搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅(001)图形衬底上锗硅纳米线的定位生长

高飞 冯琦 王霆 张建军

引用本文:
Citation:

硅(001)图形衬底上锗硅纳米线的定位生长

高飞, 冯琦, 王霆, 张建军

Controllable growth of GeSi nanowires on trench patterned Si(001) substrate

Gao Fei, Feng Qi, Wang Ting, Zhang Jian-Jun
PDF
HTML
导出引用
  • 纳米线的定位生长是实现纳米线量子器件寻址和集成的前提. 结合自上而下的纳米加工和自下而上的自组装技术, 通过分子束外延生长方法, 在具有周期性凹槽结构的硅(001)图形衬底上首先低温生长硅锗薄膜然后升温退火, 实现了有序锗硅纳米线在凹槽中的定位生长, 锗硅纳米线的表面晶面为(105)晶面. 详细研究了退火温度、硅锗的比例及图形周期对纳米线形成与否, 以及纳米线尺寸的影响.
    Controllable growth of nanowires is a prerequisite for addressability and scalability of nanowire quantum devices. By combining top-down nanofabrication and bottom-up self-assembly, site-controlled GeSi nanowires with two (105) facets can be grown on Si (001) substrate with pre-patterned trenches. Trenches along the [100] or [010] crystallographic direction with 60 nm in width and 6 nm in height are fabricated on Si substrate by electron beam lithography and reactive ion etching. Subsequently, a 60-nm-thick Si buffer layer is grown at 330–400 ℃ on the patterned substrate to improve the surface quality. The facets at the tip of the trenches transform into (11n) after depositing the Si buffer layer. Self-organized GeSi nanowires form inside the trenches by depositing the 6-nm-thick Si67Ge33 film at 450 ℃ followed by 1 h annealing at 510 ℃. The GeSi nanowires are (105)-faceted with an average height of approximately 7 nm. Furthermore, we systematically study the influence of annealing temperature, Ge concentration and pattern period on the formation of site-controllable GeSi nanowire on a patterned Si (001) substrate. The GeSi nanowires can be formed only inside the trenches within a specific annealing temperature ranging from 500 ℃ to 520 ℃. It is also discovered that GeSi nanowires are very sensitive to Ge concentration, as they cannot form at lower Ge concentration due to a large nucleation energy barrier. In contrast, high Ge concentration will lead to the discontinuity of nanowires caused by higher atomic diffusion barrier. The generated GeSi nanowires in the trenches exhibit similar dimensions at different pattern periods, which indicates that the growth process is thermodynamically determined. Overall, we realize the controllable growth of the GeSi nanowires, while the length of nanowires can reach the millimeter even centimeter scales, replying on the patterned trench length. The above results offer a controllable growth method of the Ge nanowires, which could potentially lead to the scalability of the Ge quantum devices on Si substrates.
      通信作者: 张建军, jjzhang@iphy.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2016YFA0301701)和国家自然科学基金(批准号: 11574356, 11434010)资助的课题
      Corresponding author: Zhang Jian-Jun, jjzhang@iphy.ac.cn
    • Funds: Project supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2016YFA0301701) and the National Nature Science Foundation of China (Grant Nos. 11574356, 11434010)
    [1]

    Loss D, diVincenzo D P 1998 Phys. Rev. A 57 120Google Scholar

    [2]

    Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P, Gossard A C 2005 Science 309 2180Google Scholar

    [3]

    Nowack K C, Koppens F H L, Nazarov Y V, Vandersypen L M K 2007 Science 318 1430Google Scholar

    [4]

    Elzerman J M, Hanson R, Greidanus J S, Willems van Beveren L H, de Franceschi S, Vandersypen L M K, Tarucha S, Kouwenhoven L P 2003 Phys. Rev. B 67 161308Google Scholar

    [5]

    Bluhm H, Foletti S, Neder I, Rudner M, Mahalu D, Umansky V, Yacoby A 2011 Nat. Phys. 7 109Google Scholar

    [6]

    Wang J Y, Huang S Y, Huang G Y, Pan D, Zhao J H, Xu H Q 2017 Nano Lett. 17 4158Google Scholar

    [7]

    Koppens F, Buizert C, Tielrooij K J, Vink I T, Nowack K C, Meunier T, Kouwenhoven L P, Vandersypen L 2006 Nature 442 766Google Scholar

    [8]

    Hanson R, Kouwenhoven L P, Petta J R, Tarucha S, Vandersypen L M K 2007 Rev. Mod. Phys. 79 1217Google Scholar

    [9]

    Khaetskii A V, Loss D, Glazman L 2002 Phys. Rev. Lett. 88 186802Google Scholar

    [10]

    Zhong Z, Fang Y, Lu W, Lieber C M 2005 Nano Lett. 5 1143Google Scholar

    [11]

    Katsaros G, Spathis P, Stoffel M, Fournel F, Mongillo M, Bouchiat V, Lefloch F, Rastelli A, Schmidt O G, de Franceschi S 2010 Nat. Nanotech. 5 458Google Scholar

    [12]

    Hu Y J, Churchill H O H, Reilly D J, Xiang J, Lieber C M, Marcus C M 2007 Nat. Nanotech. 2 622Google Scholar

    [13]

    Higginbotham A P, Larsen T W, Yao J, Yan H, Lieber C M, Marcus C M, Kuemmeth F 2014 Nano Lett. 14 3582Google Scholar

    [14]

    Li S X, Li Y, Gao F, Xu G, Li H O, Cao G, Xiao M, Wang T, Zhang J J, Guo G P 2017 Appl. Phys. Lett. 110 133105Google Scholar

    [15]

    Kloeffel C, Trif M, Loss D 2011 Phys. Rev. B 84 195314Google Scholar

    [16]

    Maier F, Klinovaja J, Loss D 2014 Phys. Rev. B 90 195421Google Scholar

    [17]

    Watzinger H, Kukučka J, Vukušić L, Gao F, Wang T, Schäffler F, Zhang J J, Katsaros G 2018 Nat. Commun. 9 3902Google Scholar

    [18]

    de Vries F K, Shen J, Skolasinski R J, Nowak M P, Varjas D, Wang L, Wimmer M, Ridderbos J, Zwanenburg F A, Li A, Koelling S, Verheijen M A, Bakkers E P A M, Kouwenhoven L P 2018 Nano Lett. 18 6483Google Scholar

    [19]

    Li W D, Wu W, Williams R S 2012 J. Vac. Sci. Technol. B 30 06F304Google Scholar

    [20]

    Wagner R S, Ellis W C 1964 Appl. Phys. Lett. 4 89Google Scholar

    [21]

    Lauhon L J, Gudiksen M S, Wang D, Lieber C M 2002 Nature 420 57Google Scholar

    [22]

    Zhang J J, Katsaros G, Montalenti F, Scopece D, Rezaev R O, Mickel C, Rellinghaus B, Miglio L, de Franceschi S, Rastelli A, Schmidt O G 2012 Phys. Rev. Lett. 109 085502Google Scholar

    [23]

    Li Y, Li S X, Gao F, Li H O, Xu G, Wang K, Liu D, Cao G, Xiao M, Wang T, Zhang J J, Guo G C, Guo G P 2018 Nano Lett. 18 2091Google Scholar

    [24]

    Xu G, Li Y, Gao F, Li H O, Liu H, Wang K, Cao G, Xiao M, Wang T, Zhang J J, Guo G C, Guo G P 2019 arXiv: 1905.01586v1

    [25]

    Zhang J J, Stoffel M, Rastelli A, Schmidt O G, Jovanović V, Nanver L K, Bauer G 2007 Appl. Phys. Lett. 91 173115Google Scholar

    [26]

    Zhong Z Y, Halilovic A, Fromherz T, Schäffler F, Bauera G 2003 Appl. Phys. Lett. 82 4779Google Scholar

    [27]

    Chen G, Springholz G, Jantsch W, Schäffler F 2011 Appl. Phys. Lett. 99 043103Google Scholar

    [28]

    Du L, Scopece D, Springholz G, Schäffler F, Chen G 2014 Phys. Rev. B 90 075308Google Scholar

    [29]

    Kern W, Puotinen D A 1970 RCA Review 31 187

    [30]

    Eaglesham D J, White A E, Feldman L C, Moriya N, Jacobson D C 1993 Phys. Rev. Lett. 70 1643Google Scholar

    [31]

    Gai Z, Yang W S, Sakurai T, Zhao R G 1999 Phys. Rev. B 59 13009Google Scholar

    [32]

    Zhong Z, Schwinger W, Schäffler F, Bauer G, Vastola G, Montalenti F, Miglio L 2007 Phys. Rev. Lett. 98 176102Google Scholar

    [33]

    Vastola G, Grydlik M, Brehm M, Fromherz T, Bauer G, Boioli F, Miglio L, Montalenti F 2011 Phys. Rev. B. 84 155415Google Scholar

    [34]

    Hu H, Gao H J, Liu F 2008 Phys. Rev. Lett. 101 216102Google Scholar

    [35]

    Zhang J J, Rastelli A, Schmidt O G, Scopece D, Miglio L, Montalenti F 2013 Appl. Phys. Lett. 103 083109Google Scholar

    [36]

    Chen G, Sanduijav B, Matei D, Springholz G, Scopece D, Beck M J, Montalenti F, Miglio L 2012 Phys. Rev. Lett. 108 055503Google Scholar

    [37]

    Jesson D E, Chen K M, Pennycook S J, Thundat T, Warmack R J 1996 Phys. Rev. Lett. 77 1330Google Scholar

    [38]

    Tersoff J, leGoues F K 1994 Phys. Rev. Lett. 72 3570Google Scholar

    [39]

    Shu D J, Liu F, Gong X G 2001 Phys. Rev. B 64 245410Google Scholar

    [40]

    Huang L, Liu F, Gong X G 2004 Phys. Rev. B 70 155320Google Scholar

  • 图 1  生长硅缓冲层前(a)和生长硅缓冲层后(b)硅周期性凹槽结构的表面AFM图, 插图分别为生长硅缓冲层前后凹槽末端的放大图

    Fig. 1.  AFM image of the trench-patterned Si substrate before (a) and after (b) the growth of Si buffer layer, insets are the zoom-in images of one end of a trench before and after the Si buffer layer, respectively.

    图 2  (a)硅衬底上有序锗硅纳米线的AFM图; (b)单根锗硅纳米线的AFM图; (c)单根纳米线的表面线扫描图, 图中标尺均为500 nm

    Fig. 2.  (a) AFM image of ordered GeSi wires on trench patterned substrate; (b) AFM image of zoom-in individual GeSi nanowire; (c) AFM linescan along the cross-section of a GeSi nanowire. Inset scale bar: 500 nm.

    图 3  在硅凹槽结构图形衬底上沉积4 nm的Si67G33薄膜, 然后在不同温度退火后得到的样品表面AFM图 (a) 450 ℃; (b) 500 ℃; (c) 510 ℃; (d) 520 ℃; (e) 530 ℃; (f) 550 ℃

    Fig. 3.  AFM images of the trench-patterned samples with 4 nm Si67Ge33 film after 1 h annealing at different temperatures: (a) 450 ℃; (b) 500 ℃; (c) 510 ℃; (d) 520 ℃; (e) 530 ℃; (f) 550 ℃.

    图 4  固定薄膜厚度时, 锗的含量比例对纳米线结构的影响 (a) Si68G32; (b) Si66G34; (c) Si63G37

    Fig. 4.  The influence of Ge concentration on the formation of SiGe wires when the thickness of SiGe film is fixed: (a) Si68G32; (b) Si66G34; (c) Si63G37.

    图 5  不同周期图形衬底上锗硅纳米线的表面AFM图 (a)周期为2 µm; (b)周期为500 nm

    Fig. 5.  AFM images of GeSi wires on trench-patterned Si (001) with different pattern periods: (a) period of 2 µm; (b) period of 500 nm.

  • [1]

    Loss D, diVincenzo D P 1998 Phys. Rev. A 57 120Google Scholar

    [2]

    Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P, Gossard A C 2005 Science 309 2180Google Scholar

    [3]

    Nowack K C, Koppens F H L, Nazarov Y V, Vandersypen L M K 2007 Science 318 1430Google Scholar

    [4]

    Elzerman J M, Hanson R, Greidanus J S, Willems van Beveren L H, de Franceschi S, Vandersypen L M K, Tarucha S, Kouwenhoven L P 2003 Phys. Rev. B 67 161308Google Scholar

    [5]

    Bluhm H, Foletti S, Neder I, Rudner M, Mahalu D, Umansky V, Yacoby A 2011 Nat. Phys. 7 109Google Scholar

    [6]

    Wang J Y, Huang S Y, Huang G Y, Pan D, Zhao J H, Xu H Q 2017 Nano Lett. 17 4158Google Scholar

    [7]

    Koppens F, Buizert C, Tielrooij K J, Vink I T, Nowack K C, Meunier T, Kouwenhoven L P, Vandersypen L 2006 Nature 442 766Google Scholar

    [8]

    Hanson R, Kouwenhoven L P, Petta J R, Tarucha S, Vandersypen L M K 2007 Rev. Mod. Phys. 79 1217Google Scholar

    [9]

    Khaetskii A V, Loss D, Glazman L 2002 Phys. Rev. Lett. 88 186802Google Scholar

    [10]

    Zhong Z, Fang Y, Lu W, Lieber C M 2005 Nano Lett. 5 1143Google Scholar

    [11]

    Katsaros G, Spathis P, Stoffel M, Fournel F, Mongillo M, Bouchiat V, Lefloch F, Rastelli A, Schmidt O G, de Franceschi S 2010 Nat. Nanotech. 5 458Google Scholar

    [12]

    Hu Y J, Churchill H O H, Reilly D J, Xiang J, Lieber C M, Marcus C M 2007 Nat. Nanotech. 2 622Google Scholar

    [13]

    Higginbotham A P, Larsen T W, Yao J, Yan H, Lieber C M, Marcus C M, Kuemmeth F 2014 Nano Lett. 14 3582Google Scholar

    [14]

    Li S X, Li Y, Gao F, Xu G, Li H O, Cao G, Xiao M, Wang T, Zhang J J, Guo G P 2017 Appl. Phys. Lett. 110 133105Google Scholar

    [15]

    Kloeffel C, Trif M, Loss D 2011 Phys. Rev. B 84 195314Google Scholar

    [16]

    Maier F, Klinovaja J, Loss D 2014 Phys. Rev. B 90 195421Google Scholar

    [17]

    Watzinger H, Kukučka J, Vukušić L, Gao F, Wang T, Schäffler F, Zhang J J, Katsaros G 2018 Nat. Commun. 9 3902Google Scholar

    [18]

    de Vries F K, Shen J, Skolasinski R J, Nowak M P, Varjas D, Wang L, Wimmer M, Ridderbos J, Zwanenburg F A, Li A, Koelling S, Verheijen M A, Bakkers E P A M, Kouwenhoven L P 2018 Nano Lett. 18 6483Google Scholar

    [19]

    Li W D, Wu W, Williams R S 2012 J. Vac. Sci. Technol. B 30 06F304Google Scholar

    [20]

    Wagner R S, Ellis W C 1964 Appl. Phys. Lett. 4 89Google Scholar

    [21]

    Lauhon L J, Gudiksen M S, Wang D, Lieber C M 2002 Nature 420 57Google Scholar

    [22]

    Zhang J J, Katsaros G, Montalenti F, Scopece D, Rezaev R O, Mickel C, Rellinghaus B, Miglio L, de Franceschi S, Rastelli A, Schmidt O G 2012 Phys. Rev. Lett. 109 085502Google Scholar

    [23]

    Li Y, Li S X, Gao F, Li H O, Xu G, Wang K, Liu D, Cao G, Xiao M, Wang T, Zhang J J, Guo G C, Guo G P 2018 Nano Lett. 18 2091Google Scholar

    [24]

    Xu G, Li Y, Gao F, Li H O, Liu H, Wang K, Cao G, Xiao M, Wang T, Zhang J J, Guo G C, Guo G P 2019 arXiv: 1905.01586v1

    [25]

    Zhang J J, Stoffel M, Rastelli A, Schmidt O G, Jovanović V, Nanver L K, Bauer G 2007 Appl. Phys. Lett. 91 173115Google Scholar

    [26]

    Zhong Z Y, Halilovic A, Fromherz T, Schäffler F, Bauera G 2003 Appl. Phys. Lett. 82 4779Google Scholar

    [27]

    Chen G, Springholz G, Jantsch W, Schäffler F 2011 Appl. Phys. Lett. 99 043103Google Scholar

    [28]

    Du L, Scopece D, Springholz G, Schäffler F, Chen G 2014 Phys. Rev. B 90 075308Google Scholar

    [29]

    Kern W, Puotinen D A 1970 RCA Review 31 187

    [30]

    Eaglesham D J, White A E, Feldman L C, Moriya N, Jacobson D C 1993 Phys. Rev. Lett. 70 1643Google Scholar

    [31]

    Gai Z, Yang W S, Sakurai T, Zhao R G 1999 Phys. Rev. B 59 13009Google Scholar

    [32]

    Zhong Z, Schwinger W, Schäffler F, Bauer G, Vastola G, Montalenti F, Miglio L 2007 Phys. Rev. Lett. 98 176102Google Scholar

    [33]

    Vastola G, Grydlik M, Brehm M, Fromherz T, Bauer G, Boioli F, Miglio L, Montalenti F 2011 Phys. Rev. B. 84 155415Google Scholar

    [34]

    Hu H, Gao H J, Liu F 2008 Phys. Rev. Lett. 101 216102Google Scholar

    [35]

    Zhang J J, Rastelli A, Schmidt O G, Scopece D, Miglio L, Montalenti F 2013 Appl. Phys. Lett. 103 083109Google Scholar

    [36]

    Chen G, Sanduijav B, Matei D, Springholz G, Scopece D, Beck M J, Montalenti F, Miglio L 2012 Phys. Rev. Lett. 108 055503Google Scholar

    [37]

    Jesson D E, Chen K M, Pennycook S J, Thundat T, Warmack R J 1996 Phys. Rev. Lett. 77 1330Google Scholar

    [38]

    Tersoff J, leGoues F K 1994 Phys. Rev. Lett. 72 3570Google Scholar

    [39]

    Shu D J, Liu F, Gong X G 2001 Phys. Rev. B 64 245410Google Scholar

    [40]

    Huang L, Liu F, Gong X G 2004 Phys. Rev. B 70 155320Google Scholar

  • [1] 熊凡, 陈永聪, 敖平. 热噪声环境下偶极场驱动的量子比特动力学. 物理学报, 2023, 72(17): 170302. doi: 10.7498/aps.72.20230625
    [2] 郑晓虎, 张建峰, 杜瑞瑞. InSb(111)衬底上外延生长二维拓扑绝缘体锡烯/铋烯的差异性研究. 物理学报, 2022, 71(18): 186401. doi: 10.7498/aps.71.20221024
    [3] 亢玉彬, 唐吉龙, 李科学, 李想, 侯效兵, 楚学影, 林逢源, 王晓华, 魏志鹏. Be, Si掺杂调控GaAs纳米线结构相变及光学特性. 物理学报, 2021, 70(20): 207804. doi: 10.7498/aps.70.20210782
    [4] 乌云其木格, 韩超, 额尔敦朝鲁. 色散和杂质对双参量非对称高斯势量子点量子比特的影响. 物理学报, 2019, 68(24): 247803. doi: 10.7498/aps.68.20190960
    [5] 廖庆洪, 邓伟灿, 文健, 周南润, 刘念华. 纳米机械谐振器耦合量子比特非厄米哈密顿量诱导的声子阻塞. 物理学报, 2019, 68(11): 114203. doi: 10.7498/aps.68.20182263
    [6] 王海玲, 王霆, 张建军. GaAs (001)图形衬底上InAs量子点的定位生长. 物理学报, 2019, 68(11): 117301. doi: 10.7498/aps.68.20190317
    [7] 张马淋, 葛剑峰, 段明超, 姚钢, 刘志龙, 管丹丹, 李耀义, 钱冬, 刘灿华, 贾金锋. SrTiO3(001)衬底上多层FeSe薄膜的分子束外延生长. 物理学报, 2016, 65(12): 127401. doi: 10.7498/aps.65.127401
    [8] 王萌, 欧云波, 李坊森, 张文号, 汤辰佳, 王立莉, 薛其坤, 马旭村. SrTiO3(001)衬底上单层FeSe超导薄膜的分子束外延生长. 物理学报, 2014, 63(2): 027401. doi: 10.7498/aps.63.027401
    [9] 苏少坚, 张东亮, 张广泽, 薛春来, 成步文, 王启明. Ge(001)衬底上分子束外延生长高质量的Ge1-xSnx合金. 物理学报, 2013, 62(5): 058101. doi: 10.7498/aps.62.058101
    [10] 康朝阳, 唐军, 李利民, 闫文盛, 徐彭寿, 韦世强. SiO2/Si衬底上石墨烯的制备与结构表征. 物理学报, 2012, 61(3): 037302. doi: 10.7498/aps.61.037302
    [11] 赵翠兰, 丛银川. 球壳量子点中极化子和量子比特的声子效应. 物理学报, 2012, 61(18): 186301. doi: 10.7498/aps.61.186301
    [12] 周勋, 杨再荣, 罗子江, 贺业全, 何浩, 韦俊, 邓朝勇, 丁召. 反射式高能电子衍射实时监控的分子束外延生长GaAs晶体衬底温度校准及表面相变的研究. 物理学报, 2011, 60(1): 016109. doi: 10.7498/aps.60.016109
    [13] 苏少坚, 汪巍, 张广泽, 胡炜玄, 白安琪, 薛春来, 左玉华, 成步文, 王启明. Si(001)衬底上分子束外延生长Ge0.975Sn0.025合金薄膜. 物理学报, 2011, 60(2): 028101. doi: 10.7498/aps.60.028101
    [14] 张燕辉, 陈平平, 李天信, 殷豪. GaAs(001)衬底上分子束外延生长InNSb单晶薄膜. 物理学报, 2010, 59(11): 8026-8030. doi: 10.7498/aps.59.8026
    [15] 姜福仕, 赵翠兰. 量子环中量子比特的声子效应. 物理学报, 2009, 58(10): 6786-6790. doi: 10.7498/aps.58.6786
    [16] 尹辑文, 肖景林, 于毅夫, 王子武. 库仑势对抛物量子点量子比特消相干的影响. 物理学报, 2008, 57(5): 2695-2698. doi: 10.7498/aps.57.2695
    [17] 高宽云, 赵翠兰. 量子环中量子比特的性质. 物理学报, 2008, 57(7): 4446-4449. doi: 10.7498/aps.57.4446
    [18] 李艳玲, 冯 健, 孟祥国, 梁宝龙. 量子比特的普适远程翻转和克隆. 物理学报, 2007, 56(10): 5591-5596. doi: 10.7498/aps.56.5591
    [19] 董庆瑞. 磁场方向调制的InAs量子点分子量子比特. 物理学报, 2007, 56(9): 5436-5440. doi: 10.7498/aps.56.5436
    [20] 徐晓华, 牛智川, 倪海桥, 徐应强, 张 纬, 贺正宏, 韩 勤, 吴荣汉, 江德生. 分子束外延生长的(GaAs1-xSbx/InyGa1-yAs)/GaAs量子阱光致发光谱研究. 物理学报, 2005, 54(6): 2950-2954. doi: 10.7498/aps.54.2950
计量
  • 文章访问数:  9076
  • PDF下载量:  149
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-16
  • 修回日期:  2019-10-11
  • 刊出日期:  2020-01-20

/

返回文章
返回