搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多层嵌套掠入射光学系统研制及在轨性能评价

左富昌 梅志武 邓楼楼 石永强 贺盈波 李连升 周昊 谢军 张海力 孙艳

引用本文:
Citation:

多层嵌套掠入射光学系统研制及在轨性能评价

左富昌, 梅志武, 邓楼楼, 石永强, 贺盈波, 李连升, 周昊, 谢军, 张海力, 孙艳

Development and in-orbit performance evaluation of multi-layered nested grazing incidence optics

Zuo Fu-Chang, Mei Zhi-Wu, Deng Lou-Lou, Shi Yong-Qiang, He Ying-Bo, Li Lian-Sheng, Zhou Hao, Xie Jun, Zhang Hai-Li, Sun Yan
PDF
HTML
导出引用
  • X射线掠入射光学系统是我国首颗脉冲星导航试验卫星主载荷聚焦型脉冲星探测器的核心部件, 在增大探测面积、提高探测器灵敏度方面发挥着重要作用, 实现了国内首次在轨验证. 针对脉冲星导航探测X射线光子到达时间的特点, 开展了基于单次抛物面镜反射的掠入射聚焦光学系统设计, 通过理论计算与推导, 获得了可制造的光学系统反射镜设计参数, 光学系统理论有效面积为15.6 cm2@1 keV, 对设计的光学系统进行了聚焦性能仿真, 全视场范围内均满足探测器聚焦要求, 开展电铸镍复制工艺研究, 完成了芯轴的超精密控形加工, 在此基础上制造了4层金属反射镜, 利用北京同步辐射4B7B光束线测试了各层反射镜的反射率, 基于实测反射率的光学系统有效面积为13.2 cm2@1 keV. 最后基于在轨观测数据, 评价得到光学系统的有效面积为4.22 cm2@1 keV, 分析了地面标定有效面积与在轨评价有效面积存在差别的原因, 验证了设计、仿真与制造方法的正确性, 为大面积掠入射光学系统的研制奠定了基础.
    On November 10, 2016, China launched an X-ray pulsar navigation test satellite (XPNAV-1) to investigate the X-ray pulsar navigation technology, and a lot of scientific observation data have been obtained. The X-ray grazing incidence optics is a critical component of the focusing pulsar telescope. It plays an important role in increasing the effective area and enhancing the sensitivity of the telescope. It is also the first grazing incidence optics verified in orbit in China. According to the characteristic that the times of arrival (TOA) of X-ray photons are measured in pulsar navigation, the grazing incidence focusing optics based on single-reflection paraboloid mirror is designed, and manufacturable mirror design parameters are obtained through theoretical calculation and derivation. The theoretical effective area of the designed optics is 15.6 cm2 at 1 keV. The designed optics is then simulated to evaluate its focusing performance. It meets the focusing requirement in the full field of view. The electroforming nickel replication process used for manufacturing the mirrors for XMM-Newton and eRosita missions is investigated. A super-smooth mandrel is firstly fabricated and used for follow-up replication. An about-100 nm-thick gold layer is deposited on the mandrel, and serves as the reflection and release layer of the mirror. The nickel substrate of the mirror is electroformed on the gold layer. The mirror is finally obtained by releasing the nickel and gold layer from the mandrel. The patterns and roughness of the mandrel are then replicated onto the inner surface of the mirror. The 4-layered mirror is fabricated for the optics. The reflectivity for each layer of the 4-layered mirror is then measured with a dedicated facility on 4B7B beamline of BSRF. The effective area of the optics based on the above-measured reflectivity is 13.2 cm2 at 1 keV. Finally, according to the in-orbit observation data, the effective area of the optical system is evaluated to be a typical value of 4.22 cm2 at 1 keV, which is less than the ground-tested value. The reason for this is analyzed and it turns out to be due to the thermal deformation of mechanical structure and contamination of the mirrors. Therefore, in our future work, we will strictly control the environmental factors and implement space environmental adaptability design, while increasing the accuracy of the optics.
      通信作者: 左富昌, zfch-2004@163.com
    • 基金项目: 国家重点研发计划(批准号: 2017YFB0503300)资助的课题
      Corresponding author: Zuo Fu-Chang, zfch-2004@163.com
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFB0503300)
    [1]

    Paul S R, Kent S W, Michael N L, Michael T W 2006 J. Guid. Control Dynam. 29 1Google Scholar

    [2]

    Keith C G, Zaven A, Takashi O 2012 Proc. SPIE 8443 844313Google Scholar

    [3]

    Jason W M, Munther A H, Luke M B W, Jennifer E V, Samuel R P, Sean R S, Wayne H Y, Zaven A, Paul S R, Kent S W, Ronald J L, Keith C G 2015 AIAA Guidance, Navigation, and Control Conference Kissimmee, USA, January 5–9, 2015 AIAA 2015-0865

    [4]

    Xiong K, Wei C L, Liu L D 2016 Acta Astronaut. 128 473Google Scholar

    [5]

    王奕迪 2012 博士学位论文 (长沙: 国防科技大学)

    Wang Y D 2016 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [6]

    Craig M, Jack S, Teruaki E, Michael L, Beverly J L 2018 Proc. SPIE 10699 106991VGoogle Scholar

    [7]

    Takashi O, Yang S, Erin R B, Teruaki E, Larry O, Richard K, Larry L, John K, Sean F, Ai N, Steven J K, Zaven A, Keith G 2016 Proc. SPIE 9905 99054XGoogle Scholar

    [8]

    Luke M B W, Jason W M, Munther A H, Samuel R P, Sean R S, Wayne H Y, Paul S R, Michael T W, Matthew K, Kent S W, Zaven A, Keith C G, Lucas G, Ismael C, Paul D, Ben S, Andrew L 2018 Proceedings of SpaceOps Conference Marseille, France, May 28–June 1, 2018 p2538

    [9]

    李连升, 邓楼楼, 梅志武, 吕政欣, 刘继红 2018 机械工程学报 54 23Google Scholar

    Li L S, Deng L L, Mei Z W, Lv Z X, Liu J H 2018 JME 54 23Google Scholar

    [10]

    周庆勇, 魏子卿, 姜坤, 邓楼楼, 刘思伟, 姬剑锋, 任红飞, 王奕迪, 马高峰 2018 物理学报 67 050701Google Scholar

    Zhou Q Y, Wei Z Q, Jiang K, Deng L L, Liu S W, Ji J F, Ren H F, Wang Y D, Ma G F 2018 Acta Phys. Sin. 67 050701Google Scholar

    [11]

    Deng L L, Mei Z W, Li L S, Wang Y, Shi H, Xiong K, Lv Z X, Mo Y N, Wang L, Zuo F C, Chen J W, Shi Y Q, Xu C 2017 Proc. IAC 7 4347

    [12]

    Brian R, Ron E, Darell E, Misha G, Jeffery K, Steve O D, Chet S, Martin W 2004 Proc. SPIE 5168 0277Google Scholar

    [13]

    王永刚, 崔天刚, 马文生, 陈斌, 陈波 2011 光学精密工程 19 743Google Scholar

    Wang Y G, Cui T G, Ma W S, Chen B, Chen B 2011 Optics and Prec. Eng. 19 743Google Scholar

    [14]

    赵大春 2016 博士学位论文 (北京: 中国科学院大学)

    Zhao D C 2016 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [15]

    Liao Y Y, Shen Z X, Huang Q S, Wang Z S 2017 Proc. SPIE 10399 103990LGoogle Scholar

    [16]

    Shen Z X, Yu J, Ma B, Zhang Z, Huang Q S, Wang X Q, Wang K, Zuo F C, Lü Z X, Wang Z S 2018 Proc. SPIE 10699 106991BGoogle Scholar

    [17]

    李林森, 强鹏飞, 盛立志, 刘哲, 周晓红, 赵宝升, 张淳民 2018 物理学报 67 200701Google Scholar

    Li L S, Qiang P F, Sheng L Z, Liu Z, Zhou X H, Zhao B S, Zhang C M 2018 Acta Phys. Sin. 67 200701Google Scholar

    [18]

    Sheng L Z, Zhao B S, Qiang P F, Liu D 2016 Proc. SPIE 10328 103280MGoogle Scholar

    [19]

    孔繁星 2018 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Kong F X 2018 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

    [20]

    Zuo F C, Mei Z W, Ma T, Deng L L, Shi Y Q, Li L S 2016 Proc. SPIE 9796 97961OGoogle Scholar

    [21]

    Zuo F C, Deng L L, Mei Z W, Li L S, Lü Z X 2014 Proc. SPIE 9250 925004Google Scholar

    [22]

    Peter F, Heinrich B, Bernd B, Wolfgang B, Vadim B, Konrad D, Josef E, Michael F, Roland G, Gisela H, Benedikt M, Elmar P, Peter P, Christian R, Reiner S 2012 Proc. SPIE 8443 84431SGoogle Scholar

    [23]

    David H L, Norbert S, Fred A J 2012 Opt. Eng. 51 011009Google Scholar

    [24]

    石永强, 邓楼楼, 吕政欣, 梅志武 2018 天文学报 59 44Google Scholar

    Shi Y Q, Deng L L, Lü Z X, Mei Z W 2018 Acta Astronomica Sin. 59 44Google Scholar

    [25]

    Odell S L, Elsner R F, Kolodziejczak J J, Weisskopf M C, Hughes J P , Speybroeck L P V 1992 Proc. SPIE 1742 171Google Scholar

    [26]

    Kellogg E, Chartas G, Graessle D E, Hughes J P, Speybroeck L P V, Zhao P, Weisskopf M C, Elsner R F, Odell S L 1992 Proc. SPIE 1742 183Google Scholar

  • 图 1  单层反射镜光路图

    Fig. 1.  Schematic of optical path of a parabolic mirror.

    图 2  相邻反射镜之间的关系

    Fig. 2.  Relationship between adjacent mirrors.

    图 3  反射镜加工工艺流程

    Fig. 3.  Fabrication process for mirrors.

    图 4  芯轴斜率误差

    Fig. 4.  Measured slope profile residual of mandrel.

    图 5  (a)复制芯轴; (b)复制的反射镜; (c)光学系统; (d)发射前的光学系统

    Fig. 5.  (a) Mandrel; (b) mirror replicated; (c) optics assembly; (d) optics on the satellite.

    图 6  (a) 反射率测试系统示意图; (b) 反射率测试系统实物图, 其中1, 光阑孔及调整装置; 2, 标准探测器及调整装置; 3, 反射镜调整装置; 4, 测试探测器及调整装置; 5, 观察窗

    Fig. 6.  (a) Schematic of reflectivity measurement system; (b) photo of reflectivity measurement system, where, 1, aperture and its adjusting device; 2, standard detector and its adjusting device; 3, mirror adjusting device; 4, measurement detector and its adjusting device; 5, observation window.

    图 7  实测反射率

    Fig. 7.  Measured reflectivity.

    图 8  基于实测反射率与理论反射率的有效面积

    Fig. 8.  Effective areas based on measured and theoretical reflectivity.

    图 9  Crab脉冲星流量时变特性

    Fig. 9.  Time-varying characteristics of Crab pulsar flux.

    图 10  Crab脉冲星能谱特性

    Fig. 10.  Spectra of Crab pulsar flux.

    图 11  基于观测数据评价的有效面积曲线

    Fig. 11.  Evaluated effective area based on in-orbit data.

    表 1  光学系统设计参数

    Table 1.  Designed parameters of the optics.

    项目数值
    能量范围/keV0.2—10
    视场/arcmin2ω = 15
    焦距/mm1100
    掠入射角范围/(°)0.98—1.25
    反射镜长度/mm120
    反射镜厚度/mm0.5
    几何面积/cm230
    下载: 导出CSV

    表 2  不同视场下的聚焦情况

    Table 2.  Focusing performance at different FOVs.

    视场/(°)像斑点列图质心位置/mm内环半径/mm外环半径/mm
    0000.005
    0.050.990.951.03
    0.11.961.842.07
    0.1252.432.282.58
    下载: 导出CSV
  • [1]

    Paul S R, Kent S W, Michael N L, Michael T W 2006 J. Guid. Control Dynam. 29 1Google Scholar

    [2]

    Keith C G, Zaven A, Takashi O 2012 Proc. SPIE 8443 844313Google Scholar

    [3]

    Jason W M, Munther A H, Luke M B W, Jennifer E V, Samuel R P, Sean R S, Wayne H Y, Zaven A, Paul S R, Kent S W, Ronald J L, Keith C G 2015 AIAA Guidance, Navigation, and Control Conference Kissimmee, USA, January 5–9, 2015 AIAA 2015-0865

    [4]

    Xiong K, Wei C L, Liu L D 2016 Acta Astronaut. 128 473Google Scholar

    [5]

    王奕迪 2012 博士学位论文 (长沙: 国防科技大学)

    Wang Y D 2016 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [6]

    Craig M, Jack S, Teruaki E, Michael L, Beverly J L 2018 Proc. SPIE 10699 106991VGoogle Scholar

    [7]

    Takashi O, Yang S, Erin R B, Teruaki E, Larry O, Richard K, Larry L, John K, Sean F, Ai N, Steven J K, Zaven A, Keith G 2016 Proc. SPIE 9905 99054XGoogle Scholar

    [8]

    Luke M B W, Jason W M, Munther A H, Samuel R P, Sean R S, Wayne H Y, Paul S R, Michael T W, Matthew K, Kent S W, Zaven A, Keith C G, Lucas G, Ismael C, Paul D, Ben S, Andrew L 2018 Proceedings of SpaceOps Conference Marseille, France, May 28–June 1, 2018 p2538

    [9]

    李连升, 邓楼楼, 梅志武, 吕政欣, 刘继红 2018 机械工程学报 54 23Google Scholar

    Li L S, Deng L L, Mei Z W, Lv Z X, Liu J H 2018 JME 54 23Google Scholar

    [10]

    周庆勇, 魏子卿, 姜坤, 邓楼楼, 刘思伟, 姬剑锋, 任红飞, 王奕迪, 马高峰 2018 物理学报 67 050701Google Scholar

    Zhou Q Y, Wei Z Q, Jiang K, Deng L L, Liu S W, Ji J F, Ren H F, Wang Y D, Ma G F 2018 Acta Phys. Sin. 67 050701Google Scholar

    [11]

    Deng L L, Mei Z W, Li L S, Wang Y, Shi H, Xiong K, Lv Z X, Mo Y N, Wang L, Zuo F C, Chen J W, Shi Y Q, Xu C 2017 Proc. IAC 7 4347

    [12]

    Brian R, Ron E, Darell E, Misha G, Jeffery K, Steve O D, Chet S, Martin W 2004 Proc. SPIE 5168 0277Google Scholar

    [13]

    王永刚, 崔天刚, 马文生, 陈斌, 陈波 2011 光学精密工程 19 743Google Scholar

    Wang Y G, Cui T G, Ma W S, Chen B, Chen B 2011 Optics and Prec. Eng. 19 743Google Scholar

    [14]

    赵大春 2016 博士学位论文 (北京: 中国科学院大学)

    Zhao D C 2016 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [15]

    Liao Y Y, Shen Z X, Huang Q S, Wang Z S 2017 Proc. SPIE 10399 103990LGoogle Scholar

    [16]

    Shen Z X, Yu J, Ma B, Zhang Z, Huang Q S, Wang X Q, Wang K, Zuo F C, Lü Z X, Wang Z S 2018 Proc. SPIE 10699 106991BGoogle Scholar

    [17]

    李林森, 强鹏飞, 盛立志, 刘哲, 周晓红, 赵宝升, 张淳民 2018 物理学报 67 200701Google Scholar

    Li L S, Qiang P F, Sheng L Z, Liu Z, Zhou X H, Zhao B S, Zhang C M 2018 Acta Phys. Sin. 67 200701Google Scholar

    [18]

    Sheng L Z, Zhao B S, Qiang P F, Liu D 2016 Proc. SPIE 10328 103280MGoogle Scholar

    [19]

    孔繁星 2018 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Kong F X 2018 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

    [20]

    Zuo F C, Mei Z W, Ma T, Deng L L, Shi Y Q, Li L S 2016 Proc. SPIE 9796 97961OGoogle Scholar

    [21]

    Zuo F C, Deng L L, Mei Z W, Li L S, Lü Z X 2014 Proc. SPIE 9250 925004Google Scholar

    [22]

    Peter F, Heinrich B, Bernd B, Wolfgang B, Vadim B, Konrad D, Josef E, Michael F, Roland G, Gisela H, Benedikt M, Elmar P, Peter P, Christian R, Reiner S 2012 Proc. SPIE 8443 84431SGoogle Scholar

    [23]

    David H L, Norbert S, Fred A J 2012 Opt. Eng. 51 011009Google Scholar

    [24]

    石永强, 邓楼楼, 吕政欣, 梅志武 2018 天文学报 59 44Google Scholar

    Shi Y Q, Deng L L, Lü Z X, Mei Z W 2018 Acta Astronomica Sin. 59 44Google Scholar

    [25]

    Odell S L, Elsner R F, Kolodziejczak J J, Weisskopf M C, Hughes J P , Speybroeck L P V 1992 Proc. SPIE 1742 171Google Scholar

    [26]

    Kellogg E, Chartas G, Graessle D E, Hughes J P, Speybroeck L P V, Zhao P, Weisskopf M C, Elsner R F, Odell S L 1992 Proc. SPIE 1742 183Google Scholar

  • [1] 张问博, 刘少承, 廖亮, 魏文崟, 李乐天, 王亮, 颜宁, 钱金平, 臧庆. 基于超级电容器的充放电电路系统研制及其在EAST限制器探针测量中的应用. 物理学报, 2024, 73(6): 065203. doi: 10.7498/aps.73.20231697
    [2] 邬丹丹, 潘力, 周哲, 付威威, 朱海龙, 董月芳. 近红外二区小动物活体荧光成像系统的研制. 物理学报, 2024, 73(7): 078701. doi: 10.7498/aps.73.20231910
    [3] 陈翠红, 李占奎, 王秀华, 李荣华, 方芳, 王柱生, 李海霞. 高性能PIN-硅探测器的研制及其在高能放射性核束实验中的应用测试. 物理学报, 2023, 72(12): 122902. doi: 10.7498/aps.72.20230213
    [4] 吕泽琦, 谢彦召, 苟明岳, 陈晓宇, 周金山, 李梅, 周熠. 一种200 kV的多功能脉冲辐射系统研制. 物理学报, 2021, 70(20): 205206. doi: 10.7498/aps.70.20210583
    [5] 殷娇, 肖国梁, 陈程远, 冯北滨, 张轶泼, 钟武律. 用于超声分子束束流特性测试的纹影系统研制及应用. 物理学报, 2020, 69(21): 215202. doi: 10.7498/aps.69.20201383
    [6] 朱金龙, 赵予生, 靳常青. 水合物研制、结构与性能及其在能源环境中的应用. 物理学报, 2019, 68(1): 018203. doi: 10.7498/aps.68.20181639
    [7] 赵芳婧, 高峰, 韩建新, 周驰华, 孟俊伟, 王叶兵, 郭阳, 张首刚, 常宏. 小型化锶光钟物理系统的研制. 物理学报, 2018, 67(5): 050601. doi: 10.7498/aps.67.20172584
    [8] 刘军, 陈帛雄, 许冠军, 崔晓旭, 白波, 张林波, 陈龙, 焦东东, 王涛, 刘涛, 董瑞芳, 张首刚. 高精细度光学参考腔的自主化研制. 物理学报, 2017, 66(8): 080601. doi: 10.7498/aps.66.080601
    [9] 徐能, 盛立志, 张大鹏, 陈琛, 赵宝升, 郑伟, 刘纯亮. X射线脉冲星导航动态模拟实验系统研制与性能测试. 物理学报, 2017, 66(5): 059701. doi: 10.7498/aps.66.059701
    [10] 阮军, 王叶兵, 常宏, 姜海峰, 刘涛, 董瑞芳, 张首刚. 时间频率基准装置的研制现状. 物理学报, 2015, 64(16): 160308. doi: 10.7498/aps.64.160308
    [11] 庞武斌, 岑兆丰, 李晓彤, 钱炜, 尚红波, 许伟才. 偏振对光学系统成像质量的影响. 物理学报, 2012, 61(23): 234202. doi: 10.7498/aps.61.234202
    [12] 孟飞, 曹士英, 蔡岳, 王贵重, 曹建平, 李天初, 方占军. 光纤飞秒光学频率梳的研制及绝对光学频率测量. 物理学报, 2011, 60(10): 100601. doi: 10.7498/aps.60.100601
    [13] 周海洋, 朱晓东, 詹如娟. CVD金刚石辐射探测器研制及性能测试. 物理学报, 2010, 59(3): 1620-1624. doi: 10.7498/aps.59.1620
    [14] 杨亚良, 丁志华, 王凯, 吴凌, 吴兰. 全场光学相干层析成像系统的研制. 物理学报, 2009, 58(3): 1773-1778. doi: 10.7498/aps.58.1773
    [15] 向永春, 龚 建, 李 伟, 卞直上, 郝樊华, 王红侠, 王 茜, 熊宗华. 37Ar测量系统的研制与能谱测量方法研究. 物理学报, 2008, 57(2): 784-789. doi: 10.7498/aps.57.784
    [16] 白海力, 姜恩永, 王存达, 田仁玉. 热处理Co/C软X射线多层膜的掠入射反射率增强. 物理学报, 1997, 46(4): 732-739. doi: 10.7498/aps.46.732
    [17] 封碧波, 王明常, 王之江, 陆载通, 张立芬, 冯诚士. 新型小周期wiggler的研制. 物理学报, 1992, 41(3): 442-447. doi: 10.7498/aps.41.442
    [18] 洪熙春, 黄维刚, 王绍民. 失调光学系统的衍射积分公式. 物理学报, 1982, 31(12): 75-83. doi: 10.7498/aps.31.75
    [19] 杨国桢, 顾本源. 光学系统中振幅和相位的恢复问题. 物理学报, 1981, 30(3): 410-413. doi: 10.7498/aps.30.410
    [20] 王之江. 同轴柱面光学系统的象差. 物理学报, 1960, 16(4): 205-213. doi: 10.7498/aps.16.205
计量
  • 文章访问数:  7883
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-22
  • 修回日期:  2019-10-17
  • 刊出日期:  2020-02-05

/

返回文章
返回