-
X射线掠入射光学系统是我国首颗脉冲星导航试验卫星主载荷聚焦型脉冲星探测器的核心部件, 在增大探测面积、提高探测器灵敏度方面发挥着重要作用, 实现了国内首次在轨验证. 针对脉冲星导航探测X射线光子到达时间的特点, 开展了基于单次抛物面镜反射的掠入射聚焦光学系统设计, 通过理论计算与推导, 获得了可制造的光学系统反射镜设计参数, 光学系统理论有效面积为15.6 cm2@1 keV, 对设计的光学系统进行了聚焦性能仿真, 全视场范围内均满足探测器聚焦要求, 开展电铸镍复制工艺研究, 完成了芯轴的超精密控形加工, 在此基础上制造了4层金属反射镜, 利用北京同步辐射4B7B光束线测试了各层反射镜的反射率, 基于实测反射率的光学系统有效面积为13.2 cm2@1 keV. 最后基于在轨观测数据, 评价得到光学系统的有效面积为4.22 cm2@1 keV, 分析了地面标定有效面积与在轨评价有效面积存在差别的原因, 验证了设计、仿真与制造方法的正确性, 为大面积掠入射光学系统的研制奠定了基础.On November 10, 2016, China launched an X-ray pulsar navigation test satellite (XPNAV-1) to investigate the X-ray pulsar navigation technology, and a lot of scientific observation data have been obtained. The X-ray grazing incidence optics is a critical component of the focusing pulsar telescope. It plays an important role in increasing the effective area and enhancing the sensitivity of the telescope. It is also the first grazing incidence optics verified in orbit in China. According to the characteristic that the times of arrival (TOA) of X-ray photons are measured in pulsar navigation, the grazing incidence focusing optics based on single-reflection paraboloid mirror is designed, and manufacturable mirror design parameters are obtained through theoretical calculation and derivation. The theoretical effective area of the designed optics is 15.6 cm2 at 1 keV. The designed optics is then simulated to evaluate its focusing performance. It meets the focusing requirement in the full field of view. The electroforming nickel replication process used for manufacturing the mirrors for XMM-Newton and eRosita missions is investigated. A super-smooth mandrel is firstly fabricated and used for follow-up replication. An about-100 nm-thick gold layer is deposited on the mandrel, and serves as the reflection and release layer of the mirror. The nickel substrate of the mirror is electroformed on the gold layer. The mirror is finally obtained by releasing the nickel and gold layer from the mandrel. The patterns and roughness of the mandrel are then replicated onto the inner surface of the mirror. The 4-layered mirror is fabricated for the optics. The reflectivity for each layer of the 4-layered mirror is then measured with a dedicated facility on 4B7B beamline of BSRF. The effective area of the optics based on the above-measured reflectivity is 13.2 cm2 at 1 keV. Finally, according to the in-orbit observation data, the effective area of the optical system is evaluated to be a typical value of 4.22 cm2 at 1 keV, which is less than the ground-tested value. The reason for this is analyzed and it turns out to be due to the thermal deformation of mechanical structure and contamination of the mirrors. Therefore, in our future work, we will strictly control the environmental factors and implement space environmental adaptability design, while increasing the accuracy of the optics.
-
Keywords:
- multi-layer nested /
- grazing incidence optics /
- development /
- performance evaluation
[1] Paul S R, Kent S W, Michael N L, Michael T W 2006 J. Guid. Control Dynam. 29 1Google Scholar
[2] Keith C G, Zaven A, Takashi O 2012 Proc. SPIE 8443 844313Google Scholar
[3] Jason W M, Munther A H, Luke M B W, Jennifer E V, Samuel R P, Sean R S, Wayne H Y, Zaven A, Paul S R, Kent S W, Ronald J L, Keith C G 2015 AIAA Guidance, Navigation, and Control Conference Kissimmee, USA, January 5–9, 2015 AIAA 2015-0865
[4] Xiong K, Wei C L, Liu L D 2016 Acta Astronaut. 128 473Google Scholar
[5] 王奕迪 2012 博士学位论文 (长沙: 国防科技大学)
Wang Y D 2016 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)
[6] Craig M, Jack S, Teruaki E, Michael L, Beverly J L 2018 Proc. SPIE 10699 106991VGoogle Scholar
[7] Takashi O, Yang S, Erin R B, Teruaki E, Larry O, Richard K, Larry L, John K, Sean F, Ai N, Steven J K, Zaven A, Keith G 2016 Proc. SPIE 9905 99054XGoogle Scholar
[8] Luke M B W, Jason W M, Munther A H, Samuel R P, Sean R S, Wayne H Y, Paul S R, Michael T W, Matthew K, Kent S W, Zaven A, Keith C G, Lucas G, Ismael C, Paul D, Ben S, Andrew L 2018 Proceedings of SpaceOps Conference Marseille, France, May 28–June 1, 2018 p2538
[9] 李连升, 邓楼楼, 梅志武, 吕政欣, 刘继红 2018 机械工程学报 54 23Google Scholar
Li L S, Deng L L, Mei Z W, Lv Z X, Liu J H 2018 JME 54 23Google Scholar
[10] 周庆勇, 魏子卿, 姜坤, 邓楼楼, 刘思伟, 姬剑锋, 任红飞, 王奕迪, 马高峰 2018 物理学报 67 050701Google Scholar
Zhou Q Y, Wei Z Q, Jiang K, Deng L L, Liu S W, Ji J F, Ren H F, Wang Y D, Ma G F 2018 Acta Phys. Sin. 67 050701Google Scholar
[11] Deng L L, Mei Z W, Li L S, Wang Y, Shi H, Xiong K, Lv Z X, Mo Y N, Wang L, Zuo F C, Chen J W, Shi Y Q, Xu C 2017 Proc. IAC 7 4347
[12] Brian R, Ron E, Darell E, Misha G, Jeffery K, Steve O D, Chet S, Martin W 2004 Proc. SPIE 5168 0277Google Scholar
[13] 王永刚, 崔天刚, 马文生, 陈斌, 陈波 2011 光学精密工程 19 743Google Scholar
Wang Y G, Cui T G, Ma W S, Chen B, Chen B 2011 Optics and Prec. Eng. 19 743Google Scholar
[14] 赵大春 2016 博士学位论文 (北京: 中国科学院大学)
Zhao D C 2016 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)
[15] Liao Y Y, Shen Z X, Huang Q S, Wang Z S 2017 Proc. SPIE 10399 103990LGoogle Scholar
[16] Shen Z X, Yu J, Ma B, Zhang Z, Huang Q S, Wang X Q, Wang K, Zuo F C, Lü Z X, Wang Z S 2018 Proc. SPIE 10699 106991BGoogle Scholar
[17] 李林森, 强鹏飞, 盛立志, 刘哲, 周晓红, 赵宝升, 张淳民 2018 物理学报 67 200701Google Scholar
Li L S, Qiang P F, Sheng L Z, Liu Z, Zhou X H, Zhao B S, Zhang C M 2018 Acta Phys. Sin. 67 200701Google Scholar
[18] Sheng L Z, Zhao B S, Qiang P F, Liu D 2016 Proc. SPIE 10328 103280MGoogle Scholar
[19] 孔繁星 2018 博士学位论文 (哈尔滨: 哈尔滨工业大学)
Kong F X 2018 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)
[20] Zuo F C, Mei Z W, Ma T, Deng L L, Shi Y Q, Li L S 2016 Proc. SPIE 9796 97961OGoogle Scholar
[21] Zuo F C, Deng L L, Mei Z W, Li L S, Lü Z X 2014 Proc. SPIE 9250 925004Google Scholar
[22] Peter F, Heinrich B, Bernd B, Wolfgang B, Vadim B, Konrad D, Josef E, Michael F, Roland G, Gisela H, Benedikt M, Elmar P, Peter P, Christian R, Reiner S 2012 Proc. SPIE 8443 84431SGoogle Scholar
[23] David H L, Norbert S, Fred A J 2012 Opt. Eng. 51 011009Google Scholar
[24] 石永强, 邓楼楼, 吕政欣, 梅志武 2018 天文学报 59 44Google Scholar
Shi Y Q, Deng L L, Lü Z X, Mei Z W 2018 Acta Astronomica Sin. 59 44Google Scholar
[25] Odell S L, Elsner R F, Kolodziejczak J J, Weisskopf M C, Hughes J P , Speybroeck L P V 1992 Proc. SPIE 1742 171Google Scholar
[26] Kellogg E, Chartas G, Graessle D E, Hughes J P, Speybroeck L P V, Zhao P, Weisskopf M C, Elsner R F, Odell S L 1992 Proc. SPIE 1742 183Google Scholar
-
图 6 (a) 反射率测试系统示意图; (b) 反射率测试系统实物图, 其中1, 光阑孔及调整装置; 2, 标准探测器及调整装置; 3, 反射镜调整装置; 4, 测试探测器及调整装置; 5, 观察窗
Fig. 6. (a) Schematic of reflectivity measurement system; (b) photo of reflectivity measurement system, where, 1, aperture and its adjusting device; 2, standard detector and its adjusting device; 3, mirror adjusting device; 4, measurement detector and its adjusting device; 5, observation window.
表 1 光学系统设计参数
Table 1. Designed parameters of the optics.
项目 数值 能量范围/keV 0.2—10 视场/arcmin 2ω = 15 焦距/mm 1100 掠入射角范围/(°) 0.98—1.25 反射镜长度/mm 120 反射镜厚度/mm 0.5 几何面积/cm2 30 表 2 不同视场下的聚焦情况
Table 2. Focusing performance at different FOVs.
视场/(°) 像斑点列图 质心位置/mm 内环半径/mm 外环半径/mm 0 0 0 0.005 0.05 0.99 0.95 1.03 0.1 1.96 1.84 2.07 0.125 2.43 2.28 2.58 -
[1] Paul S R, Kent S W, Michael N L, Michael T W 2006 J. Guid. Control Dynam. 29 1Google Scholar
[2] Keith C G, Zaven A, Takashi O 2012 Proc. SPIE 8443 844313Google Scholar
[3] Jason W M, Munther A H, Luke M B W, Jennifer E V, Samuel R P, Sean R S, Wayne H Y, Zaven A, Paul S R, Kent S W, Ronald J L, Keith C G 2015 AIAA Guidance, Navigation, and Control Conference Kissimmee, USA, January 5–9, 2015 AIAA 2015-0865
[4] Xiong K, Wei C L, Liu L D 2016 Acta Astronaut. 128 473Google Scholar
[5] 王奕迪 2012 博士学位论文 (长沙: 国防科技大学)
Wang Y D 2016 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)
[6] Craig M, Jack S, Teruaki E, Michael L, Beverly J L 2018 Proc. SPIE 10699 106991VGoogle Scholar
[7] Takashi O, Yang S, Erin R B, Teruaki E, Larry O, Richard K, Larry L, John K, Sean F, Ai N, Steven J K, Zaven A, Keith G 2016 Proc. SPIE 9905 99054XGoogle Scholar
[8] Luke M B W, Jason W M, Munther A H, Samuel R P, Sean R S, Wayne H Y, Paul S R, Michael T W, Matthew K, Kent S W, Zaven A, Keith C G, Lucas G, Ismael C, Paul D, Ben S, Andrew L 2018 Proceedings of SpaceOps Conference Marseille, France, May 28–June 1, 2018 p2538
[9] 李连升, 邓楼楼, 梅志武, 吕政欣, 刘继红 2018 机械工程学报 54 23Google Scholar
Li L S, Deng L L, Mei Z W, Lv Z X, Liu J H 2018 JME 54 23Google Scholar
[10] 周庆勇, 魏子卿, 姜坤, 邓楼楼, 刘思伟, 姬剑锋, 任红飞, 王奕迪, 马高峰 2018 物理学报 67 050701Google Scholar
Zhou Q Y, Wei Z Q, Jiang K, Deng L L, Liu S W, Ji J F, Ren H F, Wang Y D, Ma G F 2018 Acta Phys. Sin. 67 050701Google Scholar
[11] Deng L L, Mei Z W, Li L S, Wang Y, Shi H, Xiong K, Lv Z X, Mo Y N, Wang L, Zuo F C, Chen J W, Shi Y Q, Xu C 2017 Proc. IAC 7 4347
[12] Brian R, Ron E, Darell E, Misha G, Jeffery K, Steve O D, Chet S, Martin W 2004 Proc. SPIE 5168 0277Google Scholar
[13] 王永刚, 崔天刚, 马文生, 陈斌, 陈波 2011 光学精密工程 19 743Google Scholar
Wang Y G, Cui T G, Ma W S, Chen B, Chen B 2011 Optics and Prec. Eng. 19 743Google Scholar
[14] 赵大春 2016 博士学位论文 (北京: 中国科学院大学)
Zhao D C 2016 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)
[15] Liao Y Y, Shen Z X, Huang Q S, Wang Z S 2017 Proc. SPIE 10399 103990LGoogle Scholar
[16] Shen Z X, Yu J, Ma B, Zhang Z, Huang Q S, Wang X Q, Wang K, Zuo F C, Lü Z X, Wang Z S 2018 Proc. SPIE 10699 106991BGoogle Scholar
[17] 李林森, 强鹏飞, 盛立志, 刘哲, 周晓红, 赵宝升, 张淳民 2018 物理学报 67 200701Google Scholar
Li L S, Qiang P F, Sheng L Z, Liu Z, Zhou X H, Zhao B S, Zhang C M 2018 Acta Phys. Sin. 67 200701Google Scholar
[18] Sheng L Z, Zhao B S, Qiang P F, Liu D 2016 Proc. SPIE 10328 103280MGoogle Scholar
[19] 孔繁星 2018 博士学位论文 (哈尔滨: 哈尔滨工业大学)
Kong F X 2018 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)
[20] Zuo F C, Mei Z W, Ma T, Deng L L, Shi Y Q, Li L S 2016 Proc. SPIE 9796 97961OGoogle Scholar
[21] Zuo F C, Deng L L, Mei Z W, Li L S, Lü Z X 2014 Proc. SPIE 9250 925004Google Scholar
[22] Peter F, Heinrich B, Bernd B, Wolfgang B, Vadim B, Konrad D, Josef E, Michael F, Roland G, Gisela H, Benedikt M, Elmar P, Peter P, Christian R, Reiner S 2012 Proc. SPIE 8443 84431SGoogle Scholar
[23] David H L, Norbert S, Fred A J 2012 Opt. Eng. 51 011009Google Scholar
[24] 石永强, 邓楼楼, 吕政欣, 梅志武 2018 天文学报 59 44Google Scholar
Shi Y Q, Deng L L, Lü Z X, Mei Z W 2018 Acta Astronomica Sin. 59 44Google Scholar
[25] Odell S L, Elsner R F, Kolodziejczak J J, Weisskopf M C, Hughes J P , Speybroeck L P V 1992 Proc. SPIE 1742 171Google Scholar
[26] Kellogg E, Chartas G, Graessle D E, Hughes J P, Speybroeck L P V, Zhao P, Weisskopf M C, Elsner R F, Odell S L 1992 Proc. SPIE 1742 183Google Scholar
计量
- 文章访问数: 7702
- PDF下载量: 75
- 被引次数: 0