搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离散可积系统: 多维相容性

张大军

引用本文:
Citation:

离散可积系统: 多维相容性

张大军

Discrete integrable systems: Multidimensional consistency

Zhang Da-Jun
PDF
HTML
导出引用
  • 对比已有完善而系统理论的微分方程领域, 差分方程理论尚处于发展之中. 近年来离散可积理论的进展, 带来了差分方程理论的革命. 多维相容性是伴随离散可积系统研究出现的新的概念, 作为对离散可积性的一种理解, 提供了构造离散可积系统的Bäcklund变换、Lax对和精确解的工具. 本文旨在综述多维相容性的概念及其在离散可积系统研究中的应用.
    In contrast to the well-established theory of differential equations, the theory of difference equations has not quite developed so far. The most recent advances in the theory of discrete integrable systems have brought a true revolution to the study of difference equations. Multidimensional consistency is a new concept appearing in the research of discrete integrable systems. This property, as an explanation to a type of discrete integrability, plays an important role in constructing the Bäcklund transformations, Lax pairs and exact solutions for discrete integrable system. In the present paper, the multidimensional consistency and its applications in the research of discrete integrable systems are reviewed.
      通信作者: 张大军, djzhang@staff.shu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11875040, 11631007)
      Corresponding author: Zhang Da-Jun, djzhang@staff.shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875040, 11631007)
    [1]

    Zabusky N J, Kruskal M D 1965 Phys. Rev. Lett. 15 240

    [2]

    Gardner C S, Greene J M, Kruskal M D, Miura R M 1967 Phys. Rev. Lett. 19 1095Google Scholar

    [3]

    Lax P D 1968 Commun. Pure Appl. Math. 21 467Google Scholar

    [4]

    Deift P 2019 arXiv: 1902.10267

    [5]

    Case K M, Kac M 1973 J. Math. Phys. 14 594Google Scholar

    [6]

    Ablowitz M J, Ladik J F 1975 J. Math. Phys. 16 598Google Scholar

    [7]

    Ablowitz M J, Ladik J F 1976 J. Math. Phys. 17 1011Google Scholar

    [8]

    Ablowitz M J, Ladik J F 1976 Stud. Appl. Math. 55 213Google Scholar

    [9]

    Hirota R 1977 J. Phys. Soc. Jpn. 43 1424Google Scholar

    [10]

    Hirota R 1977 J. Phys. Soc. Jpn. 43 2074Google Scholar

    [11]

    Hirota R 1977 J. Phys. Soc. Jpn. 43 2079Google Scholar

    [12]

    Date E, Jimbo M, Miwa T 1982 J. Phys. Soc. Jpn. 51 4116Google Scholar

    [13]

    Date E, Jimbo M, Miwa T 1982 J. Phys. Soc. Jpn. 51 4125Google Scholar

    [14]

    Date E, Jimbo M, Miwa T 1983 J. Phys. Soc. Jpn. 52 388Google Scholar

    [15]

    Date E, Jimbo M, Miwa T 1983 J. Phys. Soc. Jpn. 52 761Google Scholar

    [16]

    Date E, Jimbo M, Miwa T 1983 J. Phys. Soc. Jpn. 52 766Google Scholar

    [17]

    Ueno K, Takasaki K 1984 In: Okamoto K (ed) Group Representations and Systems of Differential Equations Advanced Studies in Pure Mathematics (Vol. 4) (Tokyo: Kinokuniya) pp1−95

    [18]

    Nijhoff F W, Quispel G R W, Capel H W 1983 Phys. Lett. A 97 125Google Scholar

    [19]

    Nijhoff F W, Quispel G R W, Capel H W 1983 Phys. Lett. A 98 83Google Scholar

    [20]

    Nijhoff F W, Capel H W, Wiersma G L, Quispel G R W 1984 Phys. Lett. A 105 267Google Scholar

    [21]

    Nijhoff F W 1985 Lett. Math. Phys. 9 235Google Scholar

    [22]

    Nijhoff F W, Capel H W, Wiersma G L 1985 In: Martini R (ed) Geometric Aspects of the Einstein Equations and Integrable Systems (Scheveningen 1984) Lecture Notes in Phys (Vol. 239) (Berlin: Springer) pp263−302

    [23]

    Quispel G R W, Nijhoff F W, Capel H W, van ver Linden J 1984 Physica A 125 344Google Scholar

    [24]

    Fokas A S, Ablowitz M 1981 Phys. Rev. Lett. 47 1096

    [25]

    Levi D, Benguria R 1980 Proc. Natl. Acad. Sci. U.S.A. 77 5025Google Scholar

    [26]

    Takahashi D, Satsuma J 1990 J. Phys. Soc. Jpn. 59 3514Google Scholar

    [27]

    Tokihiro T, Takahashi D, Matsukidaira J, Satsuma J 1996 Phys. Rev. Lett. 76 3247Google Scholar

    [28]

    Grammaticos B, Ramani A, Papageorgiou V G 1991 Phys. Rev. Lett. 67 1825Google Scholar

    [29]

    Ramani A, Grammaticos B, Hietarinta J 1991 Phys. Rev. Lett. 67 1829Google Scholar

    [30]

    Hietarinta J, Viallet C 1998 Phys. Rev. Lett. 81 325Google Scholar

    [31]

    Bellon M P, Viallet C 1999 Commun. Math. Phys. 204 425Google Scholar

    [32]

    Sakai H 2001 Commun. Math. Phys. 220 165Google Scholar

    [33]

    Bobenko A I, Suris Yu B 2002 Int. Math. Res. Not. 2002 573Google Scholar

    [34]

    Adler V E, Bobenko A I, Suris Yu B 2003 Commun. Math. Phys. 233 513Google Scholar

    [35]

    Nijhoff F W, Walker A J 2001 Glasg. Math. J. 43A 109

    [36]

    Nijhoff F W 2002 Phys. Lett. A 297 49Google Scholar

    [37]

    Nijhoff F W, Atkinson J, Hietarinta J 2009 J. Phys. A: Math. Theor. 42 404005Google Scholar

    [38]

    Hietarinta J, Zhang D J 2008 J. Phys. A: Math. Theor. 42 404006Google Scholar

    [39]

    Atkinson J, Nijhoff F W 2010 Commun. Math. Phys. 299 283Google Scholar

    [40]

    Nijhoff F W, Atkinson J 2010 Int. Math. Res. Not. 2010 3837Google Scholar

    [41]

    Butler S, Joshi N 2010 Inverse Prob. 26 115012Google Scholar

    [42]

    Butler S 2012 Nonlinearity 25 1613Google Scholar

    [43]

    Cao C W, Xu X X 2012 J. Phys. A: Math. Theor. 45 055213Google Scholar

    [44]

    Cao C W, Zhang G Y 2012 J. Phys. A: Math. Theor. 45 095203Google Scholar

    [45]

    Zhang D J, Zhao S L 2013 Stud. Appl. Math. 131 72Google Scholar

    [46]

    Bobenko A I, Its A 2016 Duke Math. J. 165 2607Google Scholar

    [47]

    Hietarinta J, Joshi N, Nijhoff F W 2016 (Cambridge: Camb. Univ. Press)

    [48]

    Zhang D J, Chen S T 2010 Stud. Appl. Math. 125 393Google Scholar

    [49]

    Zhang D J, Chen S T 2010 Stud. Appl. Math. 125 419Google Scholar

    [50]

    Fu W, Qiao Z J, Sun J W, Zhang D J 2013 arXiv: 1307.3671

    [51]

    Fu W, Qiao Z J, Sun J W, Zhang D J 2015 J. Nonlinear. Math. Phys. 22 321Google Scholar

    [52]

    Wahlquist H D, Estabrook F B 1973 Phys. Rev. Lett. 31 1386Google Scholar

    [53]

    Lamb JR G L 1971 Rev. Mod. Phys. 43 99Google Scholar

    [54]

    Chen H H 1974 Phys. Rev. Lett. 33 925Google Scholar

    [55]

    Orfanidis S J 1978 Phys. Rev. D 18 3828Google Scholar

    [56]

    Bianchi L 1892 Rend. Lincei 5 2

    [57]

    Bianchi L 1894 Lezioni di Geometria Differenziale (3rd Ed.) (Pisa: Enrico Spoerri)

    [58]

    Konopelchenko B G 1982 Phys. Lett. A 87 445Google Scholar

    [59]

    Levi D 1981 J. Phys. A: Math. Gen. 14 1083Google Scholar

    [60]

    Adler V E, Yamilov R I 1994 J. Phys. A: Math. Gen. 27 477Google Scholar

    [61]

    Merola I, Ragnisco O, Tu G Z 1994 Inverse Prob. 10 1315Google Scholar

    [62]

    Zhang H W, Tu G Z, Oevel W, Fuchssteiner B 1991 J. Math. Phys. 32 1908Google Scholar

    [63]

    Chen K, Deng X, Zhang D J 2017 J. Nonlinear. Math. Phys. 24(Suppl.1) 18

    [64]

    Cao C W, Zhang G Y 2012 Chin. Phys. Lett. 29 050202Google Scholar

    [65]

    Walker A J 2001 Ph.D. Thesis (Leeds: University of Leeds)

    [66]

    Adler V E 1998 Int. Math. Res. Not. 1998 1Google Scholar

    [67]

    Hietarinta J 2005 J. Nonlinear. Math. Phys. 12 223

    [68]

    Nijhoff F W, Papageorgiou V G, Capel H W, Quispel G R W 1992 Inverse Prob. 8 597Google Scholar

    [69]

    Nijhoff F W 1997 In: Fokas A S, Gel’fand I M (eds) Algebraic Aspects of Integrable Systems: In memory of Irene Dorfman (Boston: Birkhauser) pp237−260

    [70]

    Nijhoff F W 1999 In: Bobenko A I, Seiler R (eds) Discrete Integrable Geometry and Physics (Oxford: Clarendon Press) pp209−234

    [71]

    Hietarinta J 2011 J. Phys. A: Math. Theor. 44 165204

    [72]

    Hietarinta J, Zhang D J 2008 preprint

    [73]

    Atkinson J 2008 J. Phys. A: Math. Theor. 41 135202Google Scholar

    [74]

    Adler V E, Bobenko A I, Suris Yu B 2009 Funct. Anal. Appl. 43 3Google Scholar

    [75]

    Boll R 2011 J. Nonlinear. Math. Phys. 18 337Google Scholar

    [76]

    Boll R 2012 Ph.D Dissertation (Berlin: Technischen Universität Berlin)

    [77]

    Adler V E, Bobenko A I, Suris Yu B 2012 Int. Math. Res. Not. 2012 1822Google Scholar

    [78]

    Miwa T 1982 Proc. Jpn. Acad. 58A 9

    [79]

    Konopelchenko B G, Schief W K 2002 Stud. Appl. Math. 109 89Google Scholar

    [80]

    Hirota R 1981 J. Phys. Soc. Jpn. 50 3785Google Scholar

    [81]

    Bianchi L 1885 Ann. Matem. 13 177Google Scholar

    [82]

    Atkinson J, Nieszporski M 2014 Int. Math. Res. Not. 2014 4215Google Scholar

    [83]

    Zhang D D, Zhang D J 2018 J. Nonlinear. Math. Phys. 25 34Google Scholar

    [84]

    Zhang D J, Cheng J W, Sun Y Y 2013 J. Phys. A: Math. Theor. 46 265202Google Scholar

    [85]

    Xenitidis P 2011 J. Phys. A: Math. Theor. 44 435201

    [86]

    Bridgman T, Hereman W, Quispel G R W, van der Kamp P H 2013 Found. Comput. Math. 13 517Google Scholar

    [87]

    Hietarinta J, Zhang D J 2010 J. Math. Phys. 51 033505

    [88]

    Hietarinta J, Zhang D J 2011 SIGMA 7 061

    [89]

    Atkinson J, Hietarinta J, Nijhoff F W 2007 J. Phys. A: Math. Theor. 40 F1Google Scholar

    [90]

    Konopelchenko B G, Schief W K 2002 J. Phys. A: Math. Gen. 35 6125Google Scholar

  • 图 1  $[x_0, x]$上的数值离散

    Fig. 1.  Numerical discretisation on $[x_0, x]$

    图 2  Bäcklund变换解的交换性质

    Fig. 2.  Permutation property of Bäcklund transformation

    图 3  变换与平面网格

    Fig. 3.  Map and lattice

    图 4  相容立方体

    Fig. 4.  Consistent cube

    图 5  离散sine-Gordon和势mKdV方程的相容立方体

    Fig. 5.  The consistent cube for the discrete sine-Gordon equation and potential mKdV equation

    图 6  定义3维方程的6面体以及8面体

    Fig. 6.  Cube and octahedron for 3D equations

    图 7  围绕超立方体的4D相容性

    Fig. 7.  4D consistency around the hyper cube

    图 8  相容立方体

    Fig. 8.  The consistent cube

  • [1]

    Zabusky N J, Kruskal M D 1965 Phys. Rev. Lett. 15 240

    [2]

    Gardner C S, Greene J M, Kruskal M D, Miura R M 1967 Phys. Rev. Lett. 19 1095Google Scholar

    [3]

    Lax P D 1968 Commun. Pure Appl. Math. 21 467Google Scholar

    [4]

    Deift P 2019 arXiv: 1902.10267

    [5]

    Case K M, Kac M 1973 J. Math. Phys. 14 594Google Scholar

    [6]

    Ablowitz M J, Ladik J F 1975 J. Math. Phys. 16 598Google Scholar

    [7]

    Ablowitz M J, Ladik J F 1976 J. Math. Phys. 17 1011Google Scholar

    [8]

    Ablowitz M J, Ladik J F 1976 Stud. Appl. Math. 55 213Google Scholar

    [9]

    Hirota R 1977 J. Phys. Soc. Jpn. 43 1424Google Scholar

    [10]

    Hirota R 1977 J. Phys. Soc. Jpn. 43 2074Google Scholar

    [11]

    Hirota R 1977 J. Phys. Soc. Jpn. 43 2079Google Scholar

    [12]

    Date E, Jimbo M, Miwa T 1982 J. Phys. Soc. Jpn. 51 4116Google Scholar

    [13]

    Date E, Jimbo M, Miwa T 1982 J. Phys. Soc. Jpn. 51 4125Google Scholar

    [14]

    Date E, Jimbo M, Miwa T 1983 J. Phys. Soc. Jpn. 52 388Google Scholar

    [15]

    Date E, Jimbo M, Miwa T 1983 J. Phys. Soc. Jpn. 52 761Google Scholar

    [16]

    Date E, Jimbo M, Miwa T 1983 J. Phys. Soc. Jpn. 52 766Google Scholar

    [17]

    Ueno K, Takasaki K 1984 In: Okamoto K (ed) Group Representations and Systems of Differential Equations Advanced Studies in Pure Mathematics (Vol. 4) (Tokyo: Kinokuniya) pp1−95

    [18]

    Nijhoff F W, Quispel G R W, Capel H W 1983 Phys. Lett. A 97 125Google Scholar

    [19]

    Nijhoff F W, Quispel G R W, Capel H W 1983 Phys. Lett. A 98 83Google Scholar

    [20]

    Nijhoff F W, Capel H W, Wiersma G L, Quispel G R W 1984 Phys. Lett. A 105 267Google Scholar

    [21]

    Nijhoff F W 1985 Lett. Math. Phys. 9 235Google Scholar

    [22]

    Nijhoff F W, Capel H W, Wiersma G L 1985 In: Martini R (ed) Geometric Aspects of the Einstein Equations and Integrable Systems (Scheveningen 1984) Lecture Notes in Phys (Vol. 239) (Berlin: Springer) pp263−302

    [23]

    Quispel G R W, Nijhoff F W, Capel H W, van ver Linden J 1984 Physica A 125 344Google Scholar

    [24]

    Fokas A S, Ablowitz M 1981 Phys. Rev. Lett. 47 1096

    [25]

    Levi D, Benguria R 1980 Proc. Natl. Acad. Sci. U.S.A. 77 5025Google Scholar

    [26]

    Takahashi D, Satsuma J 1990 J. Phys. Soc. Jpn. 59 3514Google Scholar

    [27]

    Tokihiro T, Takahashi D, Matsukidaira J, Satsuma J 1996 Phys. Rev. Lett. 76 3247Google Scholar

    [28]

    Grammaticos B, Ramani A, Papageorgiou V G 1991 Phys. Rev. Lett. 67 1825Google Scholar

    [29]

    Ramani A, Grammaticos B, Hietarinta J 1991 Phys. Rev. Lett. 67 1829Google Scholar

    [30]

    Hietarinta J, Viallet C 1998 Phys. Rev. Lett. 81 325Google Scholar

    [31]

    Bellon M P, Viallet C 1999 Commun. Math. Phys. 204 425Google Scholar

    [32]

    Sakai H 2001 Commun. Math. Phys. 220 165Google Scholar

    [33]

    Bobenko A I, Suris Yu B 2002 Int. Math. Res. Not. 2002 573Google Scholar

    [34]

    Adler V E, Bobenko A I, Suris Yu B 2003 Commun. Math. Phys. 233 513Google Scholar

    [35]

    Nijhoff F W, Walker A J 2001 Glasg. Math. J. 43A 109

    [36]

    Nijhoff F W 2002 Phys. Lett. A 297 49Google Scholar

    [37]

    Nijhoff F W, Atkinson J, Hietarinta J 2009 J. Phys. A: Math. Theor. 42 404005Google Scholar

    [38]

    Hietarinta J, Zhang D J 2008 J. Phys. A: Math. Theor. 42 404006Google Scholar

    [39]

    Atkinson J, Nijhoff F W 2010 Commun. Math. Phys. 299 283Google Scholar

    [40]

    Nijhoff F W, Atkinson J 2010 Int. Math. Res. Not. 2010 3837Google Scholar

    [41]

    Butler S, Joshi N 2010 Inverse Prob. 26 115012Google Scholar

    [42]

    Butler S 2012 Nonlinearity 25 1613Google Scholar

    [43]

    Cao C W, Xu X X 2012 J. Phys. A: Math. Theor. 45 055213Google Scholar

    [44]

    Cao C W, Zhang G Y 2012 J. Phys. A: Math. Theor. 45 095203Google Scholar

    [45]

    Zhang D J, Zhao S L 2013 Stud. Appl. Math. 131 72Google Scholar

    [46]

    Bobenko A I, Its A 2016 Duke Math. J. 165 2607Google Scholar

    [47]

    Hietarinta J, Joshi N, Nijhoff F W 2016 (Cambridge: Camb. Univ. Press)

    [48]

    Zhang D J, Chen S T 2010 Stud. Appl. Math. 125 393Google Scholar

    [49]

    Zhang D J, Chen S T 2010 Stud. Appl. Math. 125 419Google Scholar

    [50]

    Fu W, Qiao Z J, Sun J W, Zhang D J 2013 arXiv: 1307.3671

    [51]

    Fu W, Qiao Z J, Sun J W, Zhang D J 2015 J. Nonlinear. Math. Phys. 22 321Google Scholar

    [52]

    Wahlquist H D, Estabrook F B 1973 Phys. Rev. Lett. 31 1386Google Scholar

    [53]

    Lamb JR G L 1971 Rev. Mod. Phys. 43 99Google Scholar

    [54]

    Chen H H 1974 Phys. Rev. Lett. 33 925Google Scholar

    [55]

    Orfanidis S J 1978 Phys. Rev. D 18 3828Google Scholar

    [56]

    Bianchi L 1892 Rend. Lincei 5 2

    [57]

    Bianchi L 1894 Lezioni di Geometria Differenziale (3rd Ed.) (Pisa: Enrico Spoerri)

    [58]

    Konopelchenko B G 1982 Phys. Lett. A 87 445Google Scholar

    [59]

    Levi D 1981 J. Phys. A: Math. Gen. 14 1083Google Scholar

    [60]

    Adler V E, Yamilov R I 1994 J. Phys. A: Math. Gen. 27 477Google Scholar

    [61]

    Merola I, Ragnisco O, Tu G Z 1994 Inverse Prob. 10 1315Google Scholar

    [62]

    Zhang H W, Tu G Z, Oevel W, Fuchssteiner B 1991 J. Math. Phys. 32 1908Google Scholar

    [63]

    Chen K, Deng X, Zhang D J 2017 J. Nonlinear. Math. Phys. 24(Suppl.1) 18

    [64]

    Cao C W, Zhang G Y 2012 Chin. Phys. Lett. 29 050202Google Scholar

    [65]

    Walker A J 2001 Ph.D. Thesis (Leeds: University of Leeds)

    [66]

    Adler V E 1998 Int. Math. Res. Not. 1998 1Google Scholar

    [67]

    Hietarinta J 2005 J. Nonlinear. Math. Phys. 12 223

    [68]

    Nijhoff F W, Papageorgiou V G, Capel H W, Quispel G R W 1992 Inverse Prob. 8 597Google Scholar

    [69]

    Nijhoff F W 1997 In: Fokas A S, Gel’fand I M (eds) Algebraic Aspects of Integrable Systems: In memory of Irene Dorfman (Boston: Birkhauser) pp237−260

    [70]

    Nijhoff F W 1999 In: Bobenko A I, Seiler R (eds) Discrete Integrable Geometry and Physics (Oxford: Clarendon Press) pp209−234

    [71]

    Hietarinta J 2011 J. Phys. A: Math. Theor. 44 165204

    [72]

    Hietarinta J, Zhang D J 2008 preprint

    [73]

    Atkinson J 2008 J. Phys. A: Math. Theor. 41 135202Google Scholar

    [74]

    Adler V E, Bobenko A I, Suris Yu B 2009 Funct. Anal. Appl. 43 3Google Scholar

    [75]

    Boll R 2011 J. Nonlinear. Math. Phys. 18 337Google Scholar

    [76]

    Boll R 2012 Ph.D Dissertation (Berlin: Technischen Universität Berlin)

    [77]

    Adler V E, Bobenko A I, Suris Yu B 2012 Int. Math. Res. Not. 2012 1822Google Scholar

    [78]

    Miwa T 1982 Proc. Jpn. Acad. 58A 9

    [79]

    Konopelchenko B G, Schief W K 2002 Stud. Appl. Math. 109 89Google Scholar

    [80]

    Hirota R 1981 J. Phys. Soc. Jpn. 50 3785Google Scholar

    [81]

    Bianchi L 1885 Ann. Matem. 13 177Google Scholar

    [82]

    Atkinson J, Nieszporski M 2014 Int. Math. Res. Not. 2014 4215Google Scholar

    [83]

    Zhang D D, Zhang D J 2018 J. Nonlinear. Math. Phys. 25 34Google Scholar

    [84]

    Zhang D J, Cheng J W, Sun Y Y 2013 J. Phys. A: Math. Theor. 46 265202Google Scholar

    [85]

    Xenitidis P 2011 J. Phys. A: Math. Theor. 44 435201

    [86]

    Bridgman T, Hereman W, Quispel G R W, van der Kamp P H 2013 Found. Comput. Math. 13 517Google Scholar

    [87]

    Hietarinta J, Zhang D J 2010 J. Math. Phys. 51 033505

    [88]

    Hietarinta J, Zhang D J 2011 SIGMA 7 061

    [89]

    Atkinson J, Hietarinta J, Nijhoff F W 2007 J. Phys. A: Math. Theor. 40 F1Google Scholar

    [90]

    Konopelchenko B G, Schief W K 2002 J. Phys. A: Math. Gen. 35 6125Google Scholar

  • [1] 楼森岳, 郝夏芝, 贾曼. 互反型高维可积Kaup-Newell系统. 物理学报, 2023, 72(10): 100204. doi: 10.7498/aps.72.20222418
    [2] 张大军. 可积系统的双线性约化方法. 物理学报, 2023, 72(10): 100203. doi: 10.7498/aps.72.20230063
    [3] 潘昌昌, Baronio Fabio, 陈世华. 可积谐振系统中的极端波事件研究进展. 物理学报, 2020, 69(1): 010504. doi: 10.7498/aps.69.20191240
    [4] 楼森岳. 可积系统多孤子解的全反演对称表达式. 物理学报, 2020, 69(1): 010503. doi: 10.7498/aps.69.20191172
    [5] 刘萍, 徐恒睿, 杨建荣. Boussinesq方程的Lax对、Bäcklund变换、对称群变换和Riccati展开相容性. 物理学报, 2020, 69(1): 010203. doi: 10.7498/aps.69.20191316
    [6] 李保生, 丁瑞强, 李建平, 钟权加. 强迫Lorenz系统的可预报性研究. 物理学报, 2017, 66(6): 060503. doi: 10.7498/aps.66.060503
    [7] 贺志, 李莉, 姚春梅, 李艳. 利用量子相干性判定开放二能级系统中非马尔可夫性. 物理学报, 2015, 64(14): 140302. doi: 10.7498/aps.64.140302
    [8] 王菲菲, 方建会, 王英丽, 徐瑞莉. 离散变质量完整系统的Noether对称性与Mei对称性. 物理学报, 2014, 63(17): 170202. doi: 10.7498/aps.63.170202
    [9] 佘清, 江美福, 钱侬, 潘越. SiC过渡层制备温度对碳化硅/氟化类金刚石复合薄膜血液相容性的影响. 物理学报, 2014, 63(18): 185204. doi: 10.7498/aps.63.185204
    [10] 黎爱兵, 张立凤, 项杰. 外强迫对Lorenz系统初值可预报性的影响. 物理学报, 2012, 61(11): 119202. doi: 10.7498/aps.61.119202
    [11] 路凯, 方建会, 张明江, 王鹏. 相空间中离散完整系统的Noether对称性和Mei对称性. 物理学报, 2009, 58(11): 7421-7425. doi: 10.7498/aps.58.7421
    [12] 黄晓虹, 张晓波, 施沈阳. 离散差分序列变质量力学系统的Mei对称性. 物理学报, 2008, 57(10): 6056-6062. doi: 10.7498/aps.57.6056
    [13] 施沈阳, 傅景礼, 陈立群. 离散Lagrange系统的Lie对称性. 物理学报, 2007, 56(6): 3060-3063. doi: 10.7498/aps.56.3060
    [14] 何文平, 封国林, 董文杰, 李建平. Lorenz系统的可预报性. 物理学报, 2006, 55(2): 969-977. doi: 10.7498/aps.55.969
    [15] 熊传华. AdS5○×S5背景下IIB超弦的Dressing对称性及Affine可积性. 物理学报, 2005, 54(1): 47-52. doi: 10.7498/aps.54.47
    [16] 田晓东, 岳瑞宏. 推广的多分量费米型量子可导非线性Schr?dinger模型的可积性. 物理学报, 2005, 54(4): 1485-1489. doi: 10.7498/aps.54.1485
    [17] 张玉峰, 郭福奎. 推广的一类Lie代数及其相关的一族可积系统. 物理学报, 2004, 53(5): 1276-1279. doi: 10.7498/aps.53.1276
    [18] 李齐良, 朱海东, 唐向宏, 李承家, 王小军, 林理彬. 多波长系统孤子耦合方程的可积性. 物理学报, 2004, 53(6): 1623-1628. doi: 10.7498/aps.53.1623
    [19] 张玉峰, 闫庆友. 一类NLS-mKdV方程族的扩展可积系统. 物理学报, 2003, 52(9): 2109-2113. doi: 10.7498/aps.52.2109
    [20] 封国林, 戴新刚, 王爱慧, 丑纪范. 混沌系统中可预报性的研究. 物理学报, 2001, 50(4): 606-611. doi: 10.7498/aps.50.606
计量
  • 文章访问数:  9804
  • PDF下载量:  220
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-28
  • 修回日期:  2019-11-14
  • 上网日期:  2019-12-05
  • 刊出日期:  2020-01-05

/

返回文章
返回