搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自由空间中时空复变量自减速艾里拉盖尔高斯光束的相互作用

张霞萍

引用本文:
Citation:

自由空间中时空复变量自减速艾里拉盖尔高斯光束的相互作用

张霞萍

Interaction between spatiotemporal collinear self-decelerating Airy elegant-Laguerre-Gaussian wave packets in free space

Zhang Xia-Ping
PDF
HTML
导出引用
  • 根据自由空间光束传输遵循的(3+1)维薛定谔方程, 得到了两束时空自减速艾里复变量拉盖尔高斯(Airy elegent-Laguerre-Gaussian, AELG)光束共线传输时的解析解, 并分析其共线传输时的传输特性. 分析结果表明, 双光束各自的模式指数、组合光束强度的权重因子、初始相位差对光束的传输都会有影响. 本文发现, 通过选择模式参数或者选择它们的相对振幅, 对于共线传输的两束时空自减速AELG光束, 可以有效控制叠加光束的波形形态以及横向传输截面的光斑分布. 特别是当两束光束的模式参数不等于零时, 波包将沿着传输轴发生螺旋形旋转, 其相位图中心位置都会出现涡旋现象. 若该参数值为正, 则光束沿传输轴逆时针旋转, 否则, 光束将沿传输轴呈螺旋形顺时针方向旋转. 通过调整叠加光束的初始相位差, 波包沿传输轴线也将发生旋转, 但这两种旋转特性的旋转机理完全不同. 如果选取两束时空自减速 AELG 光束的角向模式参数m相同, 则叠加光束在传输过程中呈现空心环形状态, 出现空心环形时空自减速 AELG 波包, 且该波包在传输截面上随着传输距离的增加, 多环结构最终湮灭为单环, 并向远方推移, 使得空心部分越来越大.
    Based on the (3+1)-dimensional free-space Schrödinger equation, the analytical solutions to the equation for the propagating properties of two three-dimensional collinear self-decelerating Airy-elegant-Laguerre-Gaussian(AELG) light beams in free space are investigated. The different mode numbers, the mode index for each of the collinear beams, weight factor of combined beam, and initial phase difference will affect the profiles of the wave packets, and thus giving the method to control the spatiotemporal profiles during propagation. The spatiotemporal profiles will rotate if none of the mode parameters are equal to zero, and there are vortices in the center of the phase distribution curve. If the mode parameters are positive numbers, the profiles of the beams will rotate in a helical clockwise direction. Otherwise, if the mode parameters are negative numbers,they will rotate in a helical anticlockwise direction during propagation. The wave packets will also rotate when the relative phase is varied. However, the rotation principles of these two rotation characteristics are completely different. The spatiotemporal hollow self-decelerating AELG wave packets can be attained if the mode numbers of the collinear AiELG wave packets are the same. Multi-ring structure evolves into single-ring structure along radial direction with their propagation distance increasing during propagation, which makes the hollow part expand continuously.
      Corresponding author: Zhang Xia-Ping, xpzhang@nuaa.edu.cn
    [1]

    Berry M V, Balazs N L 1979 Am. J. Phys. 47 264Google Scholar

    [2]

    Siviloglou G A, Christodoulides D N 2007 Opt. Lett. 32 979Google Scholar

    [3]

    Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2007 Phys. Rev. Lett. 99 213

    [4]

    Baumgartl J, Mazilu M, Dholakia K 2008 Nat. Photonics 2 675Google Scholar

    [5]

    Polynkin P, Kolesik M, Moloney J V, Siviloglou G A, Christodoulides D N 2009 Science 324 5924

    [6]

    Chong A, Renninger W H, Christodoulides D N, Wise F W 2010 Nat. Photonics 4 103Google Scholar

    [7]

    Bandres M A, Gutiérrez-Vega J C 2007 Opt. Express 15 16719Google Scholar

    [8]

    Deng D M, Li H G 2012 Appl. Phys. B 106 677Google Scholar

    [9]

    Chen C D, Chen B, Peng X, Deng D M 2015 J. Opt. 17 035504Google Scholar

    [10]

    Zhang X P 2016 Opt. Commun. 367 364Google Scholar

    [11]

    Prabakaran K, Sangeetha P, Karthik V, Rajesh K B, Musthafa A M 2017 Chin. Phys. Lett. 34 054203Google Scholar

    [12]

    Malomed B A, Mihalache D, Wise F, Torner L 2005 J. Opt. B 7 R53Google Scholar

    [13]

    Mihalache D 2012 Rom. J. Phys. 57 352

    [14]

    Valtna-Lukner H, Bowlan P, Löhmus M, Piksarv P, Trebino R, Saari P 2009 Opt. Express 17 14948Google Scholar

    [15]

    Abdollahpour D, Suntsov S, Papazoglou D G, Tzortzakis S 2010 Phys. Rev. Lett. 105 253901Google Scholar

    [16]

    Zhong W P, Belic M R, Huang T 2013 Phys. Rev. A 88 2974

    [17]

    Zhong W P, Belic M, Zhang Y, Huang T 2014 Ann. Phys. 340 171Google Scholar

    [18]

    Zhong W P, Belic M, Zhang Y 2015 Opt. Express 23 23867Google Scholar

    [19]

    Zhong W P, Belic M, Zhang Y 2015 J. Phys. B 48 175401Google Scholar

    [20]

    Zhang X P 2017 Opt. Engineering 56 055102Google Scholar

    [21]

    Zhang X P 2017 J. Mod. Opt. 64 2035Google Scholar

    [22]

    Efremidis N K, Chen Z G, Segev M, Christodoulides D N 2019 Optica 6 686Google Scholar

    [23]

    Deng F, Deng D M 2016 Opt. Express 24 5478Google Scholar

    [24]

    Deng F, Zhang Z, Huang J, Deng D M 2016 JOSA B. 33 2204Google Scholar

    [25]

    Berry M V 2004 J. Opt. A, Pure Appl. Opt. 6 259Google Scholar

    [26]

    Lee W M, Yuan X C, Dholakia K 2004 Opt. Commun. 239 129Google Scholar

    [27]

    Leach J, Yao E, Padgett M J 2004 New J. Phys. 6 71Google Scholar

    [28]

    Arscott F M 1964 International 192 137

    [29]

    Zhao F, Peng X, Zhang L P, Li D D, Zhuang J L, Chen X Y, Deng D M 2018 Laser Phys. 28 075001Google Scholar

    [30]

    Deng D M, Guo Q 2010 Appl. Phys. B 100 897Google Scholar

    [31]

    张霞萍, 刘友文 2011 物理学报 60 084212Google Scholar

    Zhang X P 2011 Acta Phys. Sin. 60 084212Google Scholar

    [32]

    Galvez E J, Smiley N, Fernandes N 2006 Proc. SPIE 6131 613105Google Scholar

    [33]

    Bekshaev A Y, Soskin M S, Vasnetsov M V 2006 Opt. Lett. 31 694Google Scholar

    [34]

    Zhao G W, Chen S J, Huang Z Z, Deng D M 2018 JOSA A. 35 1645Google Scholar

    [35]

    Chen S J, Zheng X Y, Zhan Y W, Ma S D, Deng D M 2019 Opt. Commun. 435 164Google Scholar

  • 图 1  不同初始入射速度的斜入射有限能量艾里光束的光场演化图 (a)$ v_{0}=+3 $; (b) $ v_{0}=0 $; (c)$ v_{0} =-3$; (d) 图(c)的截面光强分布图

    Fig. 1.  Intensity distribution of the Airy pulses with different initial incident velocity in free space: (a) $ v_{0}=+3 $; (b)$ v_{0}=0 $; (c)$ v_{0}=-3 $; (d) the intensity profiles of the self-decelerating Airy pulses at different distances.

    图 2  两束时空自减速AELG光束共线传输时随传输距离的面强度演化图  (a1), (b1) 传输距离$ Z = 0 $; (a2), (b2) 传输距离$ Z = 0.5 $; (a3), (b3) 传输距离$ Z =1 $. 双光束的模式指数分别为 (a1)—(a3) $ m_{2} =1 $, (b1)—(b3) $ m_{2}=3 $. 其他参数值分别为 $ n_{1}=2, \;n_{2}=1,\; m_{1}=-1,\; \sigma=0, \;\theta= {\text{π}}/4 $

    Fig. 2.  Iso-surface intensity plots of self-decelerating collinear AELG wave packets at (a1), (b1)$ Z = 0 $, (a2), (b2)$ Z = 0.5 $, (a3), (b3) $ Z =1 $. (a1)−(a3)$ m_{2} =1 $, (b1)−(b3)$ m_{2}=3 $. Other parameters are chosen as $ n_{1}=2,\; n_{2}=1,\; m_{1}=-1, \;\sigma=0,\; \theta= {\text{π}}/4 $

    图 3  两束自减速时空AELG光束共线传输时传输截面的强度和相位分布图 第一行和第二行相对应模式指数为 $ m_{2} =1 $, 第三行和第四行相对于 $ m_{2} =3 $. 第一行和第三行为强度分布图, 第二行和第四行为相位分布图, 其中第四行对应于传输距离为$ Z=1.5 $. $ T=0 $, 其他参数的选择同图2

    Fig. 3.  The intensity and phase distributions of the self-decelerating collinear AELG wave packets at the profile during propagation. the first and second rows correspond to $ m_{2} =1 $, and the third and forth rows correspond to $ m_{2} =3 $. The first and third rows show the intensity distribution, and the second and forth rows show the phase distribution. the forth column corresponds to $ Z=1.5 $. Other parameters are the same as Fig. 2 except $ T=0 $

    图 4  两束自减速时空AELG光束共线传输不同权重时的面强度演化图  (a1)−(a3) 传输距离$ Z = 0 $; (b1)−(b3)传输距离$ Z=1 $. (a1), (b1) 对应于权重为$ \theta={\text{π}}/4 $; (a2), (b2) 对应于权重为$ \theta={\text{π}}/2 $; (a3), (b3)对应于权重为$ \theta=3{\text{π}}/4 $. 其他的参数值分别是 $ n_{1}=2,\;n_{2}=1,\;m1=0, \; m_{2}=-2, \sigma=0 $

    Fig. 4.  Iso-surface intensity plots of self-decelerating collinear AELG wave packets at (a1)−(a3) $ Z = 0 $; (b1)−(b3) $ Z=1 $. (a1), (b1) $ \theta={\text{π}}/4 $; (a2), (b2)$ \theta={\text{π}}/2 $; (a3), (b3) $ \theta=3{\text{π}}/4 $.Other parameters are chosen as $ n_{1}=2,\; n_{2}=1,\; m1=0, \;m_{2}=-2,\;\sigma=0 $

    图 5  两束自减速时空AELG光束共线传输不同初始相位差时的面强度演化图  (a1)−(a3)模式指数为$ m_{2}=1 $; (b1)−(b3)模式指数为$ m_{2}=3 $. 其中 (a1), (b1) 对应于初始相位差$ \sigma=0 $; (a2), (b2) 对应于$ \sigma={\text{π}}/2 $; (a3), (b3)对应于 $ \sigma={\text{π}} $. 其他参数值分别为 $ n_{1}=2,\; n_{2}=1, \;m_{1}=-1, \;\theta={\text{π}}/4 $

    Fig. 5.  Iso-surface intensity plots of self-decelerating collinear AELG wave packets at (a1)−(a3)$ m_{2}=1 $; (b1)−(b3)$ m_{2}=3 $. (a1), (b1)$ \sigma={\text{π}}/4 $; (a2), (b2) $ \sigma={\text{π}}/2 $; (a3), (b3)$ \sigma={\text{π}} $. Other parameters are chosen as $ n_{1}=2,\; n_{2}=1,\; m_{1}=-1,\; m_{2}=1, \;\theta={\text{π}}/4$

    图 6  两束自减速时空AELG光束共线传输时产生中空时空光束  (a1)−(a3) 模式指数为m1 = m2 = 1, n1 = 4, n2 = 2; (b1)−(b3)模式指数为$ m_{1}=m_{2}=-1,\; n_{1}=n_{2}=4 $. 其截面上的光强分布对应于第三行. 其中$ \sigma={\text{π}}/4 $, $ \theta={\text{π}}/4 $

    Fig. 6.  The hollow Self-decelerating AELG wave packets. The first row corresponds to $ m_{1}=m_{2}=1, n_{1}=4, n_{2}=2 $, and the second row is $ m_{1}=m_{2}=-1, \;n_{1}=n_{2}=4 $. The third row is the distribution of intensity corresponding to the second row at the section during propagation. Other parameters are $ \sigma={\text{π}}/4 $, $ \theta={\text{π}}/4 $

  • [1]

    Berry M V, Balazs N L 1979 Am. J. Phys. 47 264Google Scholar

    [2]

    Siviloglou G A, Christodoulides D N 2007 Opt. Lett. 32 979Google Scholar

    [3]

    Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2007 Phys. Rev. Lett. 99 213

    [4]

    Baumgartl J, Mazilu M, Dholakia K 2008 Nat. Photonics 2 675Google Scholar

    [5]

    Polynkin P, Kolesik M, Moloney J V, Siviloglou G A, Christodoulides D N 2009 Science 324 5924

    [6]

    Chong A, Renninger W H, Christodoulides D N, Wise F W 2010 Nat. Photonics 4 103Google Scholar

    [7]

    Bandres M A, Gutiérrez-Vega J C 2007 Opt. Express 15 16719Google Scholar

    [8]

    Deng D M, Li H G 2012 Appl. Phys. B 106 677Google Scholar

    [9]

    Chen C D, Chen B, Peng X, Deng D M 2015 J. Opt. 17 035504Google Scholar

    [10]

    Zhang X P 2016 Opt. Commun. 367 364Google Scholar

    [11]

    Prabakaran K, Sangeetha P, Karthik V, Rajesh K B, Musthafa A M 2017 Chin. Phys. Lett. 34 054203Google Scholar

    [12]

    Malomed B A, Mihalache D, Wise F, Torner L 2005 J. Opt. B 7 R53Google Scholar

    [13]

    Mihalache D 2012 Rom. J. Phys. 57 352

    [14]

    Valtna-Lukner H, Bowlan P, Löhmus M, Piksarv P, Trebino R, Saari P 2009 Opt. Express 17 14948Google Scholar

    [15]

    Abdollahpour D, Suntsov S, Papazoglou D G, Tzortzakis S 2010 Phys. Rev. Lett. 105 253901Google Scholar

    [16]

    Zhong W P, Belic M R, Huang T 2013 Phys. Rev. A 88 2974

    [17]

    Zhong W P, Belic M, Zhang Y, Huang T 2014 Ann. Phys. 340 171Google Scholar

    [18]

    Zhong W P, Belic M, Zhang Y 2015 Opt. Express 23 23867Google Scholar

    [19]

    Zhong W P, Belic M, Zhang Y 2015 J. Phys. B 48 175401Google Scholar

    [20]

    Zhang X P 2017 Opt. Engineering 56 055102Google Scholar

    [21]

    Zhang X P 2017 J. Mod. Opt. 64 2035Google Scholar

    [22]

    Efremidis N K, Chen Z G, Segev M, Christodoulides D N 2019 Optica 6 686Google Scholar

    [23]

    Deng F, Deng D M 2016 Opt. Express 24 5478Google Scholar

    [24]

    Deng F, Zhang Z, Huang J, Deng D M 2016 JOSA B. 33 2204Google Scholar

    [25]

    Berry M V 2004 J. Opt. A, Pure Appl. Opt. 6 259Google Scholar

    [26]

    Lee W M, Yuan X C, Dholakia K 2004 Opt. Commun. 239 129Google Scholar

    [27]

    Leach J, Yao E, Padgett M J 2004 New J. Phys. 6 71Google Scholar

    [28]

    Arscott F M 1964 International 192 137

    [29]

    Zhao F, Peng X, Zhang L P, Li D D, Zhuang J L, Chen X Y, Deng D M 2018 Laser Phys. 28 075001Google Scholar

    [30]

    Deng D M, Guo Q 2010 Appl. Phys. B 100 897Google Scholar

    [31]

    张霞萍, 刘友文 2011 物理学报 60 084212Google Scholar

    Zhang X P 2011 Acta Phys. Sin. 60 084212Google Scholar

    [32]

    Galvez E J, Smiley N, Fernandes N 2006 Proc. SPIE 6131 613105Google Scholar

    [33]

    Bekshaev A Y, Soskin M S, Vasnetsov M V 2006 Opt. Lett. 31 694Google Scholar

    [34]

    Zhao G W, Chen S J, Huang Z Z, Deng D M 2018 JOSA A. 35 1645Google Scholar

    [35]

    Chen S J, Zheng X Y, Zhan Y W, Ma S D, Deng D M 2019 Opt. Commun. 435 164Google Scholar

  • [1] 朱雪松, 刘星雨, 张岩. 涡旋光束在双拉盖尔-高斯旋转腔中的非互易传输. 物理学报, 2022, 71(15): 150701. doi: 10.7498/aps.71.20220191
    [2] 宁效龙, 王志章, 裴春莹, 尹亚玲. 非线性晶体产生的空心光束中大尺寸粒子囚禁与导引. 物理学报, 2018, 67(1): 018701. doi: 10.7498/aps.67.20171571
    [3] 朱洁, 唐慧琴, 李晓利, 刘小钦. 具有余弦-高斯关联结构函数部分相干贝塞尔-高斯光束的传输性质及四暗空心光束的产生. 物理学报, 2017, 66(16): 164202. doi: 10.7498/aps.66.164202
    [4] 朱洁, 朱开成. 像散正弦-高斯光束的分数傅里叶变换与椭圆空心光束产生. 物理学报, 2016, 65(20): 204204. doi: 10.7498/aps.65.204204
    [5] 龚宁, 朱开成, 夏辉. 四瓣高斯光束的Gyrator变换性质和矩形空心光束的产生. 物理学报, 2016, 65(12): 124204. doi: 10.7498/aps.65.124204
    [6] 余佳益, 陈亚红, 蔡阳健. 非均匀拉盖尔-高斯关联光束及其传输特性. 物理学报, 2016, 65(21): 214202. doi: 10.7498/aps.65.214202
    [7] 朱清智, 吴逢铁, 胡润, 冯聪. 空心光束尺寸的精确调控. 物理学报, 2016, 65(18): 184101. doi: 10.7498/aps.65.184101
    [8] 周琦, 陆俊发, 印建平. 可控双空心光束的理论方案及实验研究. 物理学报, 2015, 64(5): 053701. doi: 10.7498/aps.64.053701
    [9] 谢晓霞, 王硕琛, 吴逢铁. Bessel光束经椭圆环形孔径后的衍射光场. 物理学报, 2015, 64(12): 124201. doi: 10.7498/aps.64.124201
    [10] 朱开成, 唐慧琴, 郑小娟, 唐英. 广义双曲正弦-高斯光束的Gyrator变换性质和暗空心光束产生. 物理学报, 2014, 63(10): 104210. doi: 10.7498/aps.63.104210
    [11] 陈薪羽, 董渊, 管佳音, 李述涛, 于永吉, 吕彦飞. 湍流介质折射率结构常数Cn2对双半高斯空心光束传输特性影响的研究. 物理学报, 2014, 63(16): 164208. doi: 10.7498/aps.63.164208
    [12] 刘双龙, 刘伟, 陈丹妮, 牛憨笨. 超衍射极限相干反斯托克斯拉曼散射显微成像技术中空心光束的形成. 物理学报, 2014, 63(21): 214601. doi: 10.7498/aps.63.214601
    [13] 江月松, 王帅会, 欧军, 唐华. 基于拉盖尔-高斯光束的通信系统在非Kolmogorov湍流中传输的系统容量. 物理学报, 2013, 62(21): 214201. doi: 10.7498/aps.62.214201
    [14] 丁攀峰, 蒲继雄. 离轴拉盖尔-高斯涡旋光束传输中的光斑演变. 物理学报, 2012, 61(6): 064103. doi: 10.7498/aps.61.064103
    [15] 程治明, 吴逢铁, 方翔, 范丹丹, 朱健强. 圆顶轴棱锥产生多个局域空心光束. 物理学报, 2012, 61(21): 214201. doi: 10.7498/aps.61.214201
    [16] 张前安, 吴逢铁, 郑维涛, 马亮. 新型锥透镜产生局域空心光束. 物理学报, 2011, 60(9): 094201. doi: 10.7498/aps.60.094201
    [17] 丁攀峰, 蒲继雄. 拉盖尔高斯涡旋光束的传输. 物理学报, 2011, 60(9): 094204. doi: 10.7498/aps.60.094204
    [18] 张霞萍, 刘友文. 强非局域非线性介质中拉盖尔-高斯型光孤子相互作用. 物理学报, 2011, 60(8): 084212. doi: 10.7498/aps.60.084212
    [19] 戴继慧, 郭 旗. 非局域非线性介质中光束传输的拉盖尔-高斯变分解. 物理学报, 2008, 57(8): 5001-5006. doi: 10.7498/aps.57.5001
    [20] 王 涛, 蒲继雄. 部分相干空心光束在湍流介质中的传输特性. 物理学报, 2007, 56(11): 6754-6759. doi: 10.7498/aps.56.6754
计量
  • 文章访问数:  8256
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-22
  • 修回日期:  2019-10-15
  • 刊出日期:  2020-01-20

/

返回文章
返回