搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于银纳米线电极-rGO敏感材料的柔性NO2气体传感器

李闯 李伟伟 蔡理 谢丹 刘保军 向兰 杨晓阔 董丹娜 刘嘉豪 陈亚博

引用本文:
Citation:

基于银纳米线电极-rGO敏感材料的柔性NO2气体传感器

李闯, 李伟伟, 蔡理, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 陈亚博

Flexible nitrogen dioxide gas sensor based on reduced graphene oxide sensing material using silver nanowire electrode

Li Chuang, Li Wei-Wei, Cai Li, Xie Dan, Liu Bao-Jun, Xiang Lan, Yang Xiao-Kuo, Dong Dan-Na, Liu Jia-Hao, Chen Ya-Bo
PDF
HTML
导出引用
  • 使用银纳米线作为材料制备柔性叉指电极, 用还原氧化石墨烯(reduced graphene oxide, rGO)作为气体敏感材料制备出柔性气体传感器, 并研究其对二氧化氮气体的响应特性以及柔韧性能. 实验结果表明, 制备的以银纳米线作为电极的rGO气体传感器可以实现室温下对浓度为5—50 ppm (1 ppm = 10–6)的NO2气体的检测, 对50 ppm的NO2的响应能够达到1.19, 传感器的重复性较好, 恢复率能够保持在76%以上, 传感器的灵敏度是0.00281 ppm–1, 对浓度为5 ppm的NO2气体的响应时间是990 s, 恢复时间是1566 s. 此外, 传感器在0°—45°的弯曲角度下仍表现出优异的电学特性与气体传感性能, 所制备的器件具有相对稳定的导电性和较好的弯曲耐受性.
    In recent years, flexible gas sensors have aroused wide interest of researchers due to their enormous potential applications in wearable electronic devices. In this paper, a flexible gas sensor is prepared. We use silver nanowires as flexible interdigital electrodes for gas sensors and reduced graphene oxide as gas-sensing materials. We also study its gas sensitivity and flexibility properties such as responsiveness, recovery, and repeatability to nitrogen dioxide. The experimental results show that the silver nanowire flexible electrode and the reduced graphene oxide gas sensor prepared can detect the NO2 gas with a concentration of 5—50 ppm at room temperature. The response (Ra/Rg) of the sensor to 50 ppm NO2 is 1.19. It demonstrates high response ability and repeatability. The recovery rate can be kept above 76%. The sensitivity of the sensor is 0.00281 ppm-1. The response time and recovery time of the prepared AgNWs IDE-rGO sensor for 5 ppm NO2 gas are 990 s and 1566 s, respectively. At the same time, the sensor still exhibits excellent gas sensing performance at a bending angle in range from 0° to 45°. The device has relatively stable conductivity and good bending tolerance. The sensing mechanism of the sensor can be attributed to the direct charge transfer between the reduced graphene oxide material and NO2 gas molecules. In addition, the high catalytic activity and excellent conductivity of Ag that is a common catalyst material, may also play an important role in improving the gas sensitivity of reduced graphene oxide materials. Silver nanowires, as a material for interdigital electrodes, provide excellent conductivity for device as well as support for the flexibility of device. It provides the fabricated sensor for good mechanical flexibility. And the gas-sensing performance of the AgNWs IDE-rGO sensor is mainly achieved by the use of reduced oxidized graphene material reduced by hydrazine hydrate. In summary, the silver nanowire flexible electrode and the graphene gas sensor prepared in this work are helpful in realizing the flexibility of the gas sensor. It lays a foundation for the further application of flexible gas sensors and has great application prospects in wearable electronic equipments.
      通信作者: 蔡理, qianglicai@163.com ; 谢丹, xiedan@tsinghua.edu.cn
    • 基金项目: 国家级-国家自然科学基金面上项目(51672154)
      Corresponding author: Cai Li, qianglicai@163.com ; Xie Dan, xiedan@tsinghua.edu.cn
    [1]

    Singh E, Meyyappan M, Nalwa H S 2017 ACS Appl. Mater. Interfaces 9 34544Google Scholar

    [2]

    Gao Z Y, Lou Z, Chen S, Li L, Jiang K, Fu Z L, Han W, Shen G Z 2018 Nano Res. 11 511Google Scholar

    [3]

    Guo Y, Wang T, Chen F, Sun X, Li X, Yu Z, Wan P, Chen X 2016 Nanoscale 8 12073Google Scholar

    [4]

    Li S, Liu A, Yang Z, He J, Wang J, Liu F, Lu H, Yan X, Sun P, Liang X 2019 Sens. Actuator B: Chem. 299 126970Google Scholar

    [5]

    Choi T Y, Hwang BU, Kim BY, Trung T Q, Nam Y H, Kim DN, Eom K, Lee NE 2017 ACS Appl. Mater. Interfaces 9 18022Google Scholar

    [6]

    Qi W Z, Li W W, Sun Y L, Guo J H, Xie D, Cai L, Zhu H W, Xiang L, Ren T L 2019 Nanotechnology 30 345503Google Scholar

    [7]

    Li W W, Teng C J, Sun Y L, Cai L, Xu J L, Sun M X, Li X, Yang X K, Xiang L, Xie D Ren T L 2018 ACS Appl. Mater. Interfaces 10 34485Google Scholar

    [8]

    Khaligh H H, Liew K, Han Y, Abukhdeir N M, Goldthorpe I A 2015 Sol. Energy Mater. Sol. Cells 132 337Google Scholar

    [9]

    Yun C D, Hyun Wook K, Hyung Jin S, Soo K S 2013 Nanoscale 5 977Google Scholar

    [10]

    Yao S, Myers A, Malhotra A, Lin F, Bozkurt A, Muth J F, Zhu Y 2017 Adv. Healthcare Mater 6 1601159Google Scholar

    [11]

    Liu J H, Yang X K, Cui H Q, Wei B, Li C, Chen Y B, Zhang M L, Li C, Dong D N 2019 J. Magn. Magn. Mater. 491 165607Google Scholar

    [12]

    Liu J H, Yang X K, Cui H Q, Wang S, Wei B, Li C, Li C, Dong D N 2019 J. Magn. Magn. Mater. 474 161Google Scholar

    [13]

    Liu J H, Yang X K, Zhang M L, Wei B, Li C, Dong D N, Li C 2019 IEEEElectron Dev. Lett. 40 220Google Scholar

    [14]

    Dong D N, Cai L, Li C, Liu B J, Li C, Liu J H 2019 J. Phys. D: Appl. Phys. 52 295001Google Scholar

    [15]

    Schedin F, Geim A, Morozov S, Hill E, Blake P, Katsnelson M, Novoselov K 2007 Nat. Mater. 6 652Google Scholar

    [16]

    Li W W, Li X, Cai L, Sun Y L, Sun M X, Xie D 2018 J. Nanosci. Nanotechnol. 18 7927Google Scholar

    [17]

    Li W W, Guo J H, Cai L, Qi W Z, Sun Y L, Xu J L, Sun M X, Zhu H W, Xiang L, Xie D, Ren T L 2019 Sens. Actuator B: Chem. 290 443Google Scholar

    [18]

    Dan L, Marc B M, Scott G, Richard B K, Gordon G W 2008 Nat. Nanotechnol. 3 101Google Scholar

    [19]

    Vuong D D, Sakai G, Shimanoe K, Yamazoe N 2005 Sens. Actuator B: Chem. 105 437Google Scholar

    [20]

    Ye Z, Tai H, Xie T, Yuan Z, Liu C, Jiang Y 2016 Sens. Actuator B: Chem. 223 149Google Scholar

    [21]

    Hotovy I, Rehacek V, Siciliano P, Capone S, Spiess L 2002 Thin Solid Films 418 9Google Scholar

    [22]

    Ko K Y, Song JG, Kim Y, Choi T, Shin S, Lee C W, Lee K, Koo J, Lee H, Kim J 2016 ACS nano 10 9287Google Scholar

    [23]

    Chen G, Paronyan T M, Harutyunyan A R 2012 Appl. Phys. Lett. 101 053119Google Scholar

    [24]

    Choi H, Choi J S, Kim J S, Choe J H, Chung K H, Shin J W, Kim J T, Youn D H, Kim K C, Lee J I 2014 Small 10 3685Google Scholar

    [25]

    Chung M G, Kim D H, Lee H M, Kim T, Choi J H, kyun Seo D, Yoo JB, Hong SH, Kang T J, Kim Y H 2012 Sens. Actuator B: Chem. 166 172

    [26]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn JH, Kim P, Choi JY, Hong B H 2009 Nature 457 706Google Scholar

    [27]

    Tjoa V, Jun W, Dravid V, Mhaisalkar S, Mathews N 2011 J. Mater. Chem. 21 15593Google Scholar

  • 图 1  AgNWs IDE-rGO器件的制备过程示意图

    Fig. 1.  Schematic diagram of the fabrication process of the AgNWs IDE-rGO device.

    图 2  (a)银纳米线叉指电极的光学图片; (b)单个电极结构尺寸示意图

    Fig. 2.  (a) Optical image of the AgNWs IDE array on portable stickers; (b) dimensions of the single electrode structure.

    图 3  气敏测试装置示意图

    Fig. 3.  Schematic illustration of the gas sensing test setup.

    图 4  对5—50 ppm NO2的实时响应曲线

    Fig. 4.  Real-time response curves to 5–50 ppm NO2.

    图 5  响应与浓度的关系

    Fig. 5.  Plot of response vs. concentration.

    图 6  恢复率与浓度的关系

    Fig. 6.  Plot of recovery vs. concentration.

    图 7  传感器对15 ppm二氧化氮气体响应的重复性测试

    Fig. 7.  Repeatability of the sensor after exposure to 15 ppm NO2.

    图 8  传感器对5 ppm二氧化氮气体的响应和恢复时间

    Fig. 8.  Response and recovery times of the sensor to 5 ppm NO2.

    图 9  传感器对不同目标气体的选择性

    Fig. 9.  Selectivity of the sensor by exposing the device to different target gases.

    图 10  AgNWs IDE-rGO传感器的柔韧性能测试 (a)器件电阻随弯曲次数的变化; (b)在不同弯曲角度下的响应与浓度的关系

    Fig. 10.  Flexibility of the AgNWs IDE-rGO sensor: (a) Device resistance varies with the bending cycles; (b) plot of response vs concentration at the different bending angles.

  • [1]

    Singh E, Meyyappan M, Nalwa H S 2017 ACS Appl. Mater. Interfaces 9 34544Google Scholar

    [2]

    Gao Z Y, Lou Z, Chen S, Li L, Jiang K, Fu Z L, Han W, Shen G Z 2018 Nano Res. 11 511Google Scholar

    [3]

    Guo Y, Wang T, Chen F, Sun X, Li X, Yu Z, Wan P, Chen X 2016 Nanoscale 8 12073Google Scholar

    [4]

    Li S, Liu A, Yang Z, He J, Wang J, Liu F, Lu H, Yan X, Sun P, Liang X 2019 Sens. Actuator B: Chem. 299 126970Google Scholar

    [5]

    Choi T Y, Hwang BU, Kim BY, Trung T Q, Nam Y H, Kim DN, Eom K, Lee NE 2017 ACS Appl. Mater. Interfaces 9 18022Google Scholar

    [6]

    Qi W Z, Li W W, Sun Y L, Guo J H, Xie D, Cai L, Zhu H W, Xiang L, Ren T L 2019 Nanotechnology 30 345503Google Scholar

    [7]

    Li W W, Teng C J, Sun Y L, Cai L, Xu J L, Sun M X, Li X, Yang X K, Xiang L, Xie D Ren T L 2018 ACS Appl. Mater. Interfaces 10 34485Google Scholar

    [8]

    Khaligh H H, Liew K, Han Y, Abukhdeir N M, Goldthorpe I A 2015 Sol. Energy Mater. Sol. Cells 132 337Google Scholar

    [9]

    Yun C D, Hyun Wook K, Hyung Jin S, Soo K S 2013 Nanoscale 5 977Google Scholar

    [10]

    Yao S, Myers A, Malhotra A, Lin F, Bozkurt A, Muth J F, Zhu Y 2017 Adv. Healthcare Mater 6 1601159Google Scholar

    [11]

    Liu J H, Yang X K, Cui H Q, Wei B, Li C, Chen Y B, Zhang M L, Li C, Dong D N 2019 J. Magn. Magn. Mater. 491 165607Google Scholar

    [12]

    Liu J H, Yang X K, Cui H Q, Wang S, Wei B, Li C, Li C, Dong D N 2019 J. Magn. Magn. Mater. 474 161Google Scholar

    [13]

    Liu J H, Yang X K, Zhang M L, Wei B, Li C, Dong D N, Li C 2019 IEEEElectron Dev. Lett. 40 220Google Scholar

    [14]

    Dong D N, Cai L, Li C, Liu B J, Li C, Liu J H 2019 J. Phys. D: Appl. Phys. 52 295001Google Scholar

    [15]

    Schedin F, Geim A, Morozov S, Hill E, Blake P, Katsnelson M, Novoselov K 2007 Nat. Mater. 6 652Google Scholar

    [16]

    Li W W, Li X, Cai L, Sun Y L, Sun M X, Xie D 2018 J. Nanosci. Nanotechnol. 18 7927Google Scholar

    [17]

    Li W W, Guo J H, Cai L, Qi W Z, Sun Y L, Xu J L, Sun M X, Zhu H W, Xiang L, Xie D, Ren T L 2019 Sens. Actuator B: Chem. 290 443Google Scholar

    [18]

    Dan L, Marc B M, Scott G, Richard B K, Gordon G W 2008 Nat. Nanotechnol. 3 101Google Scholar

    [19]

    Vuong D D, Sakai G, Shimanoe K, Yamazoe N 2005 Sens. Actuator B: Chem. 105 437Google Scholar

    [20]

    Ye Z, Tai H, Xie T, Yuan Z, Liu C, Jiang Y 2016 Sens. Actuator B: Chem. 223 149Google Scholar

    [21]

    Hotovy I, Rehacek V, Siciliano P, Capone S, Spiess L 2002 Thin Solid Films 418 9Google Scholar

    [22]

    Ko K Y, Song JG, Kim Y, Choi T, Shin S, Lee C W, Lee K, Koo J, Lee H, Kim J 2016 ACS nano 10 9287Google Scholar

    [23]

    Chen G, Paronyan T M, Harutyunyan A R 2012 Appl. Phys. Lett. 101 053119Google Scholar

    [24]

    Choi H, Choi J S, Kim J S, Choe J H, Chung K H, Shin J W, Kim J T, Youn D H, Kim K C, Lee J I 2014 Small 10 3685Google Scholar

    [25]

    Chung M G, Kim D H, Lee H M, Kim T, Choi J H, kyun Seo D, Yoo JB, Hong SH, Kang T J, Kim Y H 2012 Sens. Actuator B: Chem. 166 172

    [26]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn JH, Kim P, Choi JY, Hong B H 2009 Nature 457 706Google Scholar

    [27]

    Tjoa V, Jun W, Dravid V, Mhaisalkar S, Mathews N 2011 J. Mater. Chem. 21 15593Google Scholar

  • [1] 陈进龙, 陶然, 李冲, 张健磊, 付琛, 罗景庭. 基于SnS2/In2O3的气体传感器及其室温下高性能NO2检测. 物理学报, 2024, 73(10): 106801. doi: 10.7498/aps.73.20231554
    [2] 尚修霆, 陈陶, 谌静, 徐荣青. 基于双柔性电极模拟叉指图案电极的液体介电泳研究. 物理学报, 2024, 73(3): 034701. doi: 10.7498/aps.73.20231485
    [3] 樊秦凯, 杨晨光, 胡书新, 徐春华, 李明, 陆颖. 基于热还原氧化石墨烯的单分子表面诱导荧光衰逝技术. 物理学报, 2023, 72(14): 147801. doi: 10.7498/aps.72.20230450
    [4] 李醒龙, 赵浩宇, 武文杰, 蒋卫峰, 郑加金, 张祖兴, 余柯涵, 韦玮. 氧化石墨烯修饰倾斜光纤光栅10–12级重金属离子传感. 物理学报, 2022, 71(5): 050702. doi: 10.7498/aps.71.20211315
    [5] 张改, 谢海妹, 宋海滨, 李晓菲, 张茜, 亢一澜. 不同充放电模式影响还原氧化石墨烯电极储锂性能的实验分析. 物理学报, 2022, 71(6): 066501. doi: 10.7498/aps.71.20211405
    [6] 申茂良, 张岩. 基于压电纳米发电机的柔性传感与能量存储器件. 物理学报, 2020, 69(17): 170701. doi: 10.7498/aps.69.20200784
    [7] 卢群林, 杨伟煌, 熊飞兵, 林海峰, 庄芹芹. 双轴向应变对单层GeSe气体传感特性的影响. 物理学报, 2020, 69(19): 196801. doi: 10.7498/aps.69.20200539
    [8] 李闯, 蔡理, 李伟伟, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 李成, 危波. 水合肼还原的氧化石墨烯吸附NO2的实验研究. 物理学报, 2019, 68(11): 118102. doi: 10.7498/aps.68.20182242
    [9] 赵博硕, 强晓永, 秦岳, 胡明. 氧化钨纳米线气敏传感器的制备及其室温NO2敏感特性. 物理学报, 2018, 67(5): 058101. doi: 10.7498/aps.67.20172236
    [10] 乔志星, 秦成兵, 贺文君, 弓亚妮, 张晓荣, 张国峰, 陈瑞云, 高岩, 肖连团, 贾锁堂. 通过光致还原调制氧化石墨烯寿命并用于微纳图形制备. 物理学报, 2018, 67(6): 066802. doi: 10.7498/aps.67.20172331
    [11] 王文慧, 张孬. 银纳米线表面等离激元波导的能量损耗. 物理学报, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [12] 陈浩, 彭同江, 刘波, 孙红娟, 雷德会. 还原温度对氧化石墨烯结构及室温下H2敏感性能的影响. 物理学报, 2017, 66(8): 080701. doi: 10.7498/aps.66.080701
    [13] 刘学文, 朱重阳, 董辉, 徐峰, 孙立涛. 二硒化铁/还原氧化石墨烯的制备及其在染料敏化太阳能电池中的应用. 物理学报, 2016, 65(11): 118802. doi: 10.7498/aps.65.118802
    [14] 杨晶晶, 李俊杰, 邓伟, 程骋, 黄铭. 单层石墨烯带传输模式及其对气体分子振动谱的传感特性研究. 物理学报, 2015, 64(19): 198102. doi: 10.7498/aps.64.198102
    [15] 袁林, 敬鹏, 刘艳华, 徐振海, 单德彬, 郭斌. 多晶银纳米线拉伸变形的分子动力学模拟研究. 物理学报, 2014, 63(1): 016201. doi: 10.7498/aps.63.016201
    [16] 刘研研, 董磊, 武红鹏, 郑华丹, 马维光, 张雷, 尹王保, 贾锁堂. 全光型石英增强光声光谱. 物理学报, 2013, 62(22): 220701. doi: 10.7498/aps.62.220701
    [17] 石立超, 张巍, 金杰, 黄翊东, 彭江得. 中红外空心Bragg光纤的制备及在气体传感中的应用. 物理学报, 2012, 61(5): 054214. doi: 10.7498/aps.61.054214
    [18] 袁健美, 毛宇亮. 氢化与非氢化石墨烯纳米条带的密度泛函研究. 物理学报, 2011, 60(10): 103103. doi: 10.7498/aps.60.103103
    [19] 侯建平, 宁韬, 盖双龙, 李鹏, 郝建苹, 赵建林. 基于光子晶体光纤模间干涉的折射率测量灵敏度分析. 物理学报, 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
    [20] 袁长迎, 炎正馨, 蒙瑰, 李智慧, 尚丽平. 高浓度气体共振光声光谱信号饱和特性研究. 物理学报, 2010, 59(10): 6908-6913. doi: 10.7498/aps.59.6908
计量
  • 文章访问数:  11081
  • PDF下载量:  237
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-14
  • 修回日期:  2019-12-12
  • 刊出日期:  2020-03-05

/

返回文章
返回