搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁磁纳米线中磁化强度的磁怪波

李再东 郭奇奇

引用本文:
Citation:

铁磁纳米线中磁化强度的磁怪波

李再东, 郭奇奇

Rogue wave solution in ferromagnetic nanowires

Li Zai-Dong, Guo Qi-Qi
PDF
HTML
导出引用
  • 本文介绍了铁磁纳米线中磁化强度的一些新激发态, 包括各向同性铁磁的Akhmediev呼吸子、Kuznetsov-Ma孤子和怪波、自旋极化电流驱动下各向异性铁磁纳米线中的怪波动力学. 在各向同性情况下, 展示了形如四片花瓣的磁孤子的空间周期过程和自旋波背景的局域化过程; 在极限情况下, 得到了磁怪波解并阐明了其形成机制. 在各向异性情况下, 发现怪波的产生主要源于中心的能量积累和快速弥散; 此外, 怪波还具有不稳定性, 它和自旋波背景间的能量与磁振子的交换可以通过自旋极化电流来调控.
    In this paper, we introduce some new excited states of magnetization in ferromagnetic nanowires, including Akhmediev breathers, Kuznetsov-Ma soliton and rogue wave in isotropic ferromagnetic nanowires, and rogue wave in anisotropic ferromagnetic nanowires driven by spin-polarized current. The isotropic case demonstrates a spatial periodic process of a magnetic soliton forming the petal with four pieces and a localized process of the spin-wave background. In a limit case, we get rogue waves and clarify its formation mechanism. In the case of anisotropy, it is found that the generation of rogue waves mainly comes from the accumulation of energy and rapid dispersion in the center. In addition, rogue waves are unstable, the spin-polarized current can control the exchange rate of magnons between the envelope soliton and the background. These results can be useful for the exploration of nonlinear excitation in Bosonic and fermionic ferromagnet.
      通信作者: 李再东, lizd@hebut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61774001)和河北省自然科学基金(批准号: F2019202141)资助的课题
      Corresponding author: Li Zai-Dong, lizd@hebut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61774001) and the Natural Science Foundation of Hebei Province, China (Grant No. F2019202141)
    [1]

    Bu K M, Kwon H Y, Kang S P, Kim H J, Won C 2013 J. Magn. Magn. Mater. 343 32Google Scholar

    [2]

    Moon J H, Seo S M, Lee K J, Kim K W, Ryu J, Lee H W, McMichael R D, Stiles M D 2013 Phys. Rev. B 88 184404Google Scholar

    [3]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106Google Scholar

    [4]

    Rohart S, Thiaville A 2013 Phys. Rev. B 88 184422Google Scholar

    [5]

    Robler U K, Bogdanov A N, Pfleiderer C 2006 Nature 442 797Google Scholar

    [6]

    Allwood D A, Xiong G, Faulkner C C, Atkinson D, Petit D, Cowburn R P 2005 Science 309 1688Google Scholar

    [7]

    Parkin S S P, Hayashi M, Thomas L 2008 Science 320 190Google Scholar

    [8]

    Li Z D, Hu Y C, He P B, Sun L L 2018 Chin. Phys. B 27 077505Google Scholar

    [9]

    He P B, Xie X C, Liu W M 2005 Phys. Rev. B 72 172411Google Scholar

    [10]

    Tretiakov O A, Liu Y, Abanov Ar 2012 Phys. Rev. Lett. 108 247201Google Scholar

    [11]

    Li Q Y, Zhao F, He P B, Li Z D 2015 Chin. Phys. B 24 037508Google Scholar

    [12]

    Kosevich A M, Ivanov B A, Kovalev A S 1990 Phys. Rep. 194 117Google Scholar

    [13]

    Mikeska H J, Steiner M 1991 Adv. Phys. 40 191Google Scholar

    [14]

    Haazen P P J, Mure E, Franken J H, Lavrijsen R, H. Swagten J M, Koopmans B 2013 Nat. Mater. 12 299Google Scholar

    [15]

    Miron I M, Gaudin G, Auffret S, Rodmacq B, Schuhl A, Pizzini S, Vogel J, Gambardella P 2010 Nat. Mater. 9 230Google Scholar

    [16]

    Di K, Zhang V L, Lim H S, Ng S C, Kuok M H, Yu J, Yoon J, Qiu X, Yang H 2015 Phys. Rev. Lett. 114 047201Google Scholar

    [17]

    Wang W W, Albert M, Beg M, Bisotti M A, Chernyshenko D 2015 Phys. Rev. Lett. 114 087203Google Scholar

    [18]

    Li Z D, Cui H, Li Q Y, He P B 2018 Ann. Phys. 388 390Google Scholar

    [19]

    Chesi S, Coish W A 2015 Phys. Rev. B 91 245306Google Scholar

    [20]

    Li Z D, Liu F, Li Q Y, He P B 2015 J. Appl. Phys. 117 173906Google Scholar

    [21]

    Pfleiderer C, Julian S R, Lonzarich G G 2001 Nature 414 427Google Scholar

    [22]

    Uchida M, Onose Y, Matsui Y, Tokura Y 2006 Science 311 359Google Scholar

    [23]

    Meckler S, Mikuszeit N, Preßler A, Vedmedenko E Y, Pietzsch O, Wiesendanger R 2009 Phys. Rev. Lett. 103 157201Google Scholar

    [24]

    Moriya T 1960 Phys.Rev. 120 91Google Scholar

    [25]

    Zakharov D V, Deisenhofer J 2006 Phys. Rev. B 73 094452Google Scholar

    [26]

    Gangadharaiah S, Sun J M, Starykh O A 2008 Phys. Rev. B 78 054436Google Scholar

    [27]

    Albert F J, Emley N C, Myers E B, Ralph D C, Buhrman R A 2002 Phys. Rev. Lett. 89 226802Google Scholar

    [28]

    Mucciolo E R, Chamon C, Marcus C M 2002 Phys. Rev. Lett. 89 146802Google Scholar

    [29]

    Beach G S D, Knutson C, Nistor C, Tsoi M, Erskine J L 2006 Phys. Rev. Lett. 97 057203Google Scholar

    [30]

    Bertotti G, Serpico C, Mayergoyz I D, Magni A, Aquino M, Bonin R 2005 Phys. Rev. Lett. 94 127206Google Scholar

    [31]

    Garcia-Sanchez F, Borys P, Soucaille R, Adam J P, Stamps R L, Kim J V 2015 Phys. Rev. Lett. 114 247206Google Scholar

    [32]

    Katine J A, Albert F J, Buhrman R A, Myers E B, Ralph D C 2000 Phys. Rev. Lett. 84 3149Google Scholar

    [33]

    Tsoi M, Jansen A G M, Bass J, Chiang W C, Seck M, Tsoi V, Wyder P 1998 Phys. Rev. Lett. 80 4281Google Scholar

    [34]

    He P B, Liu W M 2005 Phys. Rev. B 72 064410Google Scholar

    [35]

    Li Z D, He P B, Liu W M 2014 Chin. Phys. B 23 117502Google Scholar

    [36]

    Tsoi M, Tsoi V, Bass J, Jansen A G M, Wyder P 2002 Phys. Rev. Lett. 89 246803Google Scholar

    [37]

    Tserkovnyak Y, Brataas A, Bauer G E W 2002 Phys. Rev. Lett. 88 117601Google Scholar

    [38]

    Li Z D, Li Q Y, He P B, Liang J Q, Liu W M, Fu G S 2010 Phys. Rev. A 81 015602Google Scholar

    [39]

    Freimuth F, Blugel S, Mokrousov Y 2014 Phys. Rev. B 90 174423Google Scholar

    [40]

    Santos T S, Lee J S, Migdal P, Lekshmi I C, Satpati B, Moodera J S 2007 Phys. Rev. Lett. 98 016601Google Scholar

    [41]

    Li Z, Zhang S 2004 Phys. Rev. Lett. 92 207203Google Scholar

    [42]

    Kasai S, Nakatani Y, Kobayashi K, Kohno H, Ono T 2006 Phys. Rev. Lett. 97 107204Google Scholar

    [43]

    Kasai S, Fischer P, Im M Y, Yamada K, Nakatani Y, Kobayashi K, Kohno H, Ono T 2008 Phys. Rev. Lett. 101 237203; Sugimoto S, Fukuma Y, Otani Y C 2011 IEEI. T. Magn. 47 2951

    [44]

    Yamada K, Kasai S, Nakatani Y, Kobayashi K, Kohno H, Thiaville A, Ono T 2007 Nat. Mater. 6 270; Moriya R, Thomas L, Hayashi M, Bazaliy Y B, Rettner C, Parkin S S P 2008 Nat. Phys. 4 368

    [45]

    Zhao L C, Ling L 2016 J. Opt. Soc. Am. B 33 850Google Scholar

    [46]

    Liu C, Yang Z Y, Zhao L C, Yang W L 2015 Phys. Rev. E 91 022904Google Scholar

    [47]

    Duan L, Zhao L C, Xu W H 2017 Phys. Rev. E 95 042212Google Scholar

    [48]

    Wang L, X Wuan, Zhang H Y 2018 Phys. Lett. A 382 2650Google Scholar

    [49]

    Wang L, Liu C, Wu X, Wang X, Sun W R 2018 Nonlinear Dyn. 94 977Google Scholar

    [50]

    Zakharov V E, Gelash A A 2013 Phys. Rev. Lett. 111 054101Google Scholar

    [51]

    Gelash A A, Zakharov V E 2014 Nonlinearity. 27 R1Google Scholar

    [52]

    Yan P, Wang X S, Wang X R 2011 Phys. Rev. Lett. 107 177207Google Scholar

    [53]

    Zhao F, Li Z D, Li Q Y, Wen L, Fu G S, Liu W M 2012 Ann. Phys. 327 2085Google Scholar

    [54]

    Li Z D, Li Q Y, Xu T F, He P B 2016 Phys. Rev. E 94 042220Google Scholar

    [55]

    Li Q Y, Li Z D, He P B, Song W W, Fu G S 2010 Can. J. Phys. 88 9

    [56]

    Hasegawa A 1984 Opt. Lett. 9 288; Tai K, Tomita A, Jewell J L, Hasegawa A 1986 Appl. Phys. Lett. 49 236

    [57]

    Akhmediev N N 2001 Nature. 413 267; Van Simaeys G, Emplit P, Haelterman M 2001 Phys. Rev. Lett. 87 033902; Mussot A, Kudlinski A, Droques M, Szriftgiser P, Akhmediev N 2014 Phys. Rev. X 4 011054

    [58]

    Zhang H Q, Tian B, Xing L, Meng X H 2010 Physica A 389 367Google Scholar

    [59]

    Matveev V B, Salli M A 1991 Darboux Transformations and Solitons, Vol. 5 (Berlin: Springer) pp7−15

    [60]

    谷超豪, 胡和生, 周子翔 2005 孤立子理论中的达布变换及其几何应用(第二版)(上海: 上海科学技术出版社)第18−24页

    Gu C H, Hu H S, Zhou Z X 2005 Darboux Transformation in Soliton Theory and Its Geometric Applications (Shanghai: Scientific and Technical Publishers) pp18−24 (in Chinese).

    [61]

    Li Z D, Wu X, Li Q Y, He P B 2016 Chin. Phys. B 25 010507Google Scholar

    [62]

    Li Z D, Huo C Z, Li Q Y, He P B, Xu T F 2018 Chin. Phys. B 27 040505Google Scholar

    [63]

    Ho T L 1998 Phys. Rev. Lett. 81 742; Law C K, Ohmi T, Machida K, 1998 J. Phys. Soc. Jpn. 67 1822; Law C K, Pu H, Bigelow N P 1998 Phys. Rev. Lett. 81 5257

    [64]

    Pu H, Zhang W P, Meystre P 2001 Phys. Rev. Lett. 87 140405Google Scholar

    [65]

    Li Z D, He P B, Li L, Liang J Q, Liu W M 2005 Phys. Rev. A 71 053611Google Scholar

  • 图 1  方程(3)在$\mu \to {A_{\rm{s}}}{k_{\rm{s}}}, \nu = {k_{\rm{s}}}\sqrt {1 - A_{\rm{s}}^2} $的极限条件下, 磁化分量${m_3}$的渐近过程, 参数如下: As = 0.9, ks = 1 (a) μ = 0.82; (b) μ = 0.89; (c) μ = 0.89999; (d) μ = 1.1; (e) μ = 0.96; (f) μ = 0.9001

    Fig. 1.  The asymptotic processes of the magnetic component ${m_3}$ in the limit processes $\mu \to {A_{\rm{s}}}{k_{\rm{s}}}$ and $\nu = {k_{\rm{s}}}\sqrt {1 - A_{\rm{s}}^2} $ in Eq. (3), where the parameters are as follows: As = 0.9, ks = 1: (a) μ = 0.82; (b) μ = 0.89; (c) μ = 0.89999; (d) μ = 1.1; (e) μ = 0.96; (f) μ = 0.9001, respectively.

    图 2  方程(3)和(7)中磁化强度${{m}} = \left( {{m_1}, {m_2}, {m_3}} \right)$的怪波演化图, 即(a)−(c)为亮怪波, (d)−(f)为暗怪波. 参数: ${A_{\rm{s}}} = \sqrt 3 /2, {k_{\rm{s}}} = 1.5, \nu = {k_{\rm{s}}}\sqrt {1 - A_{\rm{s}}^2}, \mu = \pm 0.75 \sqrt 3 $, ±分别表示亮怪波和暗怪波[54]

    Fig. 2.  The graphical evolution of rogue waves for the magnetization ${{m}} = \left( {{m_1}, {m_2}, {m_3}} \right)$ in Eq. (3) and (7), i.e., bright rogue waves (a)−(c) and dark rogue waves (d)−(f). The parameters are as follows: ${A_{\rm{s}}} = \sqrt 3 /2, {k_{\rm{s}}} = 1.5, \nu = {k_{\rm{s}}}\sqrt {1 - A_{\rm{s}}^2} $, and $\mu = \pm 0.75 \sqrt 3 $ with the sign $ \pm $ corresponding to the bright and dark rogue waves, respectively[54].

    图 3  方程(3)在As = 1, $\mu \to {A_{\rm{s}}}{k_{\rm{s}}}, \nu = {k_{\rm{s}}}\sqrt {1 - A_{\rm{s}}^2} $的条件下, 磁化分量${{m_3}}$四片花瓣结构的演化图. 参数如下: As = 1, $ {k_{\rm{s}}} = 0.9, \mu = 0.8999$

    Fig. 3.  The formation of magnetic petal in the component ${{m_3}}$ of Eq.(3) under the special condition of As = 1, $ \mu \to {A_{\rm{s}}}{k_{\rm{s}}}, \nu = {k_{\rm{s}}}\sqrt {1 - A_{\rm{s}}^2}$. The parameters are as follows: ${A_{\rm{s}}} = 1, {k_{\rm{s}}} = 0.9, \mu = 0.8999$.

    图 4  不同的参数${\mu _1}$下的磁振子密度分布图[53], 范围从0.09到0.29间隔0.05. 插图为怪波形成时的磁振子密度. 其余参数为${A_{\rm{c}}} = 0.2, {A_{\rm{J}}} = {k_c} = 0.1$

    Fig. 4.  The magnon density distribution against the background for the different parameter ${\mu _1}$, which ranges from 0.09 to 0.29 in 0.05 steps[53]. The inset figure is the magnon density distribution against the background for the excited formation of magnetic rogue wave. Other parameters are ${A_{\rm{c}}} = 0.2, {A_{\rm{J}}} = {k_{\rm{c}}} = 0.1$.

    图 5  (a)−(e)不同电流值激发怪波在区域$\left( {x, t} \right)$的分布图[53], 电流从0到0.8, 间隔为0.2; (f)不同电流怪波形成时的图形, 插图为磁振子积聚的最大时情况. 临界电流${A_{\rm{J}}} = 2{k_{\rm{c}}}$, 其它参数${A_{\rm{c}}} = {k_{\rm{c}}} = 0.2$

    Fig. 5.  (a)−(e) The formation region in space $\left( {x, t} \right)$ for magnetic rogue wave with different current[53]. The parameter ${A_J}$ ranges form 0 to 0.8 in 0.2 steps; (f) The nonuniform exchange of magnons between rogue wave and background for the different spin current. The inset figure in (f) denotes the maximal accumulation (or dissipation) process for the critical current value${A_{\rm{J}}} = 2{k_{\rm{c}}}$. Other parameters are ${A_{\rm{c}}} = {k_{\rm{c}}} = 0.2$.

  • [1]

    Bu K M, Kwon H Y, Kang S P, Kim H J, Won C 2013 J. Magn. Magn. Mater. 343 32Google Scholar

    [2]

    Moon J H, Seo S M, Lee K J, Kim K W, Ryu J, Lee H W, McMichael R D, Stiles M D 2013 Phys. Rev. B 88 184404Google Scholar

    [3]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106Google Scholar

    [4]

    Rohart S, Thiaville A 2013 Phys. Rev. B 88 184422Google Scholar

    [5]

    Robler U K, Bogdanov A N, Pfleiderer C 2006 Nature 442 797Google Scholar

    [6]

    Allwood D A, Xiong G, Faulkner C C, Atkinson D, Petit D, Cowburn R P 2005 Science 309 1688Google Scholar

    [7]

    Parkin S S P, Hayashi M, Thomas L 2008 Science 320 190Google Scholar

    [8]

    Li Z D, Hu Y C, He P B, Sun L L 2018 Chin. Phys. B 27 077505Google Scholar

    [9]

    He P B, Xie X C, Liu W M 2005 Phys. Rev. B 72 172411Google Scholar

    [10]

    Tretiakov O A, Liu Y, Abanov Ar 2012 Phys. Rev. Lett. 108 247201Google Scholar

    [11]

    Li Q Y, Zhao F, He P B, Li Z D 2015 Chin. Phys. B 24 037508Google Scholar

    [12]

    Kosevich A M, Ivanov B A, Kovalev A S 1990 Phys. Rep. 194 117Google Scholar

    [13]

    Mikeska H J, Steiner M 1991 Adv. Phys. 40 191Google Scholar

    [14]

    Haazen P P J, Mure E, Franken J H, Lavrijsen R, H. Swagten J M, Koopmans B 2013 Nat. Mater. 12 299Google Scholar

    [15]

    Miron I M, Gaudin G, Auffret S, Rodmacq B, Schuhl A, Pizzini S, Vogel J, Gambardella P 2010 Nat. Mater. 9 230Google Scholar

    [16]

    Di K, Zhang V L, Lim H S, Ng S C, Kuok M H, Yu J, Yoon J, Qiu X, Yang H 2015 Phys. Rev. Lett. 114 047201Google Scholar

    [17]

    Wang W W, Albert M, Beg M, Bisotti M A, Chernyshenko D 2015 Phys. Rev. Lett. 114 087203Google Scholar

    [18]

    Li Z D, Cui H, Li Q Y, He P B 2018 Ann. Phys. 388 390Google Scholar

    [19]

    Chesi S, Coish W A 2015 Phys. Rev. B 91 245306Google Scholar

    [20]

    Li Z D, Liu F, Li Q Y, He P B 2015 J. Appl. Phys. 117 173906Google Scholar

    [21]

    Pfleiderer C, Julian S R, Lonzarich G G 2001 Nature 414 427Google Scholar

    [22]

    Uchida M, Onose Y, Matsui Y, Tokura Y 2006 Science 311 359Google Scholar

    [23]

    Meckler S, Mikuszeit N, Preßler A, Vedmedenko E Y, Pietzsch O, Wiesendanger R 2009 Phys. Rev. Lett. 103 157201Google Scholar

    [24]

    Moriya T 1960 Phys.Rev. 120 91Google Scholar

    [25]

    Zakharov D V, Deisenhofer J 2006 Phys. Rev. B 73 094452Google Scholar

    [26]

    Gangadharaiah S, Sun J M, Starykh O A 2008 Phys. Rev. B 78 054436Google Scholar

    [27]

    Albert F J, Emley N C, Myers E B, Ralph D C, Buhrman R A 2002 Phys. Rev. Lett. 89 226802Google Scholar

    [28]

    Mucciolo E R, Chamon C, Marcus C M 2002 Phys. Rev. Lett. 89 146802Google Scholar

    [29]

    Beach G S D, Knutson C, Nistor C, Tsoi M, Erskine J L 2006 Phys. Rev. Lett. 97 057203Google Scholar

    [30]

    Bertotti G, Serpico C, Mayergoyz I D, Magni A, Aquino M, Bonin R 2005 Phys. Rev. Lett. 94 127206Google Scholar

    [31]

    Garcia-Sanchez F, Borys P, Soucaille R, Adam J P, Stamps R L, Kim J V 2015 Phys. Rev. Lett. 114 247206Google Scholar

    [32]

    Katine J A, Albert F J, Buhrman R A, Myers E B, Ralph D C 2000 Phys. Rev. Lett. 84 3149Google Scholar

    [33]

    Tsoi M, Jansen A G M, Bass J, Chiang W C, Seck M, Tsoi V, Wyder P 1998 Phys. Rev. Lett. 80 4281Google Scholar

    [34]

    He P B, Liu W M 2005 Phys. Rev. B 72 064410Google Scholar

    [35]

    Li Z D, He P B, Liu W M 2014 Chin. Phys. B 23 117502Google Scholar

    [36]

    Tsoi M, Tsoi V, Bass J, Jansen A G M, Wyder P 2002 Phys. Rev. Lett. 89 246803Google Scholar

    [37]

    Tserkovnyak Y, Brataas A, Bauer G E W 2002 Phys. Rev. Lett. 88 117601Google Scholar

    [38]

    Li Z D, Li Q Y, He P B, Liang J Q, Liu W M, Fu G S 2010 Phys. Rev. A 81 015602Google Scholar

    [39]

    Freimuth F, Blugel S, Mokrousov Y 2014 Phys. Rev. B 90 174423Google Scholar

    [40]

    Santos T S, Lee J S, Migdal P, Lekshmi I C, Satpati B, Moodera J S 2007 Phys. Rev. Lett. 98 016601Google Scholar

    [41]

    Li Z, Zhang S 2004 Phys. Rev. Lett. 92 207203Google Scholar

    [42]

    Kasai S, Nakatani Y, Kobayashi K, Kohno H, Ono T 2006 Phys. Rev. Lett. 97 107204Google Scholar

    [43]

    Kasai S, Fischer P, Im M Y, Yamada K, Nakatani Y, Kobayashi K, Kohno H, Ono T 2008 Phys. Rev. Lett. 101 237203; Sugimoto S, Fukuma Y, Otani Y C 2011 IEEI. T. Magn. 47 2951

    [44]

    Yamada K, Kasai S, Nakatani Y, Kobayashi K, Kohno H, Thiaville A, Ono T 2007 Nat. Mater. 6 270; Moriya R, Thomas L, Hayashi M, Bazaliy Y B, Rettner C, Parkin S S P 2008 Nat. Phys. 4 368

    [45]

    Zhao L C, Ling L 2016 J. Opt. Soc. Am. B 33 850Google Scholar

    [46]

    Liu C, Yang Z Y, Zhao L C, Yang W L 2015 Phys. Rev. E 91 022904Google Scholar

    [47]

    Duan L, Zhao L C, Xu W H 2017 Phys. Rev. E 95 042212Google Scholar

    [48]

    Wang L, X Wuan, Zhang H Y 2018 Phys. Lett. A 382 2650Google Scholar

    [49]

    Wang L, Liu C, Wu X, Wang X, Sun W R 2018 Nonlinear Dyn. 94 977Google Scholar

    [50]

    Zakharov V E, Gelash A A 2013 Phys. Rev. Lett. 111 054101Google Scholar

    [51]

    Gelash A A, Zakharov V E 2014 Nonlinearity. 27 R1Google Scholar

    [52]

    Yan P, Wang X S, Wang X R 2011 Phys. Rev. Lett. 107 177207Google Scholar

    [53]

    Zhao F, Li Z D, Li Q Y, Wen L, Fu G S, Liu W M 2012 Ann. Phys. 327 2085Google Scholar

    [54]

    Li Z D, Li Q Y, Xu T F, He P B 2016 Phys. Rev. E 94 042220Google Scholar

    [55]

    Li Q Y, Li Z D, He P B, Song W W, Fu G S 2010 Can. J. Phys. 88 9

    [56]

    Hasegawa A 1984 Opt. Lett. 9 288; Tai K, Tomita A, Jewell J L, Hasegawa A 1986 Appl. Phys. Lett. 49 236

    [57]

    Akhmediev N N 2001 Nature. 413 267; Van Simaeys G, Emplit P, Haelterman M 2001 Phys. Rev. Lett. 87 033902; Mussot A, Kudlinski A, Droques M, Szriftgiser P, Akhmediev N 2014 Phys. Rev. X 4 011054

    [58]

    Zhang H Q, Tian B, Xing L, Meng X H 2010 Physica A 389 367Google Scholar

    [59]

    Matveev V B, Salli M A 1991 Darboux Transformations and Solitons, Vol. 5 (Berlin: Springer) pp7−15

    [60]

    谷超豪, 胡和生, 周子翔 2005 孤立子理论中的达布变换及其几何应用(第二版)(上海: 上海科学技术出版社)第18−24页

    Gu C H, Hu H S, Zhou Z X 2005 Darboux Transformation in Soliton Theory and Its Geometric Applications (Shanghai: Scientific and Technical Publishers) pp18−24 (in Chinese).

    [61]

    Li Z D, Wu X, Li Q Y, He P B 2016 Chin. Phys. B 25 010507Google Scholar

    [62]

    Li Z D, Huo C Z, Li Q Y, He P B, Xu T F 2018 Chin. Phys. B 27 040505Google Scholar

    [63]

    Ho T L 1998 Phys. Rev. Lett. 81 742; Law C K, Ohmi T, Machida K, 1998 J. Phys. Soc. Jpn. 67 1822; Law C K, Pu H, Bigelow N P 1998 Phys. Rev. Lett. 81 5257

    [64]

    Pu H, Zhang W P, Meystre P 2001 Phys. Rev. Lett. 87 140405Google Scholar

    [65]

    Li Z D, He P B, Li L, Liang J Q, Liu W M 2005 Phys. Rev. A 71 053611Google Scholar

  • [1] 姚慧, 张海强, 熊玮玥. 椭圆函数背景下Gerdjikov-Ivanov方程的多呼吸子. 物理学报, 2024, 73(4): 040201. doi: 10.7498/aps.73.20231590
    [2] 王日兴, 曾逸涵, 赵婧莉, 李连, 肖运昌. 自旋轨道矩协助自旋转移矩驱动磁化强度翻转. 物理学报, 2023, 72(8): 087202. doi: 10.7498/aps.72.20222433
    [3] 金冬月, 曹路明, 王佑, 贾晓雪, 潘永安, 周钰鑫, 雷鑫, 刘圆圆, 杨滢齐, 张万荣. 基于工艺偏差的自旋转移矩辅助压控磁各向异性磁隧道结电学模型及其应用研究. 物理学报, 2022, 71(10): 107501. doi: 10.7498/aps.71.20211700
    [4] 段亮, 刘冲, 赵立臣, 杨战营. 基本非线性波与调制不稳定性的精确对应. 物理学报, 2020, 69(1): 010501. doi: 10.7498/aps.69.20191385
    [5] 王日兴, 李雪, 李连, 肖运昌, 许思维. 三端磁隧道结的稳定性分析. 物理学报, 2019, 68(20): 207201. doi: 10.7498/aps.68.20190927
    [6] 吕刚, 张红, 侯志伟. 具有倾斜极化层的自旋阀结构中磁翻转以及磁振荡模式的微磁模拟. 物理学报, 2018, 67(17): 177502. doi: 10.7498/aps.67.20180947
    [7] 裴世鑫, 徐辉, 孙婷婷, 李金花. 正三角型三芯光纤中等腰对称平面波的调制不稳定性分析. 物理学报, 2018, 67(5): 054203. doi: 10.7498/aps.67.20171650
    [8] 张楠, 张保, 杨美音, 蔡凯明, 盛宇, 李予才, 邓永城, 王开友. 电学方法调控磁化翻转和磁畴壁运动的研究进展. 物理学报, 2017, 66(2): 027501. doi: 10.7498/aps.66.027501
    [9] 陈海军. 变分法研究二维光晶格中玻色-爱因斯坦凝聚的调制不稳定性. 物理学报, 2015, 64(5): 054702. doi: 10.7498/aps.64.054702
    [10] 王日兴, 肖运昌, 赵婧莉. 垂直磁各向异性自旋阀结构中的铁磁共振. 物理学报, 2014, 63(21): 217601. doi: 10.7498/aps.63.217601
    [11] 陆大全, 胡巍. 强非局域非线性介质中强光导引的弱光呼吸子传输规律研究. 物理学报, 2013, 62(3): 034205. doi: 10.7498/aps.62.034205
    [12] 藤斐, 谢征微. 光晶格中双组分玻色-爱因斯坦凝聚系统的调制不稳定性. 物理学报, 2013, 62(2): 026701. doi: 10.7498/aps.62.026701
    [13] 黄劲松, 陈海峰, 谢征微. 光晶格中双组分偶极玻色-爱因斯坦凝聚体的调制不稳定性. 物理学报, 2008, 57(6): 3435-3439. doi: 10.7498/aps.57.3435
    [14] 丁万山, 席 崚, 柳莲花. 基于复Ginzburg-Landau方程的双核光纤中调制不稳定性的仿真研究. 物理学报, 2008, 57(12): 7705-7711. doi: 10.7498/aps.57.7705
    [15] 戴小玉, 文双春, 项元江. 色散磁导率对异向介质中的调制不稳定性的影响. 物理学报, 2008, 57(1): 186-193. doi: 10.7498/aps.57.186
    [16] 贾维国, 史培明, 杨性愉, 张俊萍, 樊国梁. 高斯变迹布拉格光纤光栅中的调制不稳定性. 物理学报, 2007, 56(9): 5281-5286. doi: 10.7498/aps.56.5281
    [17] 赵兴东, 谢征微, 张卫平. 玻色凝聚的原子自旋链中的非线性自旋波. 物理学报, 2007, 56(11): 6358-6366. doi: 10.7498/aps.56.6358
    [18] 贾维国, 史培明, 杨性愉, 张俊萍, 樊国梁. 保偏光纤中相近频率传输区域的调制不稳定性. 物理学报, 2006, 55(9): 4575-4581. doi: 10.7498/aps.55.4575
    [19] 徐 权, 田 强. 一维分子链中激子与声子的相互作用和呼吸子解 . 物理学报, 2004, 53(9): 2811-2815. doi: 10.7498/aps.53.2811
    [20] 李齐良, 朱海东, 唐向宏, 李承家, 王小军, 林理彬. 有源光放大器链路中交叉相位调制的不稳定性. 物理学报, 2004, 53(12): 4194-4201. doi: 10.7498/aps.53.4194
计量
  • 文章访问数:  8692
  • PDF下载量:  135
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-06
  • 修回日期:  2019-12-02
  • 上网日期:  2019-12-17
  • 刊出日期:  2020-01-05

/

返回文章
返回