搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于离子注入隔离的微缩化发光二极管阵列性能

高承浩 徐峰 张丽 赵德胜 魏星 车玲娟 庄永漳 张宝顺 张晶

引用本文:
Citation:

基于离子注入隔离的微缩化发光二极管阵列性能

高承浩, 徐峰, 张丽, 赵德胜, 魏星, 车玲娟, 庄永漳, 张宝顺, 张晶

Ion implantation isolation based micro-light-emitting diode device array properties

Gao Cheng-Hao, Xu Feng, Zhang Li, Zhao De-Sheng, Wei Xing, Che Ling-Juan, Zhuang Yong-Zhang, Zhang Bao-Shun, Zhang Jing
PDF
HTML
导出引用
  • 基于F离子注入隔离技术实现一种新型微缩化发光二极管(micromicro-LED)阵列器件, 并系统研究注入能量及发光孔径对micro-LED阵列器光电性能的影响. 研究结果表明: 相比于F离子50 keV单次注入器件, 50/100 keV两次注入器件具有更好的光电性能, 器件反向漏电降低8.4倍, 光输出功率密度提升1.3倍. 同时, 在不同的发光孔径(6, 8, 10 μm)条件下, 器件反向漏电流均为3.4×10–8 A, 但正向工作电压随孔径增大而减小, 分别为3.3, 3.1, 2.9 V. 此外, 器件不同发光孔径的有效发光面积比(实际发光面积与器件面积之比)分别为85%, 87%, 92%. 与传统台面刻蚀micro-LED器件相比, 离子注入隔离技术实现的micro-LED器件具有较低反的向漏电流密度、较高的光输出密度及有效发光面积比.
    Compared with conventional light-emitting diode (LED), micro-LED has excellent photo-electric properties such as high current density, light output power density, light response frequency. It has widespread application prospects in the field of light display, optical tweezers, and visible light communication. However, dry etching inevitably leads the sidewall to be damaged, which results in the degradation of device properties. In this letter, a micro-LED array device based on F ions implantation isolation technology is presented to avoid damaging the sidewall. We systemically investigate the influence of fluorine ion implantation energy and light-emitting apertures on the photoelectric properties of the micro-LED array device by testing the current-voltage characteristic and light output power. The investigation results show that comparing with F ion 50 keV single implantation device, the reverse leakage of 50/100 keV double implantation device decreases by 8.4 times and the optical output density increases by 1.3 times. When the light-emitting apertures are different (6, 8, 10 μm respectively), the reverse leakage current remains constant, and the forward operating voltage decreasesfrom 3.3 V to 3.1 V and to 2.9 V with the increase of the aperture. Besides, the available area ratio, i.e. the ratio of actual light-emitting area to device area of single micro-LED with different light-emitting apertures are 85%, 87%, and 92%, respectively. The electrical isolation of the micro-LED array is realized by ion implantation isolation technology, and the micro-LED has some advantages over the conventional mesa etching micro-LED device, such as low reverse leakage current density, high optical output power density, and high effective light-emitting area ratio.
      通信作者: 徐峰, fxu2018@sinano.ac.cn ; 张宝顺, bszhang2006@sinano.ac.cn ; 张晶, zhangjingcust@cust.edu.cn
    • 基金项目: 吉林省重大科技招标专项 (批准号: 20170203014G)、国家自然科学基金 (批准号: U1830112, 61774014)、江苏省博士后科研资助计划(批准号: 2018K008C)和苏州市重点产业技术创新项目(批准号: SYG201928)资助的课题
      Corresponding author: Xu Feng, fxu2018@sinano.ac.cn ; Zhang Bao-Shun, bszhang2006@sinano.ac.cn ; Zhang Jing, zhangjingcust@cust.edu.cn
    • Funds: Project supported by the Special Scientific Research Fund of Major Science and Technology Bidding in Jilin Province, China (Grant No. 20170203014G), the National Natural Science Foundation of China (Grant Nos. U1830112, 61774014), the Jiangsu Planned Projects for Postdoctoral Research Funds, China (Grant No. 2018K008C), and the Key Industry Technology Innovation Program of Suzhou, China (Grant No. SYG201928)
    [1]

    Zhang L, Ou F, Chong W C, Chen Y J, Li Q M 2018 J. Soc. Inf. Disp. 26 137Google Scholar

    [2]

    Day J, Li J, Lie D Y C, Bradford C, Y. Lin J, Jiang H X 2011 Appl. Phys. Lett. 99 031116Google Scholar

    [3]

    Zhang X, Li P A, Zou X B, Jiang J M, Yuen S H, Tang C W, Lau K M 2019 IEEE Photonics Technol. Lett. 31 865Google Scholar

    [4]

    Xie E Y, He X Y, Islim M S, Purwita A A, McKendry J J D, Gu E, Haas H, Dawson M D 2019 J. Lightwave Technol. 37 1180Google Scholar

    [5]

    Alicja Z D, Steven L N, David M, Jonathan M, Bruce R R, Robert K H, Mervyn J R, Huabing Y, Jonathan M C, Erdan G, Martin D D 2011 Opt. Express 19 3

    [6]

    McAlinden N, Massoubre D, Richardson E, Gu E, Sakata S, Dawson M D, Mathieson K 2013 Opt. Lett. 38 992Google Scholar

    [7]

    郭建新, 郭海成 2000 物理学报 49 1995

    Guo J X, Kwok H S 2000 Acta Phys. Sin. 49 1995

    [8]

    Komoda T, Sasabe H, Kido J 2018 25th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD) Kyoto, Japan, July 3–6, 2018 p978

    [9]

    何家琪, 何大伟, 王永生, 刘智勇 2013 物理学报 62 178801Google Scholar

    He J Q, He D W, Wang Y S, Liu Z Y 2013 Acta Phys. Sin. 62 178801Google Scholar

    [10]

    Son K R, Lee T H, Lee B R, Im H S, Kim T G 2018 Small 14 1801032Google Scholar

    [11]

    Li P, Zhao Y, Li H, Li Z, Zhang Y, Kang J, Liang M, Liu Z, Yi X, Wang G 2019 Nanotechnology 30 095203Google Scholar

    [12]

    Chen C J, Chen H C, Liao J Hao, Yu C J, Wu M C 2019 IEEE J. Quantum Electron. 55 2Google Scholar

    [13]

    班章, 梁静秋, 吕金光, 梁中翥, 冯思悦 2013 物理学报 67 070701Google Scholar

    Ban Z, Liang J Q, Lv J G, Liang Z Z, Feng S Y 2013 Acta Phys. Sin. 67 070701Google Scholar

    [14]

    Jin S X, Li J, Li J Z, Lin J Y, Jiang H X 1999 Appl. Phys. Lett. 76 631

    [15]

    龚欣, 吕玲, 郝跃, 李培咸, 周小伟, 陈海峰 2007 半导体学报 28 7

    Gong X, Lv L, Hao Y, Li P X, Zhou X W, Chen H F 2007 Chin. J. Semiconductors 28 7

    [16]

    Kou J Q, Shen C C, Shao H, Che J M, Hou X, Chu C S, Tian K K, Zhang Y G, Zhang Z H, Kuo H C 2019 Opt. Express 27 643Google Scholar

    [17]

    Olivier F, Tirano S, Dupre L, Aventurier B, Largeron C, Templier F Spring Meeting of the European-Materials-Research-Society (E-MRS)/Symposium M on Silicon Compatible Materials and Integrated Devices for Photonics and Optical Sensing Lille, FRANCE, MAY 02–06, 2016 p191

    [18]

    Tian P F, McKendry J J D, Zheng G, Guilhabert B, Watson I M, Gu E, Chen Z Z, Zhang G Y, Dawson M D 2012 Appl. Phys. Lett. 101 23

    [19]

    Hwang D, Mughal A, Pynn C D, Nakamura S, DenBaars S P 2017 Appl. Phys. Express 10 032101Google Scholar

    [20]

    张志利 2017 博士学位论文 (合肥: 中国科学院大学)

    Zhang Z L 2017 Ph. D. Dissertation (Hefei: University of Chinese Academy of Sciences) (in Chinese)

    [21]

    Pearton S J, Abernathy C R, Vartuli C B 1995 Appl. Phys. Lett. 66 3042Google Scholar

    [22]

    Kucheyeva S O, Williamsa J S, Peartonb S J 2001 Mater. Sci. Eng. R-Rep. 33 51Google Scholar

    [23]

    Dupre L, Marra M, Verney V, Aventurier B, Henry F, Olivier F, Tirano S, Daami A, Templier F Conference on Gallium Nitride Materials and Devices XII San Francisco, CA, JAN 30–FEB 02, 2017 p1010422-1

    [24]

    Li C C, Zhan J L, Chen Z Z, Jiao F, Chen Y F, Chen Y Y, Nie J X, Kang X N, Li S F, Wang Q, Zhang G Y, Shen B 2019 Opt. Express 27 A1146Google Scholar

    [25]

    Wong M S, Hwang D, Alhassan A I, Lee C, Ley R, Nakamura S, DenBaars S P 2018 Opt. Express 26 21324Google Scholar

    [26]

    Choi H W, Jeon C W, Dawson M D, Edwards P R, Martin R W, Tripathy S 2003 J. Appl. Phys. 93 5978Google Scholar

    [27]

    Gong Z, Massoubre D, McKendry J, Zhang H X, Griffin C, Guilhabert B, Gu E, Girkin J M, Dawson M D, Rael B R, Henderson R K International Workshop on Nitride Semiconductors Montreux, SWITZERLAND, OCT 06–10, 2008 p6

    [28]

    Xie E Y, Stonehouse M, Ferreira R, McKendry J J D, Herrnsdorf J, He X, Rajbhandari S, Chun H, Jalajakumari A V N, Almer O, Faulkner G, Watson I M, Gu E, Henderson Robert, O’Brien D, Dawson M D 2017 IEEE Photonics J. 9 1

    [29]

    Chen C J, Chen H C, Liao J H, Yu C J, Wu M C 2019 IEEE J. Quantum Electron. 55 1

    [30]

    Stoller R E, Toloczko M B, Was G S, Certain A G, Dwaraknath S, Garner F A 2013 Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 310 75Google Scholar

  • 图 1  (a) micro-LED阵列结构图; (b) 10 μm micro-LED阵列表面SEM图像

    Fig. 1.  (a) Schematic structure of micro-LED array; (b) SEM image of 10 μm micro-LED array surface.

    图 2  样品A和B 6 μm阵列的(a) I-V 特性和(b)光输出密度-电流密度特性

    Fig. 2.  (a) The I-V and (b) light output power density-current density characteristics of 6 μm arrays of samples A and B

    图 3  注入隔离micro-LED器件与台面刻蚀器件 (a)反向漏电流和(b)光输出密度比较

    Fig. 3.  Comparison of (a) reverse leakage current and (b) light output density between implanted isolated micro-LED devices and mesa etching devices.

    图 4  SRIM模拟F离子不同注入能量下产生的损伤与注入深度关系

    Fig. 4.  The relationship between damage and implantation depth of F ion with different implantation energies with SRIM simulation.

    图 5  CTLM测量原理图

    Fig. 5.  Schematic of CTLM test.

    图 6  CTLM线性拟合曲线 (a) 50 keV能量注入; (b) 50/100 keV能量注入

    Fig. 6.  The CTLM linear fitting curve at (a) the implantation energy of 50 keV and (b) 50/100 keV.

    图 7  不同发光孔径阵列I-V特性曲线

    Fig. 7.  I-V characteristics of the different emission aperture arrays.

    图 8  20 mA下 (a) 6 μm, (b) 8 μm, (c) 10 μm发光孔径阵列发光图像

    Fig. 8.  Light-emitting aperture arrays of (a) 6 μm, (b) 8 μm, and (c)10 μm at 20 mA.

    表 1  6 μm micro-LED阵列光电性能参数

    Table 1.  The photoelectric properties of 6 μm micro-LED array.

    样品工作电压(20 mA)/V反向漏电流(–5 V)/A光输出密度(2264 A/cm–2)/W·cm–2
    A3.692.89 × 10–731.34
    B3.273.43 × 10–840.59
    下载: 导出CSV

    表 2  样品B单颗发光孔径实际发光情况

    Table 2.  The actual emission condition of single light-emitting aperture in sample B.

    器件尺寸/μm681020[16]10[17]
    隔离方式注入台面刻蚀
    实际发光区域
    实际发光面积S1/μm224.1043.9272.0414470 ± 10
    器件面积 S2/μm228.2650.2478.50400100
    S1/S2/%85%87%92%36%70 ± 10
    下载: 导出CSV
  • [1]

    Zhang L, Ou F, Chong W C, Chen Y J, Li Q M 2018 J. Soc. Inf. Disp. 26 137Google Scholar

    [2]

    Day J, Li J, Lie D Y C, Bradford C, Y. Lin J, Jiang H X 2011 Appl. Phys. Lett. 99 031116Google Scholar

    [3]

    Zhang X, Li P A, Zou X B, Jiang J M, Yuen S H, Tang C W, Lau K M 2019 IEEE Photonics Technol. Lett. 31 865Google Scholar

    [4]

    Xie E Y, He X Y, Islim M S, Purwita A A, McKendry J J D, Gu E, Haas H, Dawson M D 2019 J. Lightwave Technol. 37 1180Google Scholar

    [5]

    Alicja Z D, Steven L N, David M, Jonathan M, Bruce R R, Robert K H, Mervyn J R, Huabing Y, Jonathan M C, Erdan G, Martin D D 2011 Opt. Express 19 3

    [6]

    McAlinden N, Massoubre D, Richardson E, Gu E, Sakata S, Dawson M D, Mathieson K 2013 Opt. Lett. 38 992Google Scholar

    [7]

    郭建新, 郭海成 2000 物理学报 49 1995

    Guo J X, Kwok H S 2000 Acta Phys. Sin. 49 1995

    [8]

    Komoda T, Sasabe H, Kido J 2018 25th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD) Kyoto, Japan, July 3–6, 2018 p978

    [9]

    何家琪, 何大伟, 王永生, 刘智勇 2013 物理学报 62 178801Google Scholar

    He J Q, He D W, Wang Y S, Liu Z Y 2013 Acta Phys. Sin. 62 178801Google Scholar

    [10]

    Son K R, Lee T H, Lee B R, Im H S, Kim T G 2018 Small 14 1801032Google Scholar

    [11]

    Li P, Zhao Y, Li H, Li Z, Zhang Y, Kang J, Liang M, Liu Z, Yi X, Wang G 2019 Nanotechnology 30 095203Google Scholar

    [12]

    Chen C J, Chen H C, Liao J Hao, Yu C J, Wu M C 2019 IEEE J. Quantum Electron. 55 2Google Scholar

    [13]

    班章, 梁静秋, 吕金光, 梁中翥, 冯思悦 2013 物理学报 67 070701Google Scholar

    Ban Z, Liang J Q, Lv J G, Liang Z Z, Feng S Y 2013 Acta Phys. Sin. 67 070701Google Scholar

    [14]

    Jin S X, Li J, Li J Z, Lin J Y, Jiang H X 1999 Appl. Phys. Lett. 76 631

    [15]

    龚欣, 吕玲, 郝跃, 李培咸, 周小伟, 陈海峰 2007 半导体学报 28 7

    Gong X, Lv L, Hao Y, Li P X, Zhou X W, Chen H F 2007 Chin. J. Semiconductors 28 7

    [16]

    Kou J Q, Shen C C, Shao H, Che J M, Hou X, Chu C S, Tian K K, Zhang Y G, Zhang Z H, Kuo H C 2019 Opt. Express 27 643Google Scholar

    [17]

    Olivier F, Tirano S, Dupre L, Aventurier B, Largeron C, Templier F Spring Meeting of the European-Materials-Research-Society (E-MRS)/Symposium M on Silicon Compatible Materials and Integrated Devices for Photonics and Optical Sensing Lille, FRANCE, MAY 02–06, 2016 p191

    [18]

    Tian P F, McKendry J J D, Zheng G, Guilhabert B, Watson I M, Gu E, Chen Z Z, Zhang G Y, Dawson M D 2012 Appl. Phys. Lett. 101 23

    [19]

    Hwang D, Mughal A, Pynn C D, Nakamura S, DenBaars S P 2017 Appl. Phys. Express 10 032101Google Scholar

    [20]

    张志利 2017 博士学位论文 (合肥: 中国科学院大学)

    Zhang Z L 2017 Ph. D. Dissertation (Hefei: University of Chinese Academy of Sciences) (in Chinese)

    [21]

    Pearton S J, Abernathy C R, Vartuli C B 1995 Appl. Phys. Lett. 66 3042Google Scholar

    [22]

    Kucheyeva S O, Williamsa J S, Peartonb S J 2001 Mater. Sci. Eng. R-Rep. 33 51Google Scholar

    [23]

    Dupre L, Marra M, Verney V, Aventurier B, Henry F, Olivier F, Tirano S, Daami A, Templier F Conference on Gallium Nitride Materials and Devices XII San Francisco, CA, JAN 30–FEB 02, 2017 p1010422-1

    [24]

    Li C C, Zhan J L, Chen Z Z, Jiao F, Chen Y F, Chen Y Y, Nie J X, Kang X N, Li S F, Wang Q, Zhang G Y, Shen B 2019 Opt. Express 27 A1146Google Scholar

    [25]

    Wong M S, Hwang D, Alhassan A I, Lee C, Ley R, Nakamura S, DenBaars S P 2018 Opt. Express 26 21324Google Scholar

    [26]

    Choi H W, Jeon C W, Dawson M D, Edwards P R, Martin R W, Tripathy S 2003 J. Appl. Phys. 93 5978Google Scholar

    [27]

    Gong Z, Massoubre D, McKendry J, Zhang H X, Griffin C, Guilhabert B, Gu E, Girkin J M, Dawson M D, Rael B R, Henderson R K International Workshop on Nitride Semiconductors Montreux, SWITZERLAND, OCT 06–10, 2008 p6

    [28]

    Xie E Y, Stonehouse M, Ferreira R, McKendry J J D, Herrnsdorf J, He X, Rajbhandari S, Chun H, Jalajakumari A V N, Almer O, Faulkner G, Watson I M, Gu E, Henderson Robert, O’Brien D, Dawson M D 2017 IEEE Photonics J. 9 1

    [29]

    Chen C J, Chen H C, Liao J H, Yu C J, Wu M C 2019 IEEE J. Quantum Electron. 55 1

    [30]

    Stoller R E, Toloczko M B, Was G S, Certain A G, Dwaraknath S, Garner F A 2013 Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 310 75Google Scholar

  • [1] 彭腾, 王辉耀, 赵茜, 刘俊宏, 汪波, 王晶晶, 周银琼, 张可怡, 杨俊, 熊祖洪. 电子注入层迁移率对Rubrene/C60基发光二极管半带隙开启电压的调控. 物理学报, 2024, 73(21): 217202. doi: 10.7498/aps.73.20240864
    [2] 赵建铖, 吴朝兴, 郭太良. 无注入型发光二极管的载流子输运模型研究. 物理学报, 2023, 72(4): 048503. doi: 10.7498/aps.72.20221831
    [3] 黄鑫梅, 何晓莉, 徐强, 陈平, 张勇, 高春红. 基于离子化合物的高性能钙钛矿发光二极管. 物理学报, 2022, 71(20): 208502. doi: 10.7498/aps.71.20220858
    [4] 李雪, 曹宝龙, 王明昊, 冯增勤, 陈淑芬. 基于改性空穴注入层与复合发光层的高效钙钛矿发光二极管. 物理学报, 2021, 70(4): 048502. doi: 10.7498/aps.70.20201379
    [5] 罗长维, 仇猛淋, 王广甫, 王庭顺, 赵国强, 华青松. 利用离子激发发光研究ZnO离子注入和退火处理的缺陷变化. 物理学报, 2020, 69(10): 102901. doi: 10.7498/aps.69.20200029
    [6] 吴家龙, 窦永江, 张建凤, 王浩然, 杨绪勇. 溶液法制备的金属掺杂氧化镍空穴注入层在钙钛矿发光二极管上的应用. 物理学报, 2020, 69(1): 018101. doi: 10.7498/aps.69.20191269
    [7] 邰建鹏, 郭伟玲, 李梦梅, 邓杰, 陈佳昕. GaN基微缩化发光二极管尺寸效应和阵列显示. 物理学报, 2020, 69(17): 177301. doi: 10.7498/aps.69.20200305
    [8] 黄伟, 李跃龙, 任慧志, 王鹏阳, 魏长春, 侯国付, 张德坤, 许盛之, 王广才, 赵颖, 袁明鉴, 张晓丹. 基于N型纳米晶硅氧电子注入层的钙钛矿发光二极管. 物理学报, 2019, 68(12): 128103. doi: 10.7498/aps.68.20190258
    [9] 班章, 梁静秋, 吕金光, 梁中翥, 冯思悦. 微型曲面发光二极管阵列照度一致性研究. 物理学报, 2018, 67(7): 070701. doi: 10.7498/aps.67.20172596
    [10] 贾博仑, 邓玲玲, 陈若曦, 张雅男, 房旭民. 利用Ag@SiO2纳米粒子等离子体共振增强发光二极管辐射功率的数值研究. 物理学报, 2017, 66(23): 237801. doi: 10.7498/aps.66.237801
    [11] 刘浩杰, 蓝天, 倪国强. 室内可见光通信发光二极管阵列发射性能的研究. 物理学报, 2014, 63(23): 238503. doi: 10.7498/aps.63.238503
    [12] 刘佰全, 兰林锋, 邹建华, 彭俊彪. 具有新型双空穴注入层的有机发光二极管. 物理学报, 2013, 62(8): 087302. doi: 10.7498/aps.62.087302
    [13] 王茺, 杨宇, 杨瑞东, 李亮, 韦冬, 靳映霞, Bao Ji-Ming. 绝缘氧化层上自离子注入Si薄膜W线发光性能的调控. 物理学报, 2011, 60(10): 106104. doi: 10.7498/aps.60.106104
    [14] 赵宝锋, 唐怀军, 余磊, 王保争, 文尚胜. 掺杂离子型配合物的高效聚合物白光发光二极管. 物理学报, 2011, 60(8): 088502. doi: 10.7498/aps.60.088502
    [15] 邢艳辉, 韩军, 邓军, 李建军, 徐晨, 沈光地. p型GaN低温粗化提高发光二极管特性. 物理学报, 2010, 59(2): 1233-1236. doi: 10.7498/aps.59.1233
    [16] 缪竞威, 王培禄, 朱洲森, 袁学东, 王 虎, 杨朝文, 师勉恭, 缪 蕾, 孙威立, 张 静, 廖雪花. 氮团簇离子注入单晶硅的光致发光谱研究. 物理学报, 2008, 57(4): 2174-2178. doi: 10.7498/aps.57.2174
    [17] 黄文波, 彭俊彪. 高分子发光二极管载流子注入过程研究. 物理学报, 2007, 56(5): 2974-2978. doi: 10.7498/aps.56.2974
    [18] 张小东, 林德旭, 李公平, 尤 伟, 张利民, 张 宇, 刘正民. 离子注入n型GaN光致发光谱中宽黄光发射带研究. 物理学报, 2006, 55(10): 5487-5493. doi: 10.7498/aps.55.5487
    [19] 杨 宇, 夏冠群, 赵国庆, 王 迅. Si离子注入对分子束外延Si1-xGex/Si量子阱发光特性的影响. 物理学报, 1998, 47(6): 978-984. doi: 10.7498/aps.47.978
    [20] 田人和, 卢武星, 李竹怀, 高愈尊. InSb中离子注入二次缺陷研究. 物理学报, 1992, 41(5): 809-813. doi: 10.7498/aps.41.809
计量
  • 文章访问数:  11426
  • PDF下载量:  220
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-18
  • 修回日期:  2019-10-28
  • 上网日期:  2020-01-01
  • 刊出日期:  2020-01-20

/

返回文章
返回