搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超紧凑型飞秒电子衍射仪的设计

罗端 惠丹丹 温文龙 李立立 辛丽伟 钟梓源 吉超 陈萍 何凯 王兴 田进寿

引用本文:
Citation:

超紧凑型飞秒电子衍射仪的设计

罗端, 惠丹丹, 温文龙, 李立立, 辛丽伟, 钟梓源, 吉超, 陈萍, 何凯, 王兴, 田进寿

Design of a femtosecond electron diffractometer with adjustable gaps

Luo Duan, Hui Dan-Dan, Wen Wen-Long, Li Li-Li, Xin Li-Wei, Zhong Zi-Yuan, Ji Chao, Chen Ping, He Kai, Wang Xing, Tian Jin-Shou
PDF
HTML
导出引用
  • 由于空间电荷效应的限制, 产生百飞秒的极短电子脉冲是超快电子衍射技术的一大难点. 同时, 电子的穿透深度随着电子能量的增加而增加, 而电子的散射几率却具有相反的规律. 因而, 除了时间分辨的提升, 还需要可宽范围调节的电子能量以优化不同厚度样品对其的需求. 基于此, 提出并设计了一种新型超紧凑电子枪, 结合均匀场阴极和可移动阳极的配置, 可在10—125 kV加速电压范围内实现100 fs量级时间分辨率. 通过优化设计高压电极轮廓, 使得其轴上和整个阴极面的场增强因子在不同阴阳极间距下均小于约4%, 从而保证了不同加速电压下最大轴上场强均可达10 MV/m量级, 有效地抑制了电子脉冲的展宽效应; 进一步将阳极小孔设计成可放置致密电镜载网的阶梯孔, 一方面可将载网支撑的样品紧贴小孔后方放置, 最大程度上缩短了电子从阴极到样品的时间弥散, 同时也可以有效地减弱阳极孔对电子束的散焦效应, 提升电子束的横向聚焦性能.
    One of the grand challenges in ultrafast science is real-time visualization of the microscopic structural evolution on atomic time and length scales. A promising pump-probe technique using a femtosecond laser pulse to initiate the ultrafast dynamics and another ultrashort electron pulse to probe the resulting changes has been developed and widely used to study ultrafast structural dynamics in chemical reactions, phase transitions, charge density waves, and even biological functions. In the past three decades, a number of different ultrafast electron guns have been developed to generate ultashort electron sources, mainly including hybrid electron gun with radio-frequency (RF) cavities for compressing the pulse broadening, relativistic electron gun for suppressing the coulomb interaction, single-electron pulses without space charge effect and compact direct current (DC) electron gun for minimizing the electron propagation distance. At present, these developments with different final electron energy and available total charge have improved the time response of ultrafast electron diffraction (UED) setups to a new frontier approaching to 100 fs regime. Although enormous efforts have been made, the superior capabilities and potentials of ultrafast electron diffraction (UED) are still hindered by space-charge induced pulse broadening. Besides, the penetration depth of electrons increases with the electron energy, while the scattering probability of electrons has the opposite consequence. Thus, in addition to the temporal resolution enhancement, it is also important that the electron energy should be tunable in a wide range to meet the requirements for samples with different thickness. Here in this work, we design a novel ultra-compact electron gun which combines a well-designed cathode profile, thereby providing a uniform field and a movable anode configuration to achieve a temporal resolution on the order of 100 fs over an accelerating voltage range from 10 kV to 125 kV. By optimizing the design of the high-voltage electrode profile, the field enhancement factor on the axis and along the cathode surface are both less than ~4% at different cathode-anode spacings, and thus the maximum on-axis field strength of ~10 MV/m is achieved under various accelerating voltages. This effectively suppresses the space charge broadening effect of the electron pulse. Furthermore, the anode aperture is designed as a stepped hole in which the dense sample grid can be placed, and the sample under study is directly supported by the grid and located at the anode, which reduces the cathode-to-sample distance, thus minimizing the electron pulse broadening from the cathode to sample. Moreover, the defocusing effect caused by the anode hole on the electron beam can be effectively reduced, therefore improving the lateral focusing performance of the electron beam.
      通信作者: 王兴, wangxing@opt.ac.cn ; 田进寿, tianjs@opt.ac.cn
    • 基金项目: 国家级-国家自然科学基金青年项目(11805267)
      Corresponding author: Wang Xing, wangxing@opt.ac.cn ; Tian Jin-Shou, tianjs@opt.ac.cn
    [1]

    Williamson J, Zewail A H 1991 Proc. Natl. Acad. Sci. USA 88 5021Google Scholar

    [2]

    Ihee H, Lobastov V A, Gomez U M, Goodson B M, Srinivasan R, Ruan C Y, Zewail A H 2001 Science 291 458Google Scholar

    [3]

    Siwick B J, Dwyer J R, Jordan R E, Miller R D 2003 Science 302 1382Google Scholar

    [4]

    Morrison V R, Chatelain R P, Tiwari K L, Hendaoui A, Bruhács A, Chaker M, Siwick B J 2014 Science 346 445Google Scholar

    [5]

    Sie E J, Nyby C M, Pemmaraju C D, Park S J, Shen X, Yang J, Hoffmann M C, Ofori-Okai B K, Li R K, Reid A H, Weathersby S 2019 Nature 565 61Google Scholar

    [6]

    Wolf T J, Sanchez D M, Yang J, Parrish R M, Nunes J P F, Centurion M, Coffee R, Cryan J P, Gühr M, Hegazy K, Kirrander A 2019 Nat. Chem. 11 504Google Scholar

    [7]

    Mo M, Murphy S, Chen Z, Fossati P, Li R K, Wang Y, Wang X J, Glenzer S 2019 Sci. Adv. 5 eaaw0392Google Scholar

    [8]

    裴敏洁, 齐大龙, 齐迎朋, 贾天卿, 张诗按, 孙真荣 2015 物理学报 64 034101Google Scholar

    Pei M J, Qi D L, Qi Y P, Jia T Q, Zhang S A, Sun Z R 2015 Acta Phys. Sin. 64 034101Google Scholar

    [9]

    罗端, 惠丹丹, 温文龙, 刘蓉, 王兴, 田进寿 2017 物理学报 66 152901Google Scholar

    Luo D, Hui D D, Wen W L, Liu R, Wang X, Tian J S 2017 Acta Phys. Sin. 66 152901Google Scholar

    [10]

    Gulde M, Schweda S, Storeck G, Maiti M, Yu H K, Wodtke A M, Schäfer S, Ropers C 2014 Science 345 200Google Scholar

    [11]

    Gao M, Lu C, Jean-Ruel H, Liu L C, Marx A, Onda K, Koshihara S, Nakano Y, Shao X F, Hiramatsu T, Saito G, Yamochi H, Cooney R R, Moriena G, Sciani G, Miller R J D 2013 Nature 496 343Google Scholar

    [12]

    刘运全, 张杰, 田进寿, 赵宝升, 吴建军, 赵卫 2006 物理学报 55 3368Google Scholar

    Liu Y Q, Zhang J, Tian J S, Zhao B S, Wu J J, Zhao W 2006 Acta Phys. Sin. 55 3368Google Scholar

    [13]

    Harb M, Ernstorfer R, Hebeisen C T, Sciaini G, Peng W, Dartigalongue T, Eriksson M A, Lagally M G, Kruglik S G, Miller R J D 2008 Phys. Rev. Lett. 100 155504Google Scholar

    [14]

    Gerbig C, Senftleben A, Morgenstern S, Sarpe C, Baumert T 2015 New J. Phys. 17 043050Google Scholar

    [15]

    Waldecker L, Bertoni R, Ernstorfer R 2015 J. Appl. Phys. 117 044903Google Scholar

    [16]

    Sciaini G, Miller R J D 2011 Rep. Prog. Phys. 74 096101Google Scholar

    [17]

    刘运全, 张杰, 田进寿, 赵宝升, 吴建军, 赵卫, 侯洵 2007 物理学报 56 123Google Scholar

    Liu Y Q, Zhang J, Tian J S, Zhao B S, Wu J J, Zhao W, Hou X 2007 Acta Phys. Sin. 56 123Google Scholar

    [18]

    Kassier G H, Haupt K, Erasmus N, Rohwer E G, Schwoerer H 2009 J. Appl. Phys. 105 113111Google Scholar

    [19]

    Rogowski W 1923 Die Elektrische Festigkeit am Rande des Plattenkondensators (Berlin: Springer-Verlag) pp1–15

    [20]

    Badali D S, Gengler R Y, Miller R J D 2016 Structural Dynamics-US 3 034302Google Scholar

    [21]

    Bruce F 1947 J. Inst.Electr. Eng.-Part II; Power Eng. 94 138

    [22]

    van der Geer S http://www.pulsar.nl/gpt/ [2019.11.23]

  • 图 1  常见UED用电极截面 (a) 平面型; (b) Rogowski型; (c) Bruce型; (d) 椭球型

    Fig. 1.  Definition of the (a) Plane; (b) Rogowski; (c) Bruce; (d) elliptical electrode profiles for UED.

    图 2  90° Rogowski, Bruce, 椭球型和新电极四类电极的场增强效应 (a)中心轴区域场增强因子; (b)沿阴极表面场增强因子

    Fig. 2.  Field enhancements of 90° Rogowski, Bruce, and elliptical electrode: (a) The central axis; (b) along the curved edge of cathode.

    图 3  新电极截面轮廓

    Fig. 3.  Geometry of the new high voltage electrode.

    图 4  总半径固定时中心平面区域尺寸变化对场增强的影响

    Fig. 4.  Effect of dimensional change of center plane area on field enhancement when the overall radius is constant.

    图 5  不同阴阳极间距下的场增强效应 (a) 沿阴极面的场增强; (b)轴上场增强

    Fig. 5.  Field enhancement effect at different cathode-anode spacings: (a) Field enhancement on the axis; (b) field enhancement along the cathode surface.

    图 6  电极配置对场增强的影响 (a) 非对称配置; (b) 对称配置

    Fig. 6.  Influence of the electrode configuration on field enhancement: (a) Asymmetric electrode configuration; (b) symmetric electrode configuration.

    图 7  小孔处的电场分布 (a) 无载网; (b) 50目载网; (c) 不同目数载网的对比

    Fig. 7.  Electric field distribution at the anode pinholes: (a) Without TEM grid; (b) 50 mesh TEM grid; (c) comparison of different meshes of TEM grid.

    图 8  阳极小孔设计

    Fig. 8.  Design of anode pinholes.

    图 9  间距可调型超快电子衍射仪示意图

    Fig. 9.  Schematic diagram of anode movable ultrafast electron diffractometer.

    图 10  时间为0时电子源的空间分布

    Fig. 10.  Spatial distribution of electron source at time = 0.

    图 11  加速电压、初始能量弥散以及电子数目对电子脉宽的影响 (a) V = 10 kV, z = 0−5 mm; (b) V = 125 kV, z = 0−20 mm; (c) V = 10 kV, z = 0−20 mm; (d) V = 125 kV, z = 0−100 mm

    Fig. 11.  Effect of accelerating voltage, initial electron dispersion and number of electrons on the length of the electron pulse: (a) V = 10 kV, z = 0−5 mm; (b) V = 125 kV, z = 0−20 mm; (c) V = 10 kV, z = 0−20 mm; (d) V = 125 kV, z = 0−100 mm.

    图 12  加速电压、初始能量弥散以及电子数目对电子束斑尺寸的影响 (a) V = 10 kV, z = 0−0.02 m; (b) V = 125 kV, z = 0−0.02 m

    Fig. 12.  Effect of accelerating voltage, initial electron dispersion, and number of electrons on beam spot size: (a) V = 10 kV, z = 0−0.02 m; (b) V = 125 kV, z = 0−0.02 m.

    图 13  磁透镜对电子脉冲长度的影响 (a) n = 1000; (b) n = 10000

    Fig. 13.  Effect of magnetic lens on electronic pulse length: (a) n = 1000; (b) n = 10000.

    图 14  磁透镜对电子束斑尺寸的影响 (a) n = 1000; (b) n = 10000

    Fig. 14.  Effect of magnetic lens on beam spot size: (a) n = 1000; (b) n = 10000.

  • [1]

    Williamson J, Zewail A H 1991 Proc. Natl. Acad. Sci. USA 88 5021Google Scholar

    [2]

    Ihee H, Lobastov V A, Gomez U M, Goodson B M, Srinivasan R, Ruan C Y, Zewail A H 2001 Science 291 458Google Scholar

    [3]

    Siwick B J, Dwyer J R, Jordan R E, Miller R D 2003 Science 302 1382Google Scholar

    [4]

    Morrison V R, Chatelain R P, Tiwari K L, Hendaoui A, Bruhács A, Chaker M, Siwick B J 2014 Science 346 445Google Scholar

    [5]

    Sie E J, Nyby C M, Pemmaraju C D, Park S J, Shen X, Yang J, Hoffmann M C, Ofori-Okai B K, Li R K, Reid A H, Weathersby S 2019 Nature 565 61Google Scholar

    [6]

    Wolf T J, Sanchez D M, Yang J, Parrish R M, Nunes J P F, Centurion M, Coffee R, Cryan J P, Gühr M, Hegazy K, Kirrander A 2019 Nat. Chem. 11 504Google Scholar

    [7]

    Mo M, Murphy S, Chen Z, Fossati P, Li R K, Wang Y, Wang X J, Glenzer S 2019 Sci. Adv. 5 eaaw0392Google Scholar

    [8]

    裴敏洁, 齐大龙, 齐迎朋, 贾天卿, 张诗按, 孙真荣 2015 物理学报 64 034101Google Scholar

    Pei M J, Qi D L, Qi Y P, Jia T Q, Zhang S A, Sun Z R 2015 Acta Phys. Sin. 64 034101Google Scholar

    [9]

    罗端, 惠丹丹, 温文龙, 刘蓉, 王兴, 田进寿 2017 物理学报 66 152901Google Scholar

    Luo D, Hui D D, Wen W L, Liu R, Wang X, Tian J S 2017 Acta Phys. Sin. 66 152901Google Scholar

    [10]

    Gulde M, Schweda S, Storeck G, Maiti M, Yu H K, Wodtke A M, Schäfer S, Ropers C 2014 Science 345 200Google Scholar

    [11]

    Gao M, Lu C, Jean-Ruel H, Liu L C, Marx A, Onda K, Koshihara S, Nakano Y, Shao X F, Hiramatsu T, Saito G, Yamochi H, Cooney R R, Moriena G, Sciani G, Miller R J D 2013 Nature 496 343Google Scholar

    [12]

    刘运全, 张杰, 田进寿, 赵宝升, 吴建军, 赵卫 2006 物理学报 55 3368Google Scholar

    Liu Y Q, Zhang J, Tian J S, Zhao B S, Wu J J, Zhao W 2006 Acta Phys. Sin. 55 3368Google Scholar

    [13]

    Harb M, Ernstorfer R, Hebeisen C T, Sciaini G, Peng W, Dartigalongue T, Eriksson M A, Lagally M G, Kruglik S G, Miller R J D 2008 Phys. Rev. Lett. 100 155504Google Scholar

    [14]

    Gerbig C, Senftleben A, Morgenstern S, Sarpe C, Baumert T 2015 New J. Phys. 17 043050Google Scholar

    [15]

    Waldecker L, Bertoni R, Ernstorfer R 2015 J. Appl. Phys. 117 044903Google Scholar

    [16]

    Sciaini G, Miller R J D 2011 Rep. Prog. Phys. 74 096101Google Scholar

    [17]

    刘运全, 张杰, 田进寿, 赵宝升, 吴建军, 赵卫, 侯洵 2007 物理学报 56 123Google Scholar

    Liu Y Q, Zhang J, Tian J S, Zhao B S, Wu J J, Zhao W, Hou X 2007 Acta Phys. Sin. 56 123Google Scholar

    [18]

    Kassier G H, Haupt K, Erasmus N, Rohwer E G, Schwoerer H 2009 J. Appl. Phys. 105 113111Google Scholar

    [19]

    Rogowski W 1923 Die Elektrische Festigkeit am Rande des Plattenkondensators (Berlin: Springer-Verlag) pp1–15

    [20]

    Badali D S, Gengler R Y, Miller R J D 2016 Structural Dynamics-US 3 034302Google Scholar

    [21]

    Bruce F 1947 J. Inst.Electr. Eng.-Part II; Power Eng. 94 138

    [22]

    van der Geer S http://www.pulsar.nl/gpt/ [2019.11.23]

  • [1] 王文静, 李冲, 张毛毛, 高琨. 共轭聚合物内非均匀场驱动的超快激子输运的动力学研究. 物理学报, 2019, 68(17): 177201. doi: 10.7498/aps.68.20190432
    [2] 左敏, 廖文虎, 吴丹, 林丽娥. 石墨烯纳米带电极同分异构喹啉分子结电子输运性质. 物理学报, 2019, 68(23): 237302. doi: 10.7498/aps.68.20191154
    [3] 何英秋, 丁东, 彭涛, 闫凤利, 高亭. 基于自发参量下转换源二阶激发过程产生四光子超纠缠态. 物理学报, 2018, 67(6): 060302. doi: 10.7498/aps.67.20172230
    [4] 罗端, 惠丹丹, 温文龙, 刘蓉, 王兴, 田进寿. 高相干超快电子源研究进展. 物理学报, 2017, 66(15): 152901. doi: 10.7498/aps.66.152901
    [5] 罗香怡, 刘海凤, 贲帅, 刘学深. 非均匀激光场中氢分子离子高次谐波的增强. 物理学报, 2016, 65(12): 123201. doi: 10.7498/aps.65.123201
    [6] 刘灿东, 贾正茂, 郑颖辉, 葛晓春, 曾志男, 李儒新. 双色场控制与测量原子分子超快电子动力学过程的研究进展. 物理学报, 2016, 65(22): 223206. doi: 10.7498/aps.65.223206
    [7] 霍新霞, 王畅, 张秀梅, 王利光. Au电极连接富勒烯C32分子的电子结构与传输特性. 物理学报, 2010, 59(7): 4955-4960. doi: 10.7498/aps.59.4955
    [8] 李 倩, 郝 亮, 庞文宁. GaAs极化电子源激活的yo-yo过程研究. 物理学报, 2008, 57(1): 172-175. doi: 10.7498/aps.57.172
    [9] 王利光, 陈 蕾, 郁鼎文, 李 勇, Terence K. S. W.. 单分子器件与电极间耦合界面对电子传输的影响. 物理学报, 2007, 56(11): 6526-6530. doi: 10.7498/aps.56.6526
    [10] 刘运全, 张 杰, 武慧春, 盛政明. 超短电子脉冲在聚焦强激光场中的三维有质动力散射. 物理学报, 2006, 55(3): 1176-1180. doi: 10.7498/aps.55.1176
    [11] 王晓雷, 翟宏琛, 王 毅, 母国光. 超短脉冲数字全息术中的立体角分复用技术. 物理学报, 2006, 55(3): 1137-1142. doi: 10.7498/aps.55.1137
    [12] 葛愉成, 李元景, 康克军. 利用超短脉冲激光和光电子能量微分谱直接测量窄带飞秒超紫外线XUV脉冲的时间结构. 物理学报, 2005, 54(6): 2669-2675. doi: 10.7498/aps.54.2669
    [13] 李洪玉, 赵 珂, 潘瑞芹, 孙元红, 王传奎. 超短脉冲激光在有机分子材料中的动力学过程研究. 物理学报, 2005, 54(5): 2072-2078. doi: 10.7498/aps.54.2072
    [14] 华剑飞, 霍裕昆, 林郁正, 陈 钊, 谢永杰, 张绍银, 阎 峥, 徐俊杰. 电子在超短激光脉冲修正场中的动力学特性研究. 物理学报, 2005, 54(2): 653-657. doi: 10.7498/aps.54.653
    [15] 彭晓昱, 张 杰, 金 展, 梁天骄, 仲佳勇, 武慧春, 刘运全, 王兆华, 陈正林, 盛政明, 李玉同, 魏志义. 超短脉冲激光与乙醇微滴相互作用中超热电子的双叶状角分布. 物理学报, 2004, 53(8): 2625-2632. doi: 10.7498/aps.53.2625
    [16] 苍宇, 张杰, 邱阳, 张军, 彭练矛. 超热电子在非均匀磁场中的运动轨迹. 物理学报, 2002, 51(4): 843-846. doi: 10.7498/aps.51.843
    [17] 陈黎明, 张杰, 梁天骄, 李玉同, 王龙, 江文勉. 超短脉冲强激光与固体靶相互作用产生超热电子的能谱研究. 物理学报, 2000, 49(3): 592-596. doi: 10.7498/aps.49.592
    [18] 于志刚, 黄青锋, 孙鑫. 高分子光激发的超快过程与弛豫. 物理学报, 1993, 42(11): 1822-1829. doi: 10.7498/aps.42.1822
    [19] 盛政明, 马锦秀, 徐至展, 余玮. 电子等离子体波对超短脉冲激光传播过程的作用. 物理学报, 1992, 41(11): 1796-1805. doi: 10.7498/aps.41.1796
    [20] 杨瑞青, 熊诗杰, 蔡建华. 金属超晶格中的电子输运过程. 物理学报, 1986, 35(2): 254-260. doi: 10.7498/aps.35.254
计量
  • 文章访问数:  8095
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-28
  • 修回日期:  2019-11-11
  • 刊出日期:  2020-03-05

/

返回文章
返回