搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于拟合衰减差自补偿的分布式光纤温度传感器

马天兵 訾保威 郭永存 凌六一 黄友锐 贾晓芬

引用本文:
Citation:

基于拟合衰减差自补偿的分布式光纤温度传感器

马天兵, 訾保威, 郭永存, 凌六一, 黄友锐, 贾晓芬

Distributed optical fiber temperature sensor based on self-compensation of fitting attenuation difference

Ma Tian-Bing, Zi Bao-Wei, Guo Yong-Cun, Ling Liu-Yi, Huang You-Rui, Jia Xiao-Fen
PDF
HTML
导出引用
  • 针对斯托克斯光和反斯托克斯光的本质损耗、附加损耗使分布式光纤温度传感器产生测温误差的问题, 通过对分布式光纤温度传感器的温度解调原理的研究, 提出了拟合斯托克斯光与反斯托克斯光之间衰减差的方法实现温度自补偿, 以此减小测温误差. 以传感光纤上不同位置的两部分作为参考段和测温段, 参考段的光信号作为测温段拟合多阶衰减差和解调温度的参量, 通过引入多阶拟合结果解调温度, 减小因斯托克斯光和反斯托克斯光的本质损耗、附加损耗导致的温度误差, 实现温度的初步修正. 改变光纤上同一位置的温度, 取3组不同温度值及对应信号值计算引入拟合衰减差前后的瑞利噪声, 分析了瑞利噪声与光纤长度和温度的关系, 通过引入拟合衰减差消除瑞利噪声, 减小了斯托克斯光和反斯托克斯光的本质损耗、附加损耗导致的瑞利噪声误差, 实现温度的再次修正. 分析比较多阶衰减差拟合结果对测温误差以及消除瑞利噪声的影响, 获得最优拟合阶次. 在拟合因参考段的附加损耗而导致的测温段的附加误差后, 通过拟合结果进行温度补偿, 完成了最终温度修正. 实验结果表明, 在30—90 ℃, 引入一阶线性拟合结果的温度修正效果最好, 经过三次修正后, 测温误差从10.50 ℃降低至0.90 ℃.
    The temperature error caused by the essential loss and the additional loss of Stokes light and anti-Stokes light widely exist in the distributed optical fiber temperature sensor (DTS). According to the temperature demodulation principle of the DTS, a method of fitting the attenuation difference between Stokes light and anti-Stokes light is proposed, which can realize the temperature self-compensation to reduce the temperature measurement error. Two parts at the different positions of the sensing fiber are regarded as the reference section and the temperature measuring section, respectively. The optical signal of the reference section is used as a parameter when demodulating the temperature and fitting the attenuation difference, and the attenuation difference between the Stokes light and the anti-Stokes light is multi-order fitted by the optical signal of the temperature measuring section, then the multi-order fitting results are used to demodulate the temperature for reducing the temperature error caused by the essential loss and additional loss of the Stokes light and anti-Stokes light, in order to implement the preliminary correction of the temperature. Three groups of the different measuring temperature values at the same position of the optical fiber as well as their corresponding signal values are taken in calculation for eliminating the Rayleigh noise, and the relationship of Rayleigh noise with fiber length and temperature are analyzed, and thus further calculating the Rayleigh noise based on the fitting attenuation difference. The influence of the multi-order attenuation difference on the error in temperature measurement and that on the elimination of the Rayleigh noise are compared with each other, and the Rayleigh noise error caused by the essential loss and additional loss of the Stokes light and anti-Stokes light are reduced, then the temperature is corrected again by eliminating the Rayleigh noise. The effect of the multi-order attenuation difference fitting result on the temperature measurement error and on the elimination of Rayleigh noise are analyzed and compared with each other, then the optimal fitting order is obtained. After fitting the additional error at the temperature measurement section that is caused by the additional loss at the reference section, the temperature compensation is carried out by the fitting result, then the final temperature correction is completed. The experimental results show that the temperature correction effect is best by using the first-order linear fitting results in a temperature range of 30-90 ℃, and the temperature measurement error is reduced from 10.50 ℃ to 0.90 ℃ after being corrected three times.
      通信作者: 马天兵, dfmtb@163.com
    • 基金项目: 国家重点研发计划(批准号: 2016YFC060908)资助的课题
      Corresponding author: Ma Tian-Bing, dfmtb@163.com
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2016YFC060908)
    [1]

    Geng J S, Sun Q, Zhang Y C, Gong W Y, Du S 2018 J. Loss Prevent. Proc. 55 144Google Scholar

    [2]

    O'Keefe J M K, Neace E R, Hammond M L, Hower J C, Engle M A, East J, Geboy N J, Olea R A, Henke K R, Copley G C, Lemley E, Nally R S H, Hansen A E, Richardson A R, Satterwhite A B, Stracher G B, Radke L F, Smeltzer C, Romanek C, Blake D R, Schroeder P A, Emsbo-Mattingly S D, Stout S A 2018 Int. J. Coal Geol. 195 304Google Scholar

    [3]

    Dunnington L, Nakagawa M 2017 Environ. Pollut. 229 139Google Scholar

    [4]

    Mohalik N K, Lester E, Lowndes I S, Singh V K 2016 Carbon Manag. 7 317Google Scholar

    [5]

    Yan W J, Hu M, Liang J R, Wang D F, Wei Y L, Qin Y X 2016 Chin. Phys. B 25 040702Google Scholar

    [6]

    Wang Z L, Zhang S S, Chang J, Lü G P, Wang W J, Jiang S, Liu X Z, Liu X H, Luo S, Liu Y N 2014 Optik 125 1821Google Scholar

    [7]

    刘铁根, 于哲, 江俊峰, 刘琨, 张学智, 丁振扬, 王双, 胡浩丰, 韩群, 张红霞, 李志宏 2017 物理学报 66 070705Google Scholar

    Liu T G, Yu Z, Jiang J F, Liu K, Zhang X Z, Ding Z Y, Wang S, Hu H F, Han Q, Zhang H X, Li Z H 2017 Acta Phys. Sin. 66 070705Google Scholar

    [8]

    孙琪真, 刘德明, 王健 2007 物理学报 56 5903Google Scholar

    Sun Q Z, Liu D M, Wang J 2007 Acta Phys. Sin. 56 5903Google Scholar

    [9]

    饶云江 2017 物理学报 66 074207Google Scholar

    Rao Y J 2017 Acta Phys. Sin. 66 074207Google Scholar

    [10]

    Wen S Z, Xiong W C, Huang L P, Wang Z R, Zhang X B, He Z H 2018 Chin. Phys. B 27 090701Google Scholar

    [11]

    Bolognini G, Hartog A 2013 Opt. Fiber Technol. 19 678Google Scholar

    [12]

    王剑锋, 刘红林, 张淑琴, 余向东, 孙忠周, 金尚忠, 张在宣 2013 光谱学与光谱分析 33 865Google Scholar

    Wang J F, Liu H L, Zhang S Q, Yu X D, Sun Z Z, Jin S Z, Zhang Z X 2013 Spectrosc. Spect. Anal. 33 865Google Scholar

    [13]

    余向东, 张在宣, 祝海忠, 金尚忠, 刘红林, 王剑锋 2011 光子学报 40 1870Google Scholar

    Yu X D, Zhang Z X, Zhu H Z, Jin S Z, Liu H L, Wang J F 2011 Acta. Photon. Sin. 40 1870Google Scholar

    [14]

    He H L, Dyck M F, Horton R, Li M, Jin H J, Si B C 2018 Adv. Agron. 148 173Google Scholar

    [15]

    Chai Q, Luo Y, Ren J, Zhang J Z, Yang J, Yuan L B, Peng G D 2019 Opt. Eng. 58 072007

    [16]

    孙苗, 汤玉泉, 杨爽, 李俊, Culshaw B, 董凤忠 2015 光电子·激光 26 2070

    Sun M, Tang Y Q, Yang S, Li J, Culshaw B, Dong F Z 2015 J. Optoelectron. Laser 26 2070

    [17]

    Cao Y L, Yang F, Xu D, Ye Q, Cai H W, Fang Z J 2016 Chin. Phys. Lett. 33 050701Google Scholar

    [18]

    Yang C, Wang M, Tang M, Wu H, Zhao C, Liu T Q, Fu S N, Tong W J 2018 Appl. Opt. 57 6923Google Scholar

    [19]

    Shang C, Wu C Q, Li Z Y, Yang S S 2011 Chin. Phys. Lett. 28 094212Google Scholar

    [20]

    Liu Y P, Ma L, Yang C, Tong W J, He Z Y 2018 Opt. Express 26 20562Google Scholar

    [21]

    Hwang D, Yoon D J, Kwon I B, Seo D C, Chung Y J 2010 Opt. Express 18 9747Google Scholar

    [22]

    Suh K, Lee C 2008 Opt. Lett. 33 1845Google Scholar

    [23]

    Wang Z L, Zhang S S, Chang J, Lü P G, Wang W J, Jiang S, Liu X Z, Liu X H, Luo S, Sun B N, Liu Y N 2013 Opt. Quant. Electron. 45 1087Google Scholar

    [24]

    van de Giesen N, Steele-Dunne S C, Jansen J, Hoes O, Hausner M B, Tyler S, Selker J 2012 Sensors 12 5471Google Scholar

    [25]

    汤玉泉, 孙苗, 李俊, 杨爽, Culshaw B, 董凤忠 2015 光子学报 44 0506006Google Scholar

    Tang Y Q, Sun M, Li J, Yang S, Culshaw B, Dong F Z 2015 Acta. Photon. Sin. 44 0506006Google Scholar

    [26]

    Sun B N, Chang J, Lian J, Wang Z L, Lü G P, Liu X Z, Wang W J, Zhou S, Wei W, Jiang S, Liu Y N, Luo S, Liu X H, Liu Z, ZhangS S 2013 Opt. Commun. 306 117Google Scholar

    [27]

    Yin Y X, Wu Z F, Sun S W, Tian L, Wang X B, Wu Y D, Zhang D M 2019 Chin. Phys. B 28 074202Google Scholar

    [28]

    汤玉泉, 孙苗, 李俊, 杨爽, Culshaw B, 董凤忠 2015 光电子·激光 26 847

    Tang Y Q, Sun M, Li J, Yang S, Culshaw B, Dong F Z 2015 J. Optoelectron. Laser 26 847

    [29]

    Wang Z L, Chang J, Zhang S S, Luo S, Jia C W, Jiang S, Sun B N, Liu Y N, Wei W, Liu X H, Lü G P 2015 Optik 126 270Google Scholar

    [30]

    柴敬 2003 博士学位论文 (西安: 西安科技大学)

    Chai J 2003 Ph. D. Dissertation (Xi’an: Xi’an University of Science and Technology) (in Chinese)

    [31]

    Lin Q, Yaman F, Agrawal G P 2007 Phys. Rev. A 75 023803Google Scholar

    [32]

    Wang Z L, Chang J, Zhang S S, Sun B N, Jiang S, Luo S, Jia C W, Liu Y N, Liu X H, Lü G P, Liu X Z 2014 Opt. Quant. Electron. 46 821Google Scholar

  • 图 1  RDTS实验系统原理图

    Fig. 1.  RDTS experimental system schematic.

    图 2  RDTS实验装置图

    Fig. 2.  RDTS experimental device diagram.

    图 3  实验结果 (a) 20 ℃时光纤中的散射光信号; (b) 温度变化时的散射光信号; (c) Δα ≈ 0时的温度解调结果; (d)衰减差拟合结果

    Fig. 3.  Experimental results: (a) Scattered light signal in fiber at 20 ℃; (b) scattered light signal when temperature changes; (c) temperature demodulation results of Δα ≈ 0; (d) fitting results of attenuation difference.

    图 4  温度修正后的测量结果 (a)初步修正后的测量值; (b)温度修正前后的测温误差

    Fig. 4.  Temperature corrected measurement: (a) Preliminary corrected measurement; (b) temperature measurement error before and after temperature correction.

    图 5  温度最终修正后的测量结果 (a) 40 ℃和60 ℃时光纤中的瑞利噪声; (b)不同温度下的瑞利噪声; (c)引入Δα前后消除瑞利噪声的测量结果; (d)引入Δα前后消除瑞利噪声的温度误差

    Fig. 5.  Temperature corrected final measurement results: (a) Rayleigh noise in fiber at 40 ℃ and 60 ℃; (b) rayleigh noise at different temperatures; (c) measurement results without Rayleigh noise before and after the introduction of Δα; (d) temperature error without Rayleigh noise before and after the introduction of Δα.

    图 6  各阶修正效果 (a)引入各阶拟合结果二次修正后的误差; (b)引入各阶结果后二次修正的温度增量

    Fig. 6.  Temperature error after each order fitting: (a) The second correction error after introducing the fitting results of each order; (b) temperature increment for secondary correction after introduction of each order result.

    图 7  附加误差修正 (a)附加误差拟合曲线; (b)附加误差修正前后的测温误差

    Fig. 7.  Additional error correction: (a) Additional error fitting result; (b) temperature error before and after additional error correction.

  • [1]

    Geng J S, Sun Q, Zhang Y C, Gong W Y, Du S 2018 J. Loss Prevent. Proc. 55 144Google Scholar

    [2]

    O'Keefe J M K, Neace E R, Hammond M L, Hower J C, Engle M A, East J, Geboy N J, Olea R A, Henke K R, Copley G C, Lemley E, Nally R S H, Hansen A E, Richardson A R, Satterwhite A B, Stracher G B, Radke L F, Smeltzer C, Romanek C, Blake D R, Schroeder P A, Emsbo-Mattingly S D, Stout S A 2018 Int. J. Coal Geol. 195 304Google Scholar

    [3]

    Dunnington L, Nakagawa M 2017 Environ. Pollut. 229 139Google Scholar

    [4]

    Mohalik N K, Lester E, Lowndes I S, Singh V K 2016 Carbon Manag. 7 317Google Scholar

    [5]

    Yan W J, Hu M, Liang J R, Wang D F, Wei Y L, Qin Y X 2016 Chin. Phys. B 25 040702Google Scholar

    [6]

    Wang Z L, Zhang S S, Chang J, Lü G P, Wang W J, Jiang S, Liu X Z, Liu X H, Luo S, Liu Y N 2014 Optik 125 1821Google Scholar

    [7]

    刘铁根, 于哲, 江俊峰, 刘琨, 张学智, 丁振扬, 王双, 胡浩丰, 韩群, 张红霞, 李志宏 2017 物理学报 66 070705Google Scholar

    Liu T G, Yu Z, Jiang J F, Liu K, Zhang X Z, Ding Z Y, Wang S, Hu H F, Han Q, Zhang H X, Li Z H 2017 Acta Phys. Sin. 66 070705Google Scholar

    [8]

    孙琪真, 刘德明, 王健 2007 物理学报 56 5903Google Scholar

    Sun Q Z, Liu D M, Wang J 2007 Acta Phys. Sin. 56 5903Google Scholar

    [9]

    饶云江 2017 物理学报 66 074207Google Scholar

    Rao Y J 2017 Acta Phys. Sin. 66 074207Google Scholar

    [10]

    Wen S Z, Xiong W C, Huang L P, Wang Z R, Zhang X B, He Z H 2018 Chin. Phys. B 27 090701Google Scholar

    [11]

    Bolognini G, Hartog A 2013 Opt. Fiber Technol. 19 678Google Scholar

    [12]

    王剑锋, 刘红林, 张淑琴, 余向东, 孙忠周, 金尚忠, 张在宣 2013 光谱学与光谱分析 33 865Google Scholar

    Wang J F, Liu H L, Zhang S Q, Yu X D, Sun Z Z, Jin S Z, Zhang Z X 2013 Spectrosc. Spect. Anal. 33 865Google Scholar

    [13]

    余向东, 张在宣, 祝海忠, 金尚忠, 刘红林, 王剑锋 2011 光子学报 40 1870Google Scholar

    Yu X D, Zhang Z X, Zhu H Z, Jin S Z, Liu H L, Wang J F 2011 Acta. Photon. Sin. 40 1870Google Scholar

    [14]

    He H L, Dyck M F, Horton R, Li M, Jin H J, Si B C 2018 Adv. Agron. 148 173Google Scholar

    [15]

    Chai Q, Luo Y, Ren J, Zhang J Z, Yang J, Yuan L B, Peng G D 2019 Opt. Eng. 58 072007

    [16]

    孙苗, 汤玉泉, 杨爽, 李俊, Culshaw B, 董凤忠 2015 光电子·激光 26 2070

    Sun M, Tang Y Q, Yang S, Li J, Culshaw B, Dong F Z 2015 J. Optoelectron. Laser 26 2070

    [17]

    Cao Y L, Yang F, Xu D, Ye Q, Cai H W, Fang Z J 2016 Chin. Phys. Lett. 33 050701Google Scholar

    [18]

    Yang C, Wang M, Tang M, Wu H, Zhao C, Liu T Q, Fu S N, Tong W J 2018 Appl. Opt. 57 6923Google Scholar

    [19]

    Shang C, Wu C Q, Li Z Y, Yang S S 2011 Chin. Phys. Lett. 28 094212Google Scholar

    [20]

    Liu Y P, Ma L, Yang C, Tong W J, He Z Y 2018 Opt. Express 26 20562Google Scholar

    [21]

    Hwang D, Yoon D J, Kwon I B, Seo D C, Chung Y J 2010 Opt. Express 18 9747Google Scholar

    [22]

    Suh K, Lee C 2008 Opt. Lett. 33 1845Google Scholar

    [23]

    Wang Z L, Zhang S S, Chang J, Lü P G, Wang W J, Jiang S, Liu X Z, Liu X H, Luo S, Sun B N, Liu Y N 2013 Opt. Quant. Electron. 45 1087Google Scholar

    [24]

    van de Giesen N, Steele-Dunne S C, Jansen J, Hoes O, Hausner M B, Tyler S, Selker J 2012 Sensors 12 5471Google Scholar

    [25]

    汤玉泉, 孙苗, 李俊, 杨爽, Culshaw B, 董凤忠 2015 光子学报 44 0506006Google Scholar

    Tang Y Q, Sun M, Li J, Yang S, Culshaw B, Dong F Z 2015 Acta. Photon. Sin. 44 0506006Google Scholar

    [26]

    Sun B N, Chang J, Lian J, Wang Z L, Lü G P, Liu X Z, Wang W J, Zhou S, Wei W, Jiang S, Liu Y N, Luo S, Liu X H, Liu Z, ZhangS S 2013 Opt. Commun. 306 117Google Scholar

    [27]

    Yin Y X, Wu Z F, Sun S W, Tian L, Wang X B, Wu Y D, Zhang D M 2019 Chin. Phys. B 28 074202Google Scholar

    [28]

    汤玉泉, 孙苗, 李俊, 杨爽, Culshaw B, 董凤忠 2015 光电子·激光 26 847

    Tang Y Q, Sun M, Li J, Yang S, Culshaw B, Dong F Z 2015 J. Optoelectron. Laser 26 847

    [29]

    Wang Z L, Chang J, Zhang S S, Luo S, Jia C W, Jiang S, Sun B N, Liu Y N, Wei W, Liu X H, Lü G P 2015 Optik 126 270Google Scholar

    [30]

    柴敬 2003 博士学位论文 (西安: 西安科技大学)

    Chai J 2003 Ph. D. Dissertation (Xi’an: Xi’an University of Science and Technology) (in Chinese)

    [31]

    Lin Q, Yaman F, Agrawal G P 2007 Phys. Rev. A 75 023803Google Scholar

    [32]

    Wang Z L, Chang J, Zhang S S, Sun B N, Jiang S, Luo S, Jia C W, Liu Y N, Liu X H, Lü G P, Liu X Z 2014 Opt. Quant. Electron. 46 821Google Scholar

  • [1] 齐海东, 王晶, 陈中军, 吴忠华, 宋西平. 温度对马氏体和铁素体晶格常数影响规律. 物理学报, 2022, 71(9): 098301. doi: 10.7498/aps.71.20211954
    [2] 王钰豪, 刘建国, 徐亮, 刘文清, 宋庆利, 金岭, 徐寒杨. 不同温度压力对浓度反演精度的定量分析. 物理学报, 2021, 70(7): 073201. doi: 10.7498/aps.70.20201672
    [3] 祁科武, 赵宇宏, 郭慧俊, 田晓林, 侯华. 温度对小角度对称倾斜晶界位错运动影响的晶体相场模拟. 物理学报, 2019, 68(17): 170504. doi: 10.7498/aps.68.20190051
    [4] 张伟, 刘颖刚, 张庭, 刘鑫, 傅海威, 贾振安. 芯内双微孔复合腔结构的光纤法布里-珀罗传感器研究. 物理学报, 2018, 67(20): 204203. doi: 10.7498/aps.67.20180528
    [5] 杨易, 徐贲, 刘亚铭, 李萍, 王东宁, 赵春柳. 基于游标效应的增敏型光纤法布里-珀罗干涉仪温度传感器. 物理学报, 2017, 66(9): 094205. doi: 10.7498/aps.66.094205
    [6] 朱金荣, 范吕超, 苏垣昌, 胡经国. 温度、缺陷对磁畴壁动力学行为的影响. 物理学报, 2016, 65(23): 237501. doi: 10.7498/aps.65.237501
    [7] 邓春雨, 侯尚林, 雷景丽, 王道斌, 李晓晓. 单模光纤中用声波导布里渊散射同时测量温度和应变. 物理学报, 2016, 65(24): 240702. doi: 10.7498/aps.65.240702
    [8] 徐晖, 田晓波, 步凯, 李清江. 温度改变对钛氧化物忆阻器导电特性的影响. 物理学报, 2014, 63(9): 098402. doi: 10.7498/aps.63.098402
    [9] 顾源, 石荣晔, 王延辉. 分布式反馈激光抽运铯磁力仪灵敏度相关参数研究. 物理学报, 2014, 63(11): 110701. doi: 10.7498/aps.63.110701
    [10] 曹晔, 裴庸惟, 童峥嵘. 仅用一根局部微结构长周期光纤光栅实现温度与弯曲曲率的同时测量. 物理学报, 2014, 63(2): 024206. doi: 10.7498/aps.63.024206
    [11] 蒋中英, 张国梁, 马晶, 朱涛. 磷脂在膜结构间的交换:温度和离子强度的影响. 物理学报, 2013, 62(1): 018701. doi: 10.7498/aps.62.018701
    [12] 李岩, 傅海威, 邵敏, 李晓莉. 石墨点阵柱状光子晶体共振腔的温度特性. 物理学报, 2011, 60(7): 074219. doi: 10.7498/aps.60.074219
    [13] 程正富, 龙晓霞, 郑瑞伦. 温度对光学微腔光子激子系统玻色凝聚的影响. 物理学报, 2010, 59(12): 8377-8384. doi: 10.7498/aps.59.8377
    [14] 韩茹, 樊晓桠, 杨银堂. n-SiC拉曼散射光谱的温度特性. 物理学报, 2010, 59(6): 4261-4266. doi: 10.7498/aps.59.4261
    [15] 王亚珍, 黄平, 龚中良. 温度对微界面摩擦影响的研究. 物理学报, 2010, 59(8): 5635-5640. doi: 10.7498/aps.59.5635
    [16] 陈丕恒, 敖冰云, 李炬, 李嵘, 申亮. 温度对bcc铁中He行为影响的模拟研究. 物理学报, 2009, 58(4): 2605-2611. doi: 10.7498/aps.58.2605
    [17] 赵学燕, 袁萍, 王杰, 申晓志, 郭逸潇, 乔红贞. 闪电消散过程等离子体温度衰减规律的理论研究. 物理学报, 2009, 58(5): 3243-3247. doi: 10.7498/aps.58.3243
    [18] 陈国庆, 吴亚敏, 陆兴中. 金属/电介质颗粒复合介质光学双稳的温度效应. 物理学报, 2007, 56(2): 1146-1151. doi: 10.7498/aps.56.1146
    [19] 周旭昌, 陈效双, 甄红楼, 陆 卫. 空穴在动量空间分布对p型量子阱红外探测器响应光谱的影响. 物理学报, 2006, 55(8): 4247-4252. doi: 10.7498/aps.55.4247
    [20] 唐永建, 赵永宽, 蒋伟阳, 朱正和, 刘元琼. 等温环境中激光惯性约束聚变冷冻靶丸内部液氢层分布(已撤稿). 物理学报, 1999, 48(12): 2208-2214. doi: 10.7498/aps.48.2208
计量
  • 文章访问数:  8075
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-24
  • 修回日期:  2019-10-18
  • 刊出日期:  2020-02-05

/

返回文章
返回