搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气体压强对纳秒激光诱导空气等离子体特性的影响

刘家合 鲁佳哲 雷俊杰 高勋 林景全

引用本文:
Citation:

气体压强对纳秒激光诱导空气等离子体特性的影响

刘家合, 鲁佳哲, 雷俊杰, 高勋, 林景全

Effect of ambient gas pressure on characteristics of air plasma induced by nanosecond laser

Liu Jia-He, Lu Jia-Zhe, Lei Jun-Jie, Gao Xun, Lin Jing-Quan
PDF
HTML
导出引用
  • 环境气体的压强对激光诱导等离子体特性有重要影响. 基于发射光谱法开展了气体压强对纳秒激光诱导空气等离子体特性影响的研究, 探讨了气体压强对空气等离子体发射光谱强度、电子温度和电子密度的影响. 实验结果表明, 在10—100 kPa空气压强条件下, 空气等离子体发射光谱中的线状光谱和连续光谱依赖于气体压强变化, 且原子谱线和离子谱线强度随气体压强的变化有明显差别. 随着空气压强增大, 激光击穿作用区域的空气密度增加, 造成激光诱导击穿空气几率升高, 从而等离子体辐射光谱强度增大. 空气等离子体膨胀区域空气的约束作用, 增加了等离子体内粒子间的碰撞几率以及能量交换几率, 并且使离子-电子-原子的三体复合几率增加, 因此造成原子谱线O Ι 777.2 nm与N Ι 821.6 nm谱线强度随着气体压强增大而增大, 在80 kPa时谱线强度最高, 随后谱线强度缓慢降低. 而离子谱线N II 500.5 nm谱线强度在40 kPa时达到最大值, 气体压强大于40 kPa后, 谱线强度随压强增加而逐渐降低. 空气等离子体电子密度均随压强升高而增大, 在80 kPa后增长速度变缓. 等离子体电子温度在30 kPa时达到最大值, 气体压强大于30 kPa后, 等离子体电子温度逐渐降低. 研究结果可为不同海拔高度的激光诱导空气等离子体特性的研究提供重要实验基础, 为今后激光大气传输、大气组成分析提供重要的技术支持.
    The ambient gas pressure has an important influence on the laser induced plasma characteristics. The effects of gas pressure on the characteristics of air plasma induced by nanosecond laser are studied by using the optical emission spectroscopy, and the relationship between the gas pressure and the spectral intensity, and between electron temperature and electron density of air plasma are discussed. The air gas pressure in chamber is continuously changed in a range from 10 to 100 kPa by using a mechanical pump and measured by using a barometer. The ns laser energy in experiment is fixed at 100 mJ in the whole experiment. The digital delay trigger (Stanford DG535/645) is used to trigger the laser and ICCD synchronously, and the delay and gate time of ICCD are set to be 0 and 5 μs, respectively. The experimental results show that air plasma emission spectrum consists of the line and continuous spectrum, and the spectral intensity of air plasma emission spectrum is dependent on gas pressure in a range from 10 to 100 kPa, and the evolution of atomic spectrum intensity with gas pressure is different from that of ion spectrum intensity. The air density in the region of laser breakdown increases with air pressure increasing, which leads the breakdown probability of air gas to increase, thus resulting in the air plasma spectral intensity increasing. Under the confinement action of the ambient air gas in the expanding region of air plasma, the collision probability and energy exchange probability among particles in the air plasma are both increased, and the trisomic recombination probability of ion-electron-atom is also increased. As a result, the atomic spectral intensity of O Ι 777.2 nm and N Ι 821.6 nm both increase with the air gas pressure increasing, and the spectral intensity is highest at 80 kPa, and then slowly decreases. But the spectral intensity of N II 500.5 nm reaches its maximum value at 40 kPa, and decreases as the pressure becomes greater than 40 kPa. The electron density of the air plasma increases with the air pressure increasing, and the growth rate becomes slow after 80 kPa. The electron temperature of the air plasma reaches a maximum value at 30 kPa. The plasma electron temperature gradually decreases as the pressure becomes greater than 30 kPa. The research results can provide an important experimental basis for studying the laser-induced air plasma characteristics at different altitudes, and also give important technical support for laser atmospheric transmission and atmospheric composition analysis in the future.
      通信作者: 高勋, lasercust@163.com
    • 基金项目: 国家级-国家自然科学基金项目(61575030)
      Corresponding author: Gao Xun, lasercust@163.com
    [1]

    Liu L, O′Sullivan G, O′Reilly F, Long E, Wang X, Dunne P 2017 Opt. Express 25 9974Google Scholar

    [2]

    Pandhija S, Rai N K, Rai A K, Thakur S N 2010 Appl. Phys. B 98 231Google Scholar

    [3]

    张立文, 林晨, 辛立, 高军毅 2008 强激光与粒子束 20 1603

    Zhang L W, Lin C, Xin L, Gao J Y 2008 High Power Laser and Particle Beams 20 1603

    [4]

    Roskos H G, Thomson M D, Kreß M, Löffler A T 2007 Laser & Photonics Rev. 1 349

    [5]

    Giacconi R 2003 Rev. Mod. Phys. 75 995Google Scholar

    [6]

    Ran P X, Hou H M, Luo S N 2017 J. Anal. At. Spectrom. 32 2254Google Scholar

    [7]

    Matsumoto A, Ohba H, Toshimitsu M, Akaoka K, Ruas A, Sakka T, Wakaida I 2018 Spectrochim.Acta. B 142 37Google Scholar

    [8]

    Hou H M, Yang B, Mao X L, Zorba V, Ran P X, Russo R E 2018 Opt. Express 26 13425Google Scholar

    [9]

    Skrodzki P J, Shah N P, Taylor N, Hartig K C, LaHaye N L, Brumfield B E, Jovanovic I, Phillips M C, Harilal S S 2016 Spectrochim. Acta. B 125 112Google Scholar

    [10]

    Sallé B, Cremers D A, Maurice S, Wiens R C 2005 Spectrochim. Acta. B 60 479Google Scholar

    [11]

    Rezaei F, Tavassoli S H 2015 Appl. Phys. B 120 563Google Scholar

    [12]

    Cowpe J S, Pilkington R D, Astin J S, Hill A E 2009 J. Phys. D: Appl. Phys. 42 165202Google Scholar

    [13]

    Bashir S, Farid N, Mahmood K, Rafique M S 2012 Appl. Phys. A 107 203Google Scholar

    [14]

    Bindhu C V, Harilal S S, Tillack M S, Najmabadi F, Gaeris A C 2003 J. Appl. Phys. 94 7402Google Scholar

    [15]

    Farid N, Harilal S S, Ding H, Hassanein A 2013 Appl. Phys. Lett. 103 191112Google Scholar

    [16]

    Liu D, Chen C S, Gao X, Lin J Q, Man B Y, Sun Y N, Li F F 2016 Eur. Phys. J. D 70 245Google Scholar

    [17]

    刘小亮, 孙少华, 曹瑜, 孙铭泽, 刘情操, 胡碧涛 2013 物理学报 62 045201Google Scholar

    Liu X L, Sun S H, Cao Y, Sun M Z, Liu Q C, Hu B T 2013 Acta Phys.Sin. 62 045201Google Scholar

    [18]

    Nordstrom R J 1995 Appl. Spectrosc. 49 1490Google Scholar

    [19]

    林兆祥, 李小银, 程学武, 李发泉, 龚顺生 2003 光谱学与光谱分析 23 421Google Scholar

    Lin Z X, Li X Y, Cheng X W, Li F Q, Gong S S 2003 Spectrosc.Spect. Anal. 23 421Google Scholar

    [20]

    Glumac N, Elliott G 2007 Opt. Laser. Eng. 45 27Google Scholar

    [21]

    Griem H R 1997 Principles of Plasma Spectroscopy (Cambridge: Cambridge University Press) p906

    [22]

    Griem H R 1974 Spectral Line Broadening by Plasmas (New York: Academic Press) p335

    [23]

    邱德仁 2001 原子光谱分析 (上海: 复旦大学出版社) 第37—38页

    Qiu D R 2001 Atomic Spectroscopy (Shanghai: Fudan University Press) pp37–38 (in Chinese)

  • 图 1  压强对纳秒激光诱导空气等离子体特性影响的实验装置

    Fig. 1.  Experiment setup for the air pressure influence on the characteristics of air plasma induced by ns pulsed laser.

    图 2  激光诱导空气等离子体的发射光谱 (空气压强为100 kPa)

    Fig. 2.  The optical emission spectroscopy of the air plasma (air pressure of 100 kPa).

    图 3  不同空气压强条件下的空气等离子体发射光谱

    Fig. 3.  The optical emission spectroscopy of the air plasma at different air pressure.

    图 4  等离子体发射光谱强度随压强的变化(O Ι 777.2 nm, N Ι 746.8 nm和N II 500.5 nm)

    Fig. 4.  The air plasma spectral intensity evolution with air pressure (O Ι 777.2 nm, N Ι 746.8 nm, and N II 500.5 nm).

    图 5  空气等离子体电子密度随压强变化曲线(插入图为100 kPa O Ι 844.6 nm谱线拟合)

    Fig. 5.  The air plasma density evolutions with air pressure (100 kPa O Ι 844.6 nm spectral line fitting).

    图 6  空气等离子体电子温度随压强变化曲线

    Fig. 6.  The air plasma temperature evolutions with air pressure.

    表 1  激光大气等离子体主要线状谱线的归属情况

    Table 1.  Identification of the observed emission lines of N and O.

    谱线种类谱线位置/nm跃迁形式
    N+399.53p(1D) → 3s(1P0)
    N+444.73d(3D0) → 3p(3D)
    O+464.93p(4D0) → 3s(4P)
    N+500.53p(3S) → 3s(3P0)
    N+517.63d(5D) → 3p(5P0)
    N+568.03p(3D) → 3s(3P0)
    O715.73p(1D2) → 3s($^1{\rm{D}}_2^0$)
    O777.23p(5P) → 3s(5S0)
    N821.63p(4P0) → 3s(4P)
    O844.73p(3P) → 3s(3S0)
    N868.33p(4D0) → 3s(4P)
    下载: 导出CSV

    表 2  氧原子谱线光谱信息

    Table 2.  Oxygen atomic line spectral information.

    Wavelength/nmEm/eVEn/eVAki/s–1gk
    O II 444.831.1528.362.52×1066
    O Ι 844.610.999.523.22×1073
    下载: 导出CSV
  • [1]

    Liu L, O′Sullivan G, O′Reilly F, Long E, Wang X, Dunne P 2017 Opt. Express 25 9974Google Scholar

    [2]

    Pandhija S, Rai N K, Rai A K, Thakur S N 2010 Appl. Phys. B 98 231Google Scholar

    [3]

    张立文, 林晨, 辛立, 高军毅 2008 强激光与粒子束 20 1603

    Zhang L W, Lin C, Xin L, Gao J Y 2008 High Power Laser and Particle Beams 20 1603

    [4]

    Roskos H G, Thomson M D, Kreß M, Löffler A T 2007 Laser & Photonics Rev. 1 349

    [5]

    Giacconi R 2003 Rev. Mod. Phys. 75 995Google Scholar

    [6]

    Ran P X, Hou H M, Luo S N 2017 J. Anal. At. Spectrom. 32 2254Google Scholar

    [7]

    Matsumoto A, Ohba H, Toshimitsu M, Akaoka K, Ruas A, Sakka T, Wakaida I 2018 Spectrochim.Acta. B 142 37Google Scholar

    [8]

    Hou H M, Yang B, Mao X L, Zorba V, Ran P X, Russo R E 2018 Opt. Express 26 13425Google Scholar

    [9]

    Skrodzki P J, Shah N P, Taylor N, Hartig K C, LaHaye N L, Brumfield B E, Jovanovic I, Phillips M C, Harilal S S 2016 Spectrochim. Acta. B 125 112Google Scholar

    [10]

    Sallé B, Cremers D A, Maurice S, Wiens R C 2005 Spectrochim. Acta. B 60 479Google Scholar

    [11]

    Rezaei F, Tavassoli S H 2015 Appl. Phys. B 120 563Google Scholar

    [12]

    Cowpe J S, Pilkington R D, Astin J S, Hill A E 2009 J. Phys. D: Appl. Phys. 42 165202Google Scholar

    [13]

    Bashir S, Farid N, Mahmood K, Rafique M S 2012 Appl. Phys. A 107 203Google Scholar

    [14]

    Bindhu C V, Harilal S S, Tillack M S, Najmabadi F, Gaeris A C 2003 J. Appl. Phys. 94 7402Google Scholar

    [15]

    Farid N, Harilal S S, Ding H, Hassanein A 2013 Appl. Phys. Lett. 103 191112Google Scholar

    [16]

    Liu D, Chen C S, Gao X, Lin J Q, Man B Y, Sun Y N, Li F F 2016 Eur. Phys. J. D 70 245Google Scholar

    [17]

    刘小亮, 孙少华, 曹瑜, 孙铭泽, 刘情操, 胡碧涛 2013 物理学报 62 045201Google Scholar

    Liu X L, Sun S H, Cao Y, Sun M Z, Liu Q C, Hu B T 2013 Acta Phys.Sin. 62 045201Google Scholar

    [18]

    Nordstrom R J 1995 Appl. Spectrosc. 49 1490Google Scholar

    [19]

    林兆祥, 李小银, 程学武, 李发泉, 龚顺生 2003 光谱学与光谱分析 23 421Google Scholar

    Lin Z X, Li X Y, Cheng X W, Li F Q, Gong S S 2003 Spectrosc.Spect. Anal. 23 421Google Scholar

    [20]

    Glumac N, Elliott G 2007 Opt. Laser. Eng. 45 27Google Scholar

    [21]

    Griem H R 1997 Principles of Plasma Spectroscopy (Cambridge: Cambridge University Press) p906

    [22]

    Griem H R 1974 Spectral Line Broadening by Plasmas (New York: Academic Press) p335

    [23]

    邱德仁 2001 原子光谱分析 (上海: 复旦大学出版社) 第37—38页

    Qiu D R 2001 Atomic Spectroscopy (Shanghai: Fudan University Press) pp37–38 (in Chinese)

  • [1] 何新, 江涛, 张振福, 杨俊波. 束缚态特征温度方法及应用. 物理学报, 2022, 71(8): 085201. doi: 10.7498/aps.71.20212115
    [2] 王兴生, 马彦明, 高勋, 林景全. 纳秒脉冲激光诱导空气等离子体的近红外辐射特性. 物理学报, 2020, 69(2): 029502. doi: 10.7498/aps.69.20190753
    [3] 姜炜曼, 李玉同, 张喆, 朱保君, 张翌航, 袁大伟, 魏会冈, 梁贵云, 韩波, 刘畅, 原晓霞, 华能, 朱宝强, 朱健强, 方志恒, 王琛, 黄秀光, 张杰. 纳秒激光等离子体相互作用过程中激光强度对微波辐射影响的研究. 物理学报, 2019, 68(12): 125201. doi: 10.7498/aps.68.20190501
    [4] 王宬朕, 董全力, 刘苹, 吴奕莹, 盛政明, 张杰. 激光等离子体中高能电子各向异性压强的粒子模拟. 物理学报, 2017, 66(11): 115203. doi: 10.7498/aps.66.115203
    [5] 戴宇佳, 宋晓伟, 高勋, 王兴生, 林景全. 纳秒激光诱导空气等离子体射频辐射特性研究. 物理学报, 2017, 66(18): 185201. doi: 10.7498/aps.66.185201
    [6] 刘玉峰, 丁艳军, 彭志敏, 黄宇, 杜艳君. 激光诱导击穿空气等离子体时间分辨特性的光谱研究. 物理学报, 2014, 63(20): 205205. doi: 10.7498/aps.63.205205
    [7] 陈兆权, 夏广庆, 刘明海, 郑晓亮, 胡业林, 李平, 徐公林, 洪伶俐, 沈昊宇, 胡希伟. 气体压强及表面等离激元影响表面波等离子体电离发展过程的粒子模拟. 物理学报, 2013, 62(19): 195204. doi: 10.7498/aps.62.195204
    [8] 郭凯敏, 高 勋, 郝作强, 鲁毅, 孙长凯, 林景全. 空气中飞秒激光等离子体荧光辐射光谱研究. 物理学报, 2012, 61(7): 075212. doi: 10.7498/aps.61.075212
    [9] 朱竹青, 王晓雷. 飞秒激光空气等离子体发射光谱的实验研究. 物理学报, 2011, 60(8): 085205. doi: 10.7498/aps.60.085205
    [10] 杨宏道, 李晓红, 李国强, 袁春华, 唐多昌, 徐琴, 邱荣, 王俊波. 1064 nm纳秒脉冲激光诱导硅表面微结构研究. 物理学报, 2011, 60(2): 027901. doi: 10.7498/aps.60.027901
    [11] 张宏超, 陆建, 倪晓武. 干涉法诊断由纳秒激光诱导产生的大气等离子体的电子密度. 物理学报, 2009, 58(6): 4034-4040. doi: 10.7498/aps.58.4034
    [12] 张娜珍, 仓怀文, 王卫国, 苗书一, 金峰, 吴庆浩, 花磊, 李海洋. 乙醚团簇在纳秒激光场中的多价电离及其电子能量分布的研究. 物理学报, 2009, 58(7): 4556-4562. doi: 10.7498/aps.58.4556
    [13] 仲佳勇, 李玉同, 鲁 欣, 张 翼, Bernhardt Jens, 刘 峰, 郝作强, 张 喆, 于全芝, 陈 民, 远晓辉, 梁文锡, 赵 刚, 张 杰. 空气中单个激光等离子体通道的形成条件. 物理学报, 2007, 56(12): 7114-7119. doi: 10.7498/aps.56.7114
    [14] 郝作强, 张 杰, 俞 进, 张 喆, 仲佳勇, 臧充之, 金 展, 王兆华, 魏志义. 空气中激光等离子体通道的荧光探测和声学诊断两种方法的比较实验研究. 物理学报, 2006, 55(1): 299-303. doi: 10.7498/aps.55.299
    [15] 张 喆, 张 杰, 李玉同, 郝作强, 郑志远, 远晓辉, 王兆华. 空气中激光等离子体通道导电性能的研究. 物理学报, 2006, 55(1): 357-361. doi: 10.7498/aps.55.357
    [16] 林兆祥, 吴金泉, 龚顺生. 延迟双脉冲激光产生的空气等离子体的光谱研究. 物理学报, 2006, 55(11): 5892-5898. doi: 10.7498/aps.55.5892
    [17] 郝作强, 张 杰, 张 喆, 奚婷婷, 郑志远, 远晓辉, 王兆华. 空气中激光等离子体通道的三次谐波辐射研究. 物理学报, 2005, 54(7): 3173-3177. doi: 10.7498/aps.54.3173
    [18] 罗晓琳, 孔祥蕾, 牛冬梅, 渠洪波, 李海洋. 团簇增强的纳秒激光电离产生Xez+(z≤20)高价离子. 物理学报, 2005, 54(2): 606-611. doi: 10.7498/aps.54.606
    [19] 孔祥蕾, 罗晓琳, 牛冬梅, 张先燚, 阚瑞峰, 李海洋. 纳秒强激光场中甲醇光电离产生高价离子的研究. 物理学报, 2004, 53(5): 1340-1345. doi: 10.7498/aps.53.1340
    [20] 卞保民, 陈建平, 杨玲, 倪晓武, 陆建. 空气中激光等离子体冲击波的传输特性研究. 物理学报, 2000, 49(3): 445-448. doi: 10.7498/aps.49.445
计量
  • 文章访问数:  9169
  • PDF下载量:  149
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-10
  • 修回日期:  2020-01-04
  • 刊出日期:  2020-03-05

/

返回文章
返回