搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微米气室铯原子自旋噪声谱

郭志超 张桐耀 张靖

引用本文:
Citation:

微米气室铯原子自旋噪声谱

郭志超, 张桐耀, 张靖

Spin noise spectroscopy of cesium vapor in micron-scale cell

Guo Zhi-Chao, Zhang Tong-Yao, Zhang Jing
PDF
HTML
导出引用
  • 利用自旋噪声谱技术研究了无缓冲气体133Cs原子气室的自旋动力学和展宽机制. 在宏观原子气室中, 自旋弛豫速率失谐频率谱的线型为高斯分布; 在空间局域较强的微米气室中, 自旋弛豫速率失谐频率谱的线型为洛伦兹分布. 实验测量得到的自旋弛豫速率失谐频率谱的展宽约4 GHz, 明显大于宏观原子气室中约500 MHz的多普勒非均匀展宽. 同时, 研究了两种气室的总噪声的失谐频率谱. 在宏观原子气室中, 总噪声强度强烈依赖于激光相对于原子共振跃迁的频率失谐; 在微米气室中, 由于较强的均匀展宽, 总噪声的失谐频率谱中心处出现明显的凹陷. 通过建立简化的物理模型来计算微米气室的展宽机制, 在实验与理论中解释了原子的均匀展宽特性.
    In this paper, the spin dynamics and broadening mechanism of cesium vapor in cells without buffer gas is investigated by means of spin noise spectroscopy. In a macro atomic vapor cell, the lineshape of detuning frequency spectrum of spin relaxation rate is of Gaussian distribution. For a micron-scaled vapor cell with strong spatial locality, the lineshape of detuning frequency spectrum of spin relaxation rate is of Lorentzian distribution. The parameter dependence of detuning frequency spectrum of spin relaxation rate, such as temperature, is studied quantitatively. The detuning frequency spectrum of the spin relaxation rate is measured experimentally to be broadened by $ \sim $4 GHz, which is obviously larger than the unhomogeneous Doppler broadening of $ \sim $500 MHz for a macro atomic vapor cell. At the same time, the detuning frequency spectrum of total noise in the two atomic vapor cells is studied. In the macro atomic vapor cell, the total noise intensity strongly relies on the detuning frequency of the laser with respect to the atomic resonance transition. In the micron-scaled vapor cell, due to the strong homogeneous broadening, the center of the detuning frequency spectrum of the total noise is observed to dip. Finally, a simplified physical model is established to compute the broadening of the micron-scaled vapor cell. The homogeneous broadening of atoms is explained experimentally and theoretically in the micron-scaled vapor cell.
      通信作者: 郭志超, sxdxguozhichao@gmail.com
    • 基金项目: 国家重点研发计划(批准号: 2016YFA0301602)和国家自然科学基金(批准号: 61574087)资助的课题
      Corresponding author: Guo Zhi-Chao, sxdxguozhichao@gmail.com
    • Funds: Supported by the National Key Research and Development Program of China (Grant No. 2016 YFA0301602) and the National Natural Science Foundation of China (Grant No. 61574087)
    [1]

    Kubo R 1966 Rep. Prog. Phys. 29 255Google Scholar

    [2]

    Römer M, Hübner J, Oestreich M 2007 Rev. Sci. Instrum. 78 103903Google Scholar

    [3]

    Sørensen J L, Hald J, Polzik E S 1998 Phys Rev. Lett. 80 3487Google Scholar

    [4]

    Crooker S A, Rickel D G, Balatsky A V, Smith D L 2004 Nature 431 49Google Scholar

    [5]

    Oestreich M, Römer M, Haug R J, Hägele D 2005 Phys. Rev. Lett. 95 216603Google Scholar

    [6]

    Sterin P, Wiegand J, Hübner Jens, Oestreich M 2018 Phys. Rev. Appl. 9 034003Google Scholar

    [7]

    Lucivero V G, Jiménez-Martínez Ricardo, Kong J, Mitchell M W 2016 Phys. Rev. A. 93 053802Google Scholar

    [8]

    史平, 马健, 钱轩, 姬杨, 李伟 2017 物理学报 66 017201Google Scholar

    Shi P, Ma J, Qian X, Ji Y, Li W 2017 Acta Phys. Sin. 66 017201Google Scholar

    [9]

    Roy D, Yang L, Crooker S A, Sinitsyn N A 2015 Sci. Rep. 5 9573Google Scholar

    [10]

    Petrov M Y, Kamenskii A N, Zapasskii V S, Bayer M, Greilich A 2018 Phys. Rev. B 97 125202Google Scholar

    [11]

    Cronenberger S, Scalbert D 2016 Rev. Sci. Instrum. 87 093111Google Scholar

    [12]

    李晨, 丁畅, 张桐耀, 曹丹华, 吴裕斌, 陈院森 2017 量子光学学报 23 228

    Li C, Ding C, Zhang T Y, Cao D H, Wu Y B, Chen Y S 2017 J. Quant. Opt. 23 228

    [13]

    Müller G M, Römer M, Hübner J, Oestreich M 2010 App. Phys. Lett. 97 192109Google Scholar

    [14]

    Poltavtsev S V, Ryzhov I I, Glazov M M, Kozlov G G, Zapasskii V S, Kavokin A V, Lagoudakis P G, Smirnov D S, Ivchenko E L 2014 Phys. Rev. B 89 081304Google Scholar

    [15]

    Pershin Y V, Slipko V A, Roy D, Sinitsyn N A 2013 Appl. Phys. Lett. 102 202405Google Scholar

    [16]

    Dahbashi R, Hübner J, Berski F, Pierz K, Oestreich M 2014 Phys. Rev. Lett. 112 156601Google Scholar

    [17]

    Yang L, Glasenapp P, Greilich A, Reuter D, Wieck A D, Yakovlev D R, Bayer M, Crooker S A 2014 Nat. Commun. 5 4949Google Scholar

    [18]

    Crooker S A, Brandt J, Sandfort C, Greilich A, Yakovlev D R, Reuter D, Wieck A D, Bayer M 2010 Phys. Rev. Lett. 104 036601Google Scholar

    [19]

    Kozlov G G, Ryzhov I I, Zapasskii V S 2017 Phys. Rev. A 95 043810Google Scholar

    [20]

    Kozlov G G, Ryzhov I I, Zapasskii V S 2018 Phys. Rev. A 97 013848Google Scholar

    [21]

    Keaveney J 2013 Ph. D. Dissertation (Durham: Durham University)

    [22]

    Ma J, Shi P, Qian X, Li W, Ji Y 2016 Chin. Phys. B 25 117203Google Scholar

    [23]

    Hübner J, Berski F, Dahbashi R, Oestreich M 2014 Phys. Status. Solidi. 251 1824Google Scholar

    [24]

    Petrov M Y, Ryzhov I I, Smirnov D S, Belyaev L Y, Potekhin R A, Glazov M M, Kulyasov V N, Kozlov G G, Aleksandrov E B, Zapasskii1 V S 2018 Phys. Rev. A 97 032502Google Scholar

    [25]

    Zapasskii V S, Greilich A, Crooker S A, Li Y, Kozlov G G, Yakovlev D R, Reuter D, Wieck A D, Bayer M 2013 Phys. Rev. Lett. 110 176601Google Scholar

    [26]

    Ghosh R K 2009 Ph. D. Dissertation (Princeton: Princeton University)

    [27]

    Rajroop J 2018 Ph. D. Dissertation (London: University College London)

    [28]

    Christopher J F 2005 Atomic Physics (Oxford: Oxford University Press) p142

    [29]

    Ma J, Shi P, Qian X, Shang Y, Ji Y 2017 Sci. Rep. 7 10238Google Scholar

    [30]

    Buckingham A D, Stephens P J 1966 Annu. Rev. Phys. Chem. 17 399Google Scholar

    [31]

    Zapasskii V S 2013 Adv. Opt. Photon. 5 131Google Scholar

    [32]

    尚雅轩, 马健, 史平, 钱轩, 李伟, 姬杨 2018 物理学报 67 087201Google Scholar

    Shang Y X, Ma J, Shi P, Qian X, Li W, Ji Y 2018 Acta Phys. Sin. 67 087201Google Scholar

    [33]

    Chalupczak W, Godun R M 2011 Phys. Rev. A. 83 032512Google Scholar

    [34]

    Zhang W J, You L X, Li H, Huang J, Lv C L, Zhang L, Liu X Y, Wu J J, Wang Z, Xie X M 2017 Sci: China Phys. Mech. Astron. 60 120314Google Scholar

    [35]

    Yang W H, Shi S P, Wang Y J, Ma W G, Zheng Y H, Peng K C 2017 Opt. Lett. 42 21Google Scholar

  • 图 1  (a)自旋噪声谱的实验原理图(P是偏振片, B是外加磁场, Wollaston prism是沃拉斯顿棱镜, BP是平衡零拍探测器, FFT是快速傅里叶变换); (b)气室1中经典的133Cs自旋噪声谱(激光失谐频率ΩD2 = + 600 MHz于D2线(62S1/2 (F = 4) → 62P3/2), 原子气室温度T = 296 K, 激光功率P = 500 μW, 外加磁场B = 5 G); (c) 133Cs的D2跃迁线和基态超精细结构

    Fig. 1.  (a) Schematic of the experimental apparatus (P-polarizer, B-magnetic fields, BP-balanced homodyne detector, FFT-fast Fourier transform); (b) typical spin noise spectrum of 133Cs in cell 1 (the laser is detuned ΩD2 = + 600 MHz from the D2 transition (62S1/2 (F = 4) → 62P3/2). The temperature of atomic cell is 296 K. The laser power P = 500 μW. Magnetic field B = 5 G); (c) D2 line transition and ground-state hyperfine structure of 133Cs.

    图 2  气室1中磁场相关的自旋噪声谱 (a)不同磁场下的自旋噪声谱(黑线)和拟合曲线(红线); (b)自旋噪声谱中心频率(蓝圆圈)与外场关系图, 以及拟合曲线(红线); 激光失谐频率ΩD2 = + 600 MHz于D2线(62S1/2 (F = 4) → 62P3/2), 激光功率为P = 500 μW, 原子气室温度T = 296 K

    Fig. 2.  Magnetic-field dependent spin noise spectrum in cell 1: (a) Spin noise spectrum (black lines) and fitting curve (red lines) versus the magnetic fields; (b) dependence of center frequency of spin noise spectrum on magnetic fields. The blue circles are the experimental data. The red line is the fitting curve. The laser is detuned ΩD2 = + 600 MHz from the D2 transition (62S1/2 (F = 4) → 62P3/2). The laser power P = 500 μW. The temperature of atomic cell is 296 K.

    图 3  气室1中自旋噪声谱的失谐频率依赖关系 (a)自旋弛豫速率与失谐频率的对应关系图; (b)总噪声与失谐频率的对应关系图; 激光失谐频率在D2线(62S1/2 (F = 3) → 62P3/2)附近, 激光功率P = 500 μW, 外磁场B = 15 G, 实验数据为(蓝圆圈)和拟合曲线(红线), 原子气室温度T = 296 K

    Fig. 3.  Detuning frequency dependent spin noise spectrum in cell 1: (a) Spin relaxation rate versus the detuning frequency; (b) total noise versus the detuning frequency. The laser is detuned from the D2 transition (62S1/2 (F = 3) → 62P3/2). The laser power P = 500 μW. Magnetic field B = 15 G. The blue circles are the experimental data. The red line is the fitting curve. The temperature of atomic cell is 296 K.

    图 4  气室2中自旋噪声谱的失谐频率依赖关系 (a) T = 387 K时自旋弛豫速率与失谐频率的关系; (b) T = 431 K时自旋弛豫速率与失谐频率的关系; (c) T = 387 K时总噪声与失谐频率的关系; (d) T = 431 K时总噪声与失谐频率的关系; 激光失谐频率在D2线(62S1/2 (F = 3) → 2P3/2)附近, 激光功率为P = 5 mW, 蓝圆圈表示实验数据, 红线为拟合曲线

    Fig. 4.  The detuning frequency dependent spin noise spectrum in cell 2: (a) Spin relaxation rate versus the detuning frequency at T = 387 K; (b) spin relaxation rate versus the detuning frequency at T = 431 K; (c) total noise versus the detuning frequency at T = 387 K; (d) total noise versus the detuning frequency at T = 431 K. The laser is detuned from the D2 transition (62S1/2 (F = 3) → 62P3/2). The laser power P = 5 mW. The blue circles are the experimental data, and the red line is the fitting curve.

  • [1]

    Kubo R 1966 Rep. Prog. Phys. 29 255Google Scholar

    [2]

    Römer M, Hübner J, Oestreich M 2007 Rev. Sci. Instrum. 78 103903Google Scholar

    [3]

    Sørensen J L, Hald J, Polzik E S 1998 Phys Rev. Lett. 80 3487Google Scholar

    [4]

    Crooker S A, Rickel D G, Balatsky A V, Smith D L 2004 Nature 431 49Google Scholar

    [5]

    Oestreich M, Römer M, Haug R J, Hägele D 2005 Phys. Rev. Lett. 95 216603Google Scholar

    [6]

    Sterin P, Wiegand J, Hübner Jens, Oestreich M 2018 Phys. Rev. Appl. 9 034003Google Scholar

    [7]

    Lucivero V G, Jiménez-Martínez Ricardo, Kong J, Mitchell M W 2016 Phys. Rev. A. 93 053802Google Scholar

    [8]

    史平, 马健, 钱轩, 姬杨, 李伟 2017 物理学报 66 017201Google Scholar

    Shi P, Ma J, Qian X, Ji Y, Li W 2017 Acta Phys. Sin. 66 017201Google Scholar

    [9]

    Roy D, Yang L, Crooker S A, Sinitsyn N A 2015 Sci. Rep. 5 9573Google Scholar

    [10]

    Petrov M Y, Kamenskii A N, Zapasskii V S, Bayer M, Greilich A 2018 Phys. Rev. B 97 125202Google Scholar

    [11]

    Cronenberger S, Scalbert D 2016 Rev. Sci. Instrum. 87 093111Google Scholar

    [12]

    李晨, 丁畅, 张桐耀, 曹丹华, 吴裕斌, 陈院森 2017 量子光学学报 23 228

    Li C, Ding C, Zhang T Y, Cao D H, Wu Y B, Chen Y S 2017 J. Quant. Opt. 23 228

    [13]

    Müller G M, Römer M, Hübner J, Oestreich M 2010 App. Phys. Lett. 97 192109Google Scholar

    [14]

    Poltavtsev S V, Ryzhov I I, Glazov M M, Kozlov G G, Zapasskii V S, Kavokin A V, Lagoudakis P G, Smirnov D S, Ivchenko E L 2014 Phys. Rev. B 89 081304Google Scholar

    [15]

    Pershin Y V, Slipko V A, Roy D, Sinitsyn N A 2013 Appl. Phys. Lett. 102 202405Google Scholar

    [16]

    Dahbashi R, Hübner J, Berski F, Pierz K, Oestreich M 2014 Phys. Rev. Lett. 112 156601Google Scholar

    [17]

    Yang L, Glasenapp P, Greilich A, Reuter D, Wieck A D, Yakovlev D R, Bayer M, Crooker S A 2014 Nat. Commun. 5 4949Google Scholar

    [18]

    Crooker S A, Brandt J, Sandfort C, Greilich A, Yakovlev D R, Reuter D, Wieck A D, Bayer M 2010 Phys. Rev. Lett. 104 036601Google Scholar

    [19]

    Kozlov G G, Ryzhov I I, Zapasskii V S 2017 Phys. Rev. A 95 043810Google Scholar

    [20]

    Kozlov G G, Ryzhov I I, Zapasskii V S 2018 Phys. Rev. A 97 013848Google Scholar

    [21]

    Keaveney J 2013 Ph. D. Dissertation (Durham: Durham University)

    [22]

    Ma J, Shi P, Qian X, Li W, Ji Y 2016 Chin. Phys. B 25 117203Google Scholar

    [23]

    Hübner J, Berski F, Dahbashi R, Oestreich M 2014 Phys. Status. Solidi. 251 1824Google Scholar

    [24]

    Petrov M Y, Ryzhov I I, Smirnov D S, Belyaev L Y, Potekhin R A, Glazov M M, Kulyasov V N, Kozlov G G, Aleksandrov E B, Zapasskii1 V S 2018 Phys. Rev. A 97 032502Google Scholar

    [25]

    Zapasskii V S, Greilich A, Crooker S A, Li Y, Kozlov G G, Yakovlev D R, Reuter D, Wieck A D, Bayer M 2013 Phys. Rev. Lett. 110 176601Google Scholar

    [26]

    Ghosh R K 2009 Ph. D. Dissertation (Princeton: Princeton University)

    [27]

    Rajroop J 2018 Ph. D. Dissertation (London: University College London)

    [28]

    Christopher J F 2005 Atomic Physics (Oxford: Oxford University Press) p142

    [29]

    Ma J, Shi P, Qian X, Shang Y, Ji Y 2017 Sci. Rep. 7 10238Google Scholar

    [30]

    Buckingham A D, Stephens P J 1966 Annu. Rev. Phys. Chem. 17 399Google Scholar

    [31]

    Zapasskii V S 2013 Adv. Opt. Photon. 5 131Google Scholar

    [32]

    尚雅轩, 马健, 史平, 钱轩, 李伟, 姬杨 2018 物理学报 67 087201Google Scholar

    Shang Y X, Ma J, Shi P, Qian X, Li W, Ji Y 2018 Acta Phys. Sin. 67 087201Google Scholar

    [33]

    Chalupczak W, Godun R M 2011 Phys. Rev. A. 83 032512Google Scholar

    [34]

    Zhang W J, You L X, Li H, Huang J, Lv C L, Zhang L, Liu X Y, Wu J J, Wang Z, Xie X M 2017 Sci: China Phys. Mech. Astron. 60 120314Google Scholar

    [35]

    Yang W H, Shi S P, Wang Y J, Ma W G, Zheng Y H, Peng K C 2017 Opt. Lett. 42 21Google Scholar

  • [1] 梁澎军, 朱天翔, 肖懿鑫, 王奕洋, 韩永建, 周宗权, 李传锋. 浓度依赖的掺铕硅酸钇晶体的光学和自旋非均匀展宽. 物理学报, 2024, 73(10): 100301. doi: 10.7498/aps.73.20240116
    [2] 杨旭, 冯红梅, 刘佳南, 张向群, 何为, 成昭华. 超快自旋动力学: 从飞秒磁学到阿秒磁学. 物理学报, 2024, 73(15): 157501. doi: 10.7498/aps.73.20240646
    [3] 吴建达. 从横场伊辛链到量子E8 可积模型. 物理学报, 2022, (): . doi: 10.7498/aps.71.20211836
    [4] 王骁, 杨家豪, 吴建达. 从横场伊辛链到量子E8可积模型. 物理学报, 2021, 70(23): 230504. doi: 10.7498/aps.70.20211836
    [5] 张朋, 刘政, 戴建明, 杨昭荣, 苏付海. 强磁场在ZnCr2Se4中诱导的各向异性太赫兹共振吸收. 物理学报, 2020, 69(20): 207501. doi: 10.7498/aps.69.20201507
    [6] 杨煜林, 白乐乐, 张露露, 何军, 温馨, 王军民. 铷原子系综自旋噪声谱实验研究. 物理学报, 2020, 69(23): 233201. doi: 10.7498/aps.69.20201103
    [7] 俞洋, 张文杰, 赵婉莹, 林贤, 金钻明, 刘伟民, 马国宏. WS2与WSe2单层膜中的A激子及其自旋动力学特性研究. 物理学报, 2019, 68(1): 017201. doi: 10.7498/aps.68.20181769
    [8] 黄瑞, 李春, 金蔚, GeorgiosLefkidis, WolfgangHübner. 双磁性中心内嵌富勒烯Y2C2@C82-C2(1)中的超快自旋动力学行为. 物理学报, 2019, 68(2): 023101. doi: 10.7498/aps.68.20181887
    [9] 向天, 程亮, 齐静波. 拓扑绝缘体中的超快电荷自旋动力学. 物理学报, 2019, 68(22): 227202. doi: 10.7498/aps.68.20191433
    [10] 龚冬良, 罗会仟. 铁基超导体中的反铁磁序和自旋动力学. 物理学报, 2018, 67(20): 207407. doi: 10.7498/aps.67.20181543
    [11] 尚雅轩, 马健, 史平, 钱轩, 李伟, 姬扬. 铷原子气体自旋噪声谱的测量与改进. 物理学报, 2018, 67(8): 087201. doi: 10.7498/aps.67.20180098
    [12] 史平, 马健, 钱轩, 姬扬, 李伟. 铷原子气体自旋噪声谱测量的信噪比分析. 物理学报, 2017, 66(1): 017201. doi: 10.7498/aps.66.017201
    [13] 朱孟龙, 董玉兰, 钟海政, 何军. CdTe量子点的室温激子自旋弛豫动力学. 物理学报, 2014, 63(12): 127202. doi: 10.7498/aps.63.127202
    [14] 李霞, 冯东海, 潘贤群, 贾天卿, 单璐繁, 邓莉, 孙真荣. 室温下CdSe胶体量子点超快自旋动力学. 物理学报, 2012, 61(20): 207202. doi: 10.7498/aps.61.207202
    [15] 李春, 杨帆, Georgios Lefkidis, Wolfgang Hübner. 磁性纳米结构中由激光引起的超快自旋动力学研究. 物理学报, 2011, 60(1): 017802. doi: 10.7498/aps.60.017802
    [16] 孙 征, 徐仲英, 阮学忠, 姬 扬, 孙宝权, 倪海桥. InAs单层和亚单层结构中的自旋动力学研究. 物理学报, 2007, 56(5): 2958-2961. doi: 10.7498/aps.56.2958
    [17] 秦吉红, 徐素芬, 冯世平. 准一维强关联Zigzag型材料的自旋动力学. 物理学报, 2006, 55(10): 5511-5515. doi: 10.7498/aps.55.5511
    [18] 郭立俊, Jan-Peter Wüstenberg, Andreyev Oleksiy, Michael Bauer, Martin Aeschlimann. 利用飞秒双光子光电子发射研究GaAs(100)的自旋动力学过程. 物理学报, 2005, 54(7): 3200-3205. doi: 10.7498/aps.54.3200
    [19] 刘 斌, 梁 颖, 冯世平. 掺杂各向异性三角晶格系统的自旋动力学. 物理学报, 2004, 53(10): 3540-3544. doi: 10.7498/aps.53.3540
    [20] 马本堃. 自旋-晶格弛豫. 物理学报, 1965, 21(7): 1419-1436. doi: 10.7498/aps.21.1419
计量
  • 文章访问数:  9652
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-23
  • 修回日期:  2019-11-27
  • 刊出日期:  2020-02-05

/

返回文章
返回