phys. Rev. B 90 165114Google Scholar

    [38]

    Chiu C K, Yao H, Ryu S 2013 Phys. Rev. B 88 075142Google Scholar

    [39]

    Fu L, Kane C 2006 Phys. Rev. B 74 195312Google Scholar

    [40]

    Moore J E, Balents L 2007 Phys. Rev. B(R) 75 121306Google Scholar

    [41]

    Wen X G 1992 Int. J. Mod. Phys. B 06 1711Google Scholar

    [42]

    Fidkowski L 2010 Phys. Rev. Lett. 104 130502Google Scholar

    [43]

    Peschel I 2002 J. Phys. A 36 L205

    [44]

    Hughes T L, Prodan E, Bernevig B A 2011 Phys. Rev. B 83 245132Google Scholar

    [45]

    Fu L, Kane C L 2009 Phys. Rev. B 79 161408Google Scholar

    [46]

    Lu S, Yu J 2019 Phys. Rev. A 99 033621Google Scholar

    [47]

    Turner A M, Zhang Y, Vishwanath A 2010 Phys. Rev. B 82 241102Google Scholar

    [48]

    Bansil A, Lin S, Das T 2016 Rev. Mod. Phys. 88 021004Google Scholar

    [49]

    Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M, Schoelkopf R J 2007 Phys. Rev. A 76 042319Google Scholar

    [50]

    Barends R, Kelly J, Megrant A, Sank D, Jeffrey E, Chen Y, Yin Y, Chiaro B, Mutus J, Neill C, O'Malley P, Roushan P, Wenner J, White T C, Cleland A N, Martinis J M 2013 Phys. Rev. Lett. 111 080502Google Scholar

    [51]

    Barends R, Kelly J, Megrant A, Veitia A, Sank D, Jeffrey E, White T C, Mutus J, Fowler A G, Campbell B, Chen Y, Chen Z, Chiaro B, Dunsworth A, Neill C, O'Malley P, Roushan P, Vainsencher A, Wenner J, Korotkov A N, Cleland A N, Martinis J M 2016 Nature 508 500

    [52]

    Steffen M, Ansmann M, McDermott R, Katz N, Bialczak R C, Lucero E, Neeley M, Weig E M, Cleland A N, Martinis J M 2006 Phys. Rev. Lett. 97 050502Google Scholar

    [53]

    Dziarmaga J 2005 Phys. Rev. Lett. 95 245701Google Scholar

    [54]

    Ezawa M 2018 Phys. Rev. B 98 205406Google Scholar

    [55]

    Chang P Y 2018 Phys. Rev. B 97 224304Google Scholar

    [56]

    Qiu X, Deng T S, Hu Y, Xue P, Yi W 2018 arXiv: 1806.10268

    [57]

    Wang K, Qiu X, Xiao L, Zhan X, Bian Z, Sanders B C, Yi W, Xue P 2018 Nat. Commun. 10 2293

    [58]

    邓天舒, 易为 2019 物理学报 68 040303Google Scholar

    Deng T S, Yi W 2019 Acta Phys. Sin. 68 040303Google Scholar

  • 图 1  (a) 每个截面对应固定动量, 截面内的极角对应于时间. 橘黄色的环代表$k=0$$2{\text{π}} $, 它们粘合起来组成了$T^2$; (b) 如果动量空间中存在一些不动点$k_1$, $k_2$, 截面的时间可连续收缩为一个点, 动量时间流形约化成一系列球面[21]

    Fig. 1.  (a) For any fixed momentum k, the cross section can be viewed as a circle $S^1$ where the azimuthal angle represents the time t. After gluing $k=0$ and $k = 2{\text{π}} $ (saffron circles), the topology of the momentum-time manifold becomes $T^2$; (b) if there are two fixed points $k=k_1$ and $k_2$, the corresponding circle contracts to a point, then the momentum-time manifold reduces to a series of spheres $S^2$[21].

    图 2  (a) SSH模型, 初态$\delta^{\rm i}=1$为拓扑平庸的, 末态$\delta^{\rm f}$取不同的值. 仅当末态为拓扑非平庸时, 纠缠谱在$1/2$处有交叉; (b)扩展的SSH模型, 次次次近邻跃迁具有相位, 系统属于AIII类. 蓝色的线代表用平带化的哈密顿量进行动力学演化, 红色的线代表由真实末态哈密顿量进行演化. 可以看出能带的色散打开了纠缠谱的能隙

    Fig. 2.  (a) In SSH model, the initial state of $\delta^{\rm i}=1$ is topologically trivial, evolution of entanglement spectrum for different post-quenched $\delta^{\rm f}{\rm{s}}$ are shown with different colors. If and only if the post-quenched Hamiltonian is topologically nontrivial, the entanglement spectrum can cross at $1/2$; (b) in Extended SSH model, the third-nearest-neighbor hopping carries a phase factor, and the Hamiltonian belongs to class AIII. The blue curve shows the dynamics of entanglement spectrum evolved by flattened Hamiltonian, and the red curve shows the dynamics evolved by entanglement spectrum of real Hamiltonian. It can be seen that the band dispersion opens the gap of entanglement spectrum.

    图 3  (a)实验过程序列示意图. 对每一个动量k, 初始时刻通过脉冲$A_0\cos(\omega t+\phi_0)$ 制备初态, 而后通过改变外加的脉冲的$A_k$$\phi_k$ 实现淬火动力学. (b), (c) 不同动量k对应的Bloch矢量的演化. 红色的星为实验的数据, 黄色的环为数值计算的数据. (b)初态$h^{\rm i}=0.2$, 末态$h^{\rm f}=1.5$. (c) 初态$h^{\rm i}=0.2$, 末态$h^{\rm f}=0.5$[22]

    Fig. 3.  The scheme of experiment control sequence. The initial state is prepared at the state-initialization period by control quantity $A_0\cos(\omega t+\phi_0)$ for a fixed momentum k. Then for a quantum quench, by controlling $A_k$ and $\phi_k$, we adjust the direction of the rotation axis. (b), (c) the evolution of Bloch vectors for different momenta. The red points and yellow rings are experimental and numerical datas. (b) pre-quenched parameter $h^{\rm i}=0.2$, post-quench parameter $h^{\rm f}=1.5$. (c) pre-quenched parameter $h^{\rm i}=0.2$, post-quench parameter $h^{\rm f}=0.5$.

    表 1  母哈密顿量$\tilde{h}(k, t)$的拓扑分类. TRS、PHS、CS分别是时间反演对称性, 粒子空穴对称性和手征对称性. s, t, d, $d_{//}$, 额外对称性P参见文献[37]; original class是没有额外对称性时系统的拓扑分类. $K_{\rm C}^{\rm U/A}(K_{\rm R}^{\rm U/A})$是系统的K群. Dynamical realization表示在淬火动力学中存在的拓扑分类. Stable against dispersion指能带存在色散时纠缠谱交叉能够稳定存在的拓扑分类

    Table 1.  Topological classification of parent Hamiltonian. TRS, PHS and CS represent the time reversal symmetry, particle hole symmetry and chorial symmetry, respectively. The definition of s, t, d, $d_{//}$ and additional symmetry P can be found in Ref.[37]. Original class represents the topological classification without additional symmetry. $K_{\rm C}^{\rm U/A}(K_{\rm R}^{\rm U/A})$ is the K group. Dynamical realization means the topological classes which can be realized in quench dynamics. Stable against dispersion means entanglement spectrum crossing which is stable against band dispersion.

    AZ class TRS PHS CS $(s, t, d, d_{//}, \text{original~class,} P)$ $K_{\rm C}^{\rm U/A}(K_{\rm R}^{\rm U/A})$ Dynamical realization Stable against dispersion
    A 0 0 0 $(\sim, \sim, 2, \sim, A, \sim)$ ${\mathbb Z}$ 0 0
    AIII 0 0 1 $(0, 1, 2, 1, A, \bar{U})$ ${\mathbb Z}\bigoplus{\mathbb Z}$ ${\mathbb Z}$ 0
    AI 1 0 0 $(\sim, \sim, 2, \sim, AI, \sim)$ 0 0 0
    BDI 1 1 1 $(0, 3, 2, 1, AI, \bar{A}_{+}^{+})$ ${\mathbb Z}$ ${\mathbb Z}$ ${\mathbb Z}_2$
    D 0 1 0 $(2, \sim, 2, 1, A, \bar{A}^{+})$ ${\mathbb Z}_2$ ${\mathbb Z}_2$ ${\mathbb Z}_2$
    DIII –1 1 1 $(4, 1, 2, 1, AII, \bar{A}_{+}^{+})$ ${\mathbb Z}_2\bigoplus{\mathbb Z}_2$ ${\mathbb Z}_2$ 0
    AII –1 0 0 $(\sim, \sim, 2, \sim, AII, \sim)$ ${\mathbb Z}_2$ 0 0
    CII –1 –1 1 $(4, 3, 2, 1, AII, \bar{A}_{+}^{-})$ ${\mathbb Z}$ ${\mathbb Z}$ 0
    C 0 –1 0 $(6, \sim, 2, 1, A, \bar{A}^{-})$ 0 0 0
    CI 1 –1 1 $(0, 1, 2, \sim, AI, \bar{A}_{+}^{-})$ 0 0 0
    下载: 导出CSV
  • [1]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [2]

    Thouless D J, Kohmoto M, Nightingale M P, Nijs M den Nijs 1982 Phys. Rev. Lett. 49 405Google Scholar

    [3]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [4]

    Qi X, Zhang S 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [5]

    Chiu C, Teo J C Y, Schnyder A P, Ryu S 2016 Rev. Mod. Phys. 88 035005Google Scholar

    [6]

    Atala M, Aidelsburger M, Barreiro J T, Abanin D, Kitagawa T, Demler E, Bloch I 2013 Nat. Phys. 9 795Google Scholar

    [7]

    Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, Esslinger T 2014 Nature (London) 515 237Google Scholar

    [8]

    Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J, Pan J W 2016 Science 354 83Google Scholar

    [9]

    Aidelsburger M, Atala M, Lohse M, Barreiro J T, Paredes B, Bloch I 2013 Phys. Rev. Lett. 111 185301Google Scholar

    [10]

    Aidelsburger M, Lohse M, Schweizer C, Atala M, Barreiro J T, Nascimbne S, Cooper N R, Bloch I, Goldman N 2015 Nat. Phys. 11 162Google Scholar

    [11]

    Miyake H, Siviloglou G A, Kennedy C J, Burton W C, Ketterle W 2013 Phys. Rev. Lett. 111 185302Google Scholar

    [12]

    Caio M D, Cooper N R, Bhaseen M J 2015 Phys. Rev. Lett. 115 236403Google Scholar

    [13]

    Alessio L D, Rigol M 2015 Nat. Commun. 6 8336Google Scholar

    [14]

    Hu Y, Zoller P, Budich J C 2016 Phys. Rev. Lett. 117 126083

    [15]

    Wilson J H, Song J C W, Refael G 2016 Phys. Rev. Lett. 117 235032

    [16]

    McGinley M, Cooper N R 2018 Phys. Rev. Lett. 121 090401Google Scholar

    [17]

    McGinley M, Cooper N R 2019 Phys. Rev. B 99 075418Google Scholar

    [18]

    Wang C, Zhang P, Chen X, Yu J, Zhai H 2017 Phys. Rev. Lett. 118 185701Google Scholar

    [19]

    Chen X, Wang C, Yu J 2019 arXiv: 1907.08840

    [20]

    Tarnowski M, Unal F N, Flaschner N, Rem B S, Eckardt A, Sengstock K, Weitenberg C 2019 Nat. Commun. 10 1728Google Scholar

    [21]

    Yang C, Li L, Chen S 2018 Phys. Rev. B(R) 97 060304Google Scholar

    [22]

    Guo X Y, Yang C, Zeng Y, Peng Y, Li H K, Deng H, Jin Y R, Chen S, Zheng D N, Fan H 2019 Phys. Rev. Applied 11 044080Google Scholar

    [23]

    Gong Z, Ueda M 2018 Phys. Rev. Lett. 121 250601Google Scholar

    [24]

    Zhang L, Zhang L, Niu S, Liu X J 2018 Science Bulletin 63 1385Google Scholar

    [25]

    Zhang L, Zhang L, Liu X J 2019 Phys. Rev. A 99 053606Google Scholar

    [26]

    Zhang L, Zhang L, Liu X J 2019 arXiv: 1907.08840

    [27]

    Sun W, Yi C R, Wang B Z, Zhang W W, Sanders B C, Xu X T, Wang Z Y, Schmiedmayer J, Deng Y J, Liu X J, Chen S, Pan J W 2019 Phys. Rev. Lett. 121 250403

    [28]

    Lieb E H, Robinson D W 1972 Commun. Math. Phys. 28 251Google Scholar

    [29]

    Gong Z, Kura N, Sato M, Ueda M 2019 arXiv: 1904.12464

    [30]

    Altland A, Zirnbauer M R 1997 Phys. Rev. B 55 1142Google Scholar

    [31]

    Schnyder A P, Ryu S, Furusaki A, Ludwig A W W 2008 Phys. Rev. B 78 2208

    [32]

    Kitaev A 2009 AIP Conf. Proc. 22 1134

    [33]

    Kitaev A 2001 Ann. Phys. (NY) 303 2

    [34]

    Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698Google Scholar

    [35]

    Li L, Yang C, Chen S 2016 Eur. Phys. J. B 89 195Google Scholar

    [36]

    Teo J C Y, Kane C L 2010 Phys. Rev. B 82 115120Google Scholar

    [37]

    Shiozaki K, Sato M 2014 Phys. Rev. B 90 165114Google Scholar

    [38]

    Chiu C K, Yao H, Ryu S 2013 Phys. Rev. B 88 075142Google Scholar

    [39]

    Fu L, Kane C 2006 Phys. Rev. B 74 195312Google Scholar

    [40]

    Moore J E, Balents L 2007 Phys. Rev. B(R) 75 121306Google Scholar

    [41]

    Wen X G 1992 Int. J. Mod. Phys. B 06 1711Google Scholar

    [42]

    Fidkowski L 2010 Phys. Rev. Lett. 104 130502Google Scholar

    [43]

    Peschel I 2002 J. Phys. A 36 L205

    [44]

    Hughes T L, Prodan E, Bernevig B A 2011 Phys. Rev. B 83 245132Google Scholar

    [45]

    Fu L, Kane C L 2009 Phys. Rev. B 79 161408Google Scholar

    [46]

    Lu S, Yu J 2019 Phys. Rev. A 99 033621Google Scholar

    [47]

    Turner A M, Zhang Y, Vishwanath A 2010 Phys. Rev. B 82 241102Google Scholar

    [48]

    Bansil A, Lin S, Das T 2016 Rev. Mod. Phys. 88 021004Google Scholar

    [49]

    Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M, Schoelkopf R J 2007 Phys. Rev. A 76 042319Google Scholar

    [50]

    Barends R, Kelly J, Megrant A, Sank D, Jeffrey E, Chen Y, Yin Y, Chiaro B, Mutus J, Neill C, O'Malley P, Roushan P, Wenner J, White T C, Cleland A N, Martinis J M 2013 Phys. Rev. Lett. 111 080502Google Scholar

    [51]

    Barends R, Kelly J, Megrant A, Veitia A, Sank D, Jeffrey E, White T C, Mutus J, Fowler A G, Campbell B, Chen Y, Chen Z, Chiaro B, Dunsworth A, Neill C, O'Malley P, Roushan P, Vainsencher A, Wenner J, Korotkov A N, Cleland A N, Martinis J M 2016 Nature 508 500

    [52]

    Steffen M, Ansmann M, McDermott R, Katz N, Bialczak R C, Lucero E, Neeley M, Weig E M, Cleland A N, Martinis J M 2006 Phys. Rev. Lett. 97 050502Google Scholar

    [53]

    Dziarmaga J 2005 Phys. Rev. Lett. 95 245701Google Scholar

    [54]

    Ezawa M 2018 Phys. Rev. B 98 205406Google Scholar

    [55]

    Chang P Y 2018 Phys. Rev. B 97 224304Google Scholar

    [56]

    Qiu X, Deng T S, Hu Y, Xue P, Yi W 2018 arXiv: 1806.10268

    [57]

    Wang K, Qiu X, Xiao L, Zhan X, Bian Z, Sanders B C, Yi W, Xue P 2018 Nat. Commun. 10 2293

    [58]

    邓天舒, 易为 2019 物理学报 68 040303Google Scholar

    Deng T S, Yi W 2019 Acta Phys. Sin. 68 040303Google Scholar

  • [1] 郭刚峰, 包茜茜, 谭磊, 刘伍明. 非厄米准周期系统中的二次局域体态和局域-扩展的边缘态. 物理学报, 2025, 74(1): 1-9. doi: 10.7498/aps.74.20240933
    [2] 尹相国, 于海如, 郝亚江, 张云波. 一维接触排斥相互作用单自旋翻转费米气体的基态和淬火动力学性质. 物理学报, 2024, 73(2): 020302. doi: 10.7498/aps.73.20231425
    [3] 刘香莲, 李凯宙, 李晓琼, 张强. 二维电介质光子晶体中量子自旋与谷霍尔效应共存的研究. 物理学报, 2023, 72(7): 074205. doi: 10.7498/aps.72.20221814
    [4] 刘畅, 王亚愚. 磁性拓扑绝缘体中的量子输运现象. 物理学报, 2023, 72(17): 177301. doi: 10.7498/aps.72.20230690
    [5] 徐诗琳, 胡岳芳, 袁丹文, 陈巍, 张薇. 应变调控下Tl2Ta2O7中的拓扑相变. 物理学报, 2023, 72(12): 127102. doi: 10.7498/aps.72.20230043
    [6] 郭思嘉, 李昱增, 李天梓, 范喜迎, 邱春印. 二维各向异性SSH模型的拓扑性质研究. 物理学报, 2022, 71(7): 070201. doi: 10.7498/aps.71.20211967
    [7] 李家锐, 王梓安, 徐彤彤, 张莲莲, 公卫江. 一维${\cal {PT}}$对称非厄米自旋轨道耦合Su-Schrieffer-Heeger模型的拓扑性质. 物理学报, 2022, 71(17): 177302. doi: 10.7498/aps.71.20220796
    [8] 孙孔浩, 易为. 非厄米局域拓扑指标的动力学特性. 物理学报, 2021, 70(23): 230309. doi: 10.7498/aps.70.20211576
    [9] 裴东亮, 杨洮, 陈猛, 刘宇, 徐文帅, 张满弓, 姜恒, 王育人. 基于复合蜂窝结构的宽带周期与非周期声拓扑绝缘体. 物理学报, 2020, 69(2): 024302. doi: 10.7498/aps.69.20191454
    [10] 郑周甫, 尹剑飞, 温激鸿, 郁殿龙. 基于声子晶体板的弹性波拓扑保护边界态. 物理学报, 2020, 69(15): 156201. doi: 10.7498/aps.69.20200542
    [11] 王彦兰, 李妍. 二维介电光子晶体中的赝自旋态与拓扑相变. 物理学报, 2020, 69(9): 094206. doi: 10.7498/aps.69.20191962
    [12] 方云团, 王张鑫, 范尔盼, 李小雪, 王洪金. 基于结构反转二维光子晶体的拓扑相变及拓扑边界态的构建. 物理学报, 2020, 69(18): 184101. doi: 10.7498/aps.69.20200415
    [13] 邓天舒, 易为. 动力学淬火过程中的不动点及衍生拓扑现象. 物理学报, 2019, 68(4): 040303. doi: 10.7498/aps.68.20181928
    [14] 郝宁, 胡江平. 铁基超导中拓扑量子态研究进展. 物理学报, 2018, 67(20): 207101. doi: 10.7498/aps.67.20181455
    [15] 喻祥敏, 谭新生, 于海峰, 于扬. 利用超导量子电路模拟拓扑量子材料. 物理学报, 2018, 67(22): 220302. doi: 10.7498/aps.67.20181857
    [16] 杨圆, 陈帅, 李小兵. Rashba自旋轨道耦合下square-octagon晶格的拓扑相变. 物理学报, 2018, 67(23): 237101. doi: 10.7498/aps.67.20180624
    [17] 龙洋, 任捷, 江海涛, 孙勇, 陈鸿. 超构材料中的光学量子自旋霍尔效应. 物理学报, 2017, 66(22): 227803. doi: 10.7498/aps.66.227803
    [18] 沈清玮, 徐林, 蒋建华. 圆环结构磁光光子晶体中的拓扑相变. 物理学报, 2017, 66(22): 224102. doi: 10.7498/aps.66.224102
    [19] 王青海, 李锋, 黄学勤, 陆久阳, 刘正猷. 一维颗粒声子晶体的拓扑相变及可调界面态. 物理学报, 2017, 66(22): 224502. doi: 10.7498/aps.66.224502
    [20] 王健, 吴世巧, 梅军. 二维声子晶体中简单旋转操作导致的拓扑相变. 物理学报, 2017, 66(22): 224301. doi: 10.7498/aps.66.224301
计量
  • 文章访问数:  12192
  • PDF下载量:  427
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-16
  • 修回日期:  2019-11-11
  • 上网日期:  2019-11-19
  • 刊出日期:  2019-11-20

/

返回文章
返回