搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

腔光力系统制备微波非经典态研究进展

罗均文 吴德伟 苗强 魏天丽

引用本文:
Citation:

腔光力系统制备微波非经典态研究进展

罗均文, 吴德伟, 苗强, 魏天丽

Research progress in non-classical microwave states preparation based on cavity optomechanical system

Luo Jun-Wen, Wu De-Wei, Miao Qiang, Wei Tian-Li
PDF
HTML
导出引用
  • 腔光力系统作为一种新型的混合量子系统, 因其超强耦合度、低温超导条件下极低的噪声、较长的相干时间等优势而成为被广受关注的量子实验平台. 本文简要介绍腔光力学及腔光力系统基本原理, 对常见腔光力系统进行分类, 详细介绍利用广义腔光力系统进行微波非经典量子态制备的相关进展, 对其性能优势和待解决问题进行分析, 最后总结相关应用场景并对未来的潜在应用领域进行了展望.
    As a novel hybrid quantum system, cavity optomechanical system shows super strong coupling strength, extremely low noise level and considerable coherent time under superconducting condition. In this paper, we briefly introduce basic principles of cavity optomechanics and cavity optomechanical systems. Meanwhile, we also classify the widely studied cavity optomechanical systems as five categories in their materials and structures. Significant parameters of these optomechanical systems, such as quality factor, mass and vibrating frequency of mechanical oscillator, are listed in detail. Technical merits and defects of these optomechanical systems are summarized. Furthermore, we introduce the research progress of non-classical microwave quantum states preparation by utilizing generalized cavity optomechanical systems, and we also analyze the performance advancements and remaining problems of this preparation method. In the end, we summarize the application cases at present and look forward to the potential application scenarios in the future. Our summary may be helpful for researchers who are focusing on quantum applications in sensing, radar, navigation, and communication in microwave domain.
      通信作者: 吴德伟, wudewei74609@126.com
    • 基金项目: 国家级-国家自然科学基金(61603413,61573372)
      Corresponding author: Wu De-Wei, wudewei74609@126.com
    [1]

    Walls D F 1983 Nature 306 141Google Scholar

    [2]

    Tara K, Agarwal G S 1994 Phys. Rev. A 50 2870Google Scholar

    [3]

    Einstein A, Podolsky B, Rosen N 1935 Phys. Rev. 47 777Google Scholar

    [4]

    Liu C C, Wang D, Sun W Y, Ye L 2017 Quantum Inf. Process. 16 219Google Scholar

    [5]

    Bennett C H 1992 Phys. Rev. Lett. 68 3121Google Scholar

    [6]

    Hillery M, Buzek V, Berthiaume A 1999 Phys. Rev. A 59 1829Google Scholar

    [7]

    Gonzalez E A R, Borne A, Boulanger B, Levenson J A, Bencheikh K 2018 Phys. Rev. Lett. 120 043601Google Scholar

    [8]

    Gatti L N, Lacalle J 2018 Quantum Inf. Process. 17 192Google Scholar

    [9]

    Li Q, Li Z L, Chan W H, Zhang S Y, Liu C D 2018 Phys. Lett. A 382 938Google Scholar

    [10]

    Lloyd S 2008 Science 321 1433

    [11]

    McKinney J D 2014 Nature 507 310Google Scholar

    [12]

    Lariontsev E G, ZolotoverkhI I 2002 J. Opt. B: Quantum Semiclass. Opt. 4 15Google Scholar

    [13]

    Kok P, NemotoK, RalphTC, DowlingJP, MilburnGJ 2007 Rev. Mod. Phys. 79 135Google Scholar

    [14]

    Fürst M, Weier H, Nauerth S, Marangon D G, Weinfurter H 2010 Opt. Express 18 13029Google Scholar

    [15]

    Cialdi S, Rossi M A C, Benedetti C, Vacchini B, Tamascelli D, Olivares S 2017 Appl. Phys. Lett. 110 081107Google Scholar

    [16]

    Henty B E, Stancil D D 2004 Phys. Rev. Lett. 93 243904Google Scholar

    [17]

    Liu F Y, Yu X L, Liang P, Cheng Z G, Han Z Y, Dong B W 2012 Eur. J. Radiol. 81 1455Google Scholar

    [18]

    Panzer B, Gomez-Garcia D, Leuschen C, Paden J, Rodriguez-Morales F, Patel A 2013 J. Glaciol. 59 244Google Scholar

    [19]

    Guo B, Wang Y, Li J, Stoica P, Wu R 2006 J. Electromagnet. Wave. 20 53Google Scholar

    [20]

    Mallet F, Castellanos-Beltran M A, Ku H S, Glancy S, Lehnert K W 2011 Phys. Rev. Lett. 106 220502Google Scholar

    [21]

    Kurpiers P, Magnard P, Walter T, Royer B, Wallraff A 2018 Nature 558 7709

    [22]

    Filippov S N, Man’ko V I 2012 Opt. Spectrosc. 112 365Google Scholar

    [23]

    Eichler C, Bozyigit D, Lang C, Steffen L, Fink J, Wallraff A 2011 Phys. Rev. Lett. 106 220503Google Scholar

    [24]

    Hofheinz M, Huard B, Portier F 2016 C.R.Physique 17 679Google Scholar

    [25]

    Singh V, Bosman S J, Schneider B H, Blanter Y M, Castellanos-Gomez A, Steele G A 2014 Nat. Nanotechnol. 9 820Google Scholar

    [26]

    Boner P J 2006 Nuncius. 21 31Google Scholar

    [27]

    Maxwell J C 1873 Nature 7 478Google Scholar

    [28]

    Lebedew P 1901 Ann. Phys. 311 433Google Scholar

    [29]

    Nichols E F, Hull G F 1903 Ann. Phys. 12 225

    [30]

    Meystre P 2013 Ann. Phys-Berlin. 523 215

    [31]

    Braginsky V B, Manukin A B 1967 Sov. Phys JETP. 25 653

    [32]

    Dorsel A, McCullen J D, Meystre P, Vignes E, Walther H 1983 Phys. Rev. Lett. 51 1550Google Scholar

    [33]

    Fabre C, Pinard M, Bourzeix S, Heidmann A, Giacobino E, Reynaud S 1994 Phys. Rev. A 49 1337Google Scholar

    [34]

    Barish B C, Weiss R 1999 Phys. Today 52 44

    [35]

    Schliesser A, Riviere R, Anetsberger G, Arcizet O, Kippenberg T J 2008 Nat. Phys. 4 415Google Scholar

    [36]

    Marquardt F, Harris J G E, Girvin S M 2006 Phys. Rev. Lett. 96 103901Google Scholar

    [37]

    Carmon T, Cross M C, Vahala K J 2007 Phys. Rev. Lett. 98 167203Google Scholar

    [38]

    Binnig G, Quate C F, Gerber C 1986 Phys. Rev. Lett. 56 930Google Scholar

    [39]

    Kippenberg T J, Vahala K J 2008 Science 321 1172Google Scholar

    [40]

    Chen B, Jiang C, Li J J, Zhu K D 2011 Phys. Rev. A 84 055802Google Scholar

    [41]

    Perot A, Fabry C 1899 Bull. Astronomique 16 5

    [42]

    Zhang J, Peng K, Braunstein S L 2003 Phys. Rev. A 68 013808Google Scholar

    [43]

    Vitali D, Mancini S, Tombesi P 2007 J. Phys A-Math. Theor. 40 8055Google Scholar

    [44]

    Wilson D J, Regal C A, Papp S B, Kimble H J 2009 Phys. Rev. Lett. 103 207204Google Scholar

    [45]

    Bitarafan M H, Ramp H, Allen T W, Potts C, Rojas X, MacDonald A J R, Davis J P, Decorby R G 2015 J. Opt. Soc. Am. B 32 1214Google Scholar

    [46]

    Pontin A, Mourounas L S, Geraci A A, Barker P F 2018 New J. Phys. 20 023017Google Scholar

    [47]

    Delić U, Grass D, Reisenbauer M, Damm T, Weitz M, Kiesel N, Aspelmeyer M 2019 arXiv: 1902.06605

    [48]

    Armani D K, Kippenberg T J, Spillane S M, Vahala K J 2003 Nature 421 925Google Scholar

    [49]

    Hossein-Zadeh M, Rokhsari H, Hajimiri A, Vahala K J 2006 Phys. Rev. A 74 023813Google Scholar

    [50]

    Henze R, Pyrlik C, Thies A, Ward J M, Wicht A, Benson O 2013 Appl. Phys. Lett. 102 041104Google Scholar

    [51]

    Kavungal V, Farrell G, Wu Q, Mallik A K, Semenova Y 2017 J. Lightwave Technol. 36 1757

    [52]

    Choi H, Chen D Y, Du F, Zeto R, Armani A 2019 Photonics Res. 7 926Google Scholar

    [53]

    Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin S M, Harris J G E 2008 Nature 452 72Google Scholar

    [54]

    Jayich A M, Harris J G E, Sankey J C, Yang C, Zwickl B M 2010 Nat. Phys. 6 707Google Scholar

    [55]

    Wang C, Lin Q, He B 2019 Phys. Rev. A 99 023829Google Scholar

    [56]

    Painter O, Vuckovic J, Scherer A 1999 J. Opt. Soc. Am. B 16 275Google Scholar

    [57]

    Eichenfield M, Camacho R, Chan J, Vahala K J, Painter O 2009 Nature 459 550Google Scholar

    [58]

    Safavi-Naeini A H, Hill J T, MeenehanS M, Chan J, Groblacher S, Painter O 2014 Phys. Rev. Lett. 112 153603Google Scholar

    [59]

    Burek M J, Cohen J D, Meenehan S M, El-Sawah N, Chia C, Ruelle T, Meesala S, Rochman J, Atikian H A, Markham M, Twitchen D J, Lukin M D, Painter O, Lončar M 2015 Optica 3 1404

    [60]

    Riedinger R, Wallucks A, Marinković I, Löschnauer C, Aspelmeyer M, Hong S, Gröblacher S 2018 Nature 556 473Google Scholar

    [61]

    Rajasekar R, Robinson S 2019 Plasmonics 14 3Google Scholar

    [62]

    Regal C A, Teufel J D, Lehnert K W 2008 Nat. Phys. 4 555Google Scholar

    [63]

    Teufel J D, Li D, Allman M S, Cicak K, Simmonds R W 2011 Nature 471 204Google Scholar

    [64]

    Fink J M, Kalaee M, Pitanti A, Norte R, Heinzle L, Davanco M, Srinivasan K, Painter O 2016 Nat. Commun. 7 12396Google Scholar

    [65]

    Li Y C, Tang J S, Jiang J L, Pan J Z, Dai X, Wei X Y, Lu Y P, Lu S, Tu X C, Wang H B, Xia K Y, Sun G Z, Wu P H 2019 AIP Adv. 9 015029Google Scholar

    [66]

    Bienfait A, Satzinger K J, Zhong Y P, Chang H S, Chou M H, Conner C R, Dumur É, Grebel J, Peairs G A, Povey R G, Cleland A N 2019 Science 364 368Google Scholar

    [67]

    Meschede D, Walther H, Müller G 1985 Phys. Rev. Lett. 54 551Google Scholar

    [68]

    Haroche S 2013 Rev. Mod. Phys. 85 1083Google Scholar

    [69]

    Haroche S, Kleppner D 1989 Phys. Today 42 24

    [70]

    Yurke B, Kaminsky P G, Miller R E, Whittaker E A, Smith A D, Silver A H, Simon R W 1988 Phys. Rev. Lett. 60 764Google Scholar

    [71]

    Martinis J M, Devoret M H, Clarke J 1985 Phys. Rev. Lett. 55 1543Google Scholar

    [72]

    Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M, Schoelkopf R J 2004 Nature 431 162Google Scholar

    [73]

    Ku H S, Mallet F, Vale L R, Irwin K D, Russek S E, Hilton G C, Lehnert K W 2011 IEEE T. Appl. Supercon. 21 452Google Scholar

    [74]

    Ku H S, Kindel W F, Mallet F, Glancy S, Irwin K D, Hilton G C, Vale L R, Lehnert K W 2015 Phys. Rev. A 91 042305Google Scholar

    [75]

    Li P B, Gao S Y, Li F L 2013 Phys. Rev. A 88 0438021

    [76]

    PalomakiTA, Teufel J D, Simmonds R W, Lehnert K W 2013 Science 342 710Google Scholar

    [77]

    Sete E A, Eleuch H 2014 Phys. Rev. A 89 013841Google Scholar

    [78]

    Ockeloen-Korppi C F, Damskagg E, Pirkkalainen J M, Heikkilä T T, Massel F, Sillanpää M A 2017 Phys. Rev. Lett. 118 103601Google Scholar

    [79]

    Barzanjeh S, Guha S, Weedbrook C, Vitali D, Shapiro J. H, Pirandola S 2015 Phys. Rev. Lett. 114 080503Google Scholar

    [80]

    Aggarwal N, Debnath K, Mahajan S 2014 Int. J. Quantum Inf. 12 14500241

    [81]

    Pan G X, Xiao R J, Zhou L 2016 Int. J. Theor. Phys. 55 329Google Scholar

    [82]

    Tian L 2015 Ann. Phys.-Berlin 527 1Google Scholar

    [83]

    TianL 2013 Phys. Rev. Lett. 110 233602Google Scholar

    [84]

    Andrews R W, Regal C A 2014 Nat. Phys. 114 080503

    [85]

    Abdi M, Tombesi P, Vitali D 2015 Ann. Phys.-Berlin 527 139Google Scholar

    [86]

    Huang S M 2015 Phys. Rev. A 92 043845Google Scholar

    [87]

    Xiong B, Li X, Wang X Y, Zhou L 2017 Ann. Phys.-New York 385 757Google Scholar

    [88]

    Higginbotham A P, Burns P S, Urmey M D, Peterson R W, Kampel N S, Brubaker B M, Smith G, Lehnert K W, Regal C A 2018 Nat. Phys. 14 1038Google Scholar

    [89]

    Ma P C, Yan L L, Chen G B, Li X W, Liu S J, Zhan Y B 2018 Laser Phys. Lett. 15 035201Google Scholar

    [90]

    Zhong C C, Wang Z X, Zou C L, Zhang M Z, Han X, Fu W, Xu M R, Shankar S, Devoret M H, Tang H X, Jiang L 2019 arXiv: 1901.08228 v1[quant-ph]

    [91]

    Wang Y D, Clerk A A 2012 Phys. Rev. Lett. 108 153603Google Scholar

    [92]

    Li B, Li P B, Zhou Y, Ma S L, Li F L 2017 Phys. Rev. A 96 032342Google Scholar

    [93]

    LaHaye M D 2004 Science 304 74Google Scholar

    [94]

    陈雪, 刘晓威, 张可烨, 袁春华, 张卫平 2015 物理学报 64 164211Google Scholar

    Chen X, Liu X W, Zhang K Y, Yuan C H, Zhang W P 2015 Acta Phys. Sin. 64 164211Google Scholar

    [95]

    Han Y, Cheng J, Zhou L 2012 J. Mod. Optic. 59 1336Google Scholar

    [96]

    Qi T, Han Y, Zhou L 2013 J. Mod. Optic. 60 431Google Scholar

    [97]

    Akram M J, Ghafoor F, Saif F 2014 J. Phys. B-At. Mol. Opt. 48 65502

    [98]

    Tsang M 2010 Phys. Rev. A 81 063837Google Scholar

    [99]

    Teufel J D, Donner T, Li D, Harlow J W, Allman M S, Cicak K, Sirois A J, Whittaker J D, Lehnert K W, Simmonds R W 2011 Nature 475 359Google Scholar

    [100]

    Threepak T, Luangvilay X, Mitatha S, Yupapin P P 2010 Microw. Opt. Techn. Lett. 52 1353Google Scholar

  • 图 1  法布里-珀罗型腔光力系统原理图[30]

    Fig. 1.  Schematic of Fabry-Perot cavity[30].

    图 2  各种不同质量和机械振动频率的腔光力系统[39]

    Fig. 2.  Cavity optomechanical systems with different mecha-nical vibration frequencies and masses[39].

    图 3  法布里-珀罗干涉仪原理图

    Fig. 3.  Schematic of Fabry-Perot interferometer.

    图 4  Vitali团队[43]方案原理图

    Fig. 4.  Schematic of proposal from Vitali’s group[43].

    图 5  Bitarafan[45]所提方案原理图

    Fig. 5.  Schematic of proposal from Bitarafan[45].

    图 6  悬浮式粒子型的法布里-珀罗腔实验结构图[47]

    Fig. 6.  Experimental setup of F-P cavity with levitated particle[47].

    图 7  回音壁模式示意图

    Fig. 7.  Illustration of whispering gallery mode.

    图 8  (a)首个回音壁腔光力系统构造[48]; (b)其改进型构造[49]

    Fig. 8.  (a) Structures of the first whispering gallery mode cavity[48]; (b) its enhanced version[49].

    图 9  光纤锥-聚合物线回音壁腔结构图[51]

    Fig. 9.  Schematic of whispering gallery mode cavity formed by fiber taper and polymer wire[51].

    图 10  金属掺杂材料回音壁腔[52]

    Fig. 10.  Schematic of whispering gallery mode cavity formed by metal-doped material[52].

    图 11  (a) Thompson团队[53]所提振动薄膜原理图; (b)实验结构图[53]

    Fig. 11.  Schematic[53](a) and experimental setup[53](b) of proposal from Thompson’s group.

    图 12  Sankey团队[54]的方案示意图

    Fig. 12.  Schematic of proposal from Sankey’s group[54].

    图 13  双抽运驱动的振动薄膜腔原理图[55]

    Fig. 13.  Schematic of vibrating membrane cavity with two pumps[55].

    图 14  拉链式光子晶体微腔结构图[57]

    Fig. 14.  Structure of zipper-like photonic crystal cavity[57]

    图 15  (a)雪花形光子晶体微腔结构图[58]; (b)金刚石NV色心光子晶体微腔结构图[59]; (c)六边形结构的光子晶体环状谐振腔结构图[61]

    Fig. 15.  Structures of (a) snowflake photonic crystal cavity[58], (b) diamond NV center photonic crystal cavity[59], and (c) hexagonal photonic crystal cavity[61].

    图 16  (a)分布式超导微波腔结构图[62]; (b)鼓膜状超导微波腔结构图[63]

    Fig. 16.  Structures of (a) distributed superconducting microwave cavity[62] and (b) drum-like superconducting microwave cavity[63].

    图 17  氮化硅纳米薄膜超导微波腔(a)原理图和(b)结构图[64]

    Fig. 17.  Schematic (a) and structure (b) of Si3N4 membrane superconducting microwave cavity[64].

    图 18  (a) Li等[65]设计的超导微波腔结构图; (b) Bienfait等设计的实验结构图图[66]

    Fig. 18.  (a) Structure of membrane superconducting microwave cavity designed by Li et al.[65]; (b) experimental setup designed by Bienfait et al.[66].

    图 19  (a)正交功分器结构图[73]; (b) 20 dB功分器结构图[73]; (c)微波EPR态制备方案示意图[74]

    Fig. 19.  (a) Structure of quadrature hybrid coupler[73]; (b) structure of 20 dB directional coupler[73]; (c) schematic of microwave EPR state preparation[74].

    图 20  Li等[75]提出的微波连续变量纠缠态制备方案原理图

    Fig. 20.  Schematic of microwave continuous-variable entanglement state preparation proposed by Li et al.[75].

    图 21  Palomaki等[76]设计的超导微波腔结构图

    Fig. 21.  Structure of superconducting microwave cavity designed by Palomaki et al.[76].

    图 22  Sete等[77]提出的微波压缩态及微波-机械振子谐振模式纠缠态制备方案示意图

    Fig. 22.  Schematic of microwave squeezed state preparation and microwave-mechanical vibration mode entanglement preparation proposed by Sete et al.[77].

    图 23  微波强压缩态制备方案示意图[78]

    Fig. 23.  Schematic of preparing highly squeezed state in microwave domain[78].

    图 24  腔电光力系统原理示意图[79]

    Fig. 24.  Schematic of cavity electro-opto-mechanical system[79].

    图 25  Tian[83]提出的腔电光力混合量子接口示意图

    Fig. 25.  Schematic of cavity electro-opto-mechanical hybrid quantum interface proposed by Tian[83].

    图 26  Andrews等[84]设计的腔电光力转换器原理图及器件结构示意图

    Fig. 26.  Schematic and structure of cavity electro-opto-mechanical converter designed by Andrews et al.[84].

    图 27  Abdi等[85]提出的远距离微波场纠缠态制备方案示意图

    Fig. 27.  Schematic of distant microwave fields entanglement preparation proposed by Abdi et al.[85].

    图 28  基于双电光力转换器的量子微波照明方案示意图[79]

    Fig. 28.  Schematic of microwave quantum illumination based on double cavity electro-opto-mechanical converters[79]

    图 29  基于电光力转换器的微波高斯、非高斯微波量子态制备方案示意图[86]

    Fig. 29.  Schematic of Gaussian and non-Gaussian microwave quantum states preparation based on cavity electro-opto-mechanical converter[86].

    图 30  引入光学参量放大器的电光力转换器示意图[87]

    Fig. 30.  Schematic of cavity electro-opto-mechanical converter introducing optical parametric amplifier[87].

    图 31  Regal团队[88]提出的量子态转移方案示意图

    Fig. 31.  Schematic of quantum state transferring proposed by Regal’sgroup[88].

    图 32  基于腔电光力系统的多通道量子路由器示意图[89]

    Fig. 32.  Schematic of multichannel quantum router based on cavity electro-opto-mechanical[89].

    图 33  基于电光力转换器的预报式微波-光纠缠态制备方案示意图[90]

    Fig. 33.  Schematic of heraldedmicrowave-optical entanglement preparation based on cavity electro-opto-mechanical system[90].

    表 1  5种主要腔光力系统的研究现状总结

    Table 1.  Summary for current research states of 5 main cavity optomechanical systems.

    类别品质因数水平振子质量水平振子频率水平优势不足
    法布里-珀罗腔104kg—pgkHz—MHz技术成熟, 应用广泛品质因数水平较低, 耗散较大、不易集成
    回音壁腔109 (微球腔)
    108 (微环腔)
    ng—fgMHz—GHz光力耦合度高, 构造灵活,
    腔内光子寿命长
    工艺要求高、成本高
    振动薄膜腔105pgMHz结构简单、灵活耗散较大、不易集成
    光子晶体腔106fgGHz可利用自由度多, 片上可扩展
    性好, 精确的模式控制
    工艺复杂
    超导微波腔107pgMHz可高度集成, 与超导器件兼容,
    腔的稳定性好, 热噪声水平低
    超低温, 电磁噪声谱较宽
    下载: 导出CSV

    表 2  基于腔光力系统的微波非经典量子态制备

    Table 2.  Preparations of non-classical quantum statesof microwave based on cavity opto-mechanical system

    腔光力系统类型作用类型模式数腔类型制备的微波非经典量子态
    腔电力系统光子-声子2微波腔连续变量微波纠缠态, 微波压缩态, 微波-机械
    振子谐振模纠缠态
    腔电光力系统光子-声子-光子3微波腔, 光腔连续、离散变量微波纠缠态, 微波单光子Fock态,
    微波-机械振子谐振模纠缠态, 微波-光纠缠态
    下载: 导出CSV
  • [1]

    Walls D F 1983 Nature 306 141Google Scholar

    [2]

    Tara K, Agarwal G S 1994 Phys. Rev. A 50 2870Google Scholar

    [3]

    Einstein A, Podolsky B, Rosen N 1935 Phys. Rev. 47 777Google Scholar

    [4]

    Liu C C, Wang D, Sun W Y, Ye L 2017 Quantum Inf. Process. 16 219Google Scholar

    [5]

    Bennett C H 1992 Phys. Rev. Lett. 68 3121Google Scholar

    [6]

    Hillery M, Buzek V, Berthiaume A 1999 Phys. Rev. A 59 1829Google Scholar

    [7]

    Gonzalez E A R, Borne A, Boulanger B, Levenson J A, Bencheikh K 2018 Phys. Rev. Lett. 120 043601Google Scholar

    [8]

    Gatti L N, Lacalle J 2018 Quantum Inf. Process. 17 192Google Scholar

    [9]

    Li Q, Li Z L, Chan W H, Zhang S Y, Liu C D 2018 Phys. Lett. A 382 938Google Scholar

    [10]

    Lloyd S 2008 Science 321 1433

    [11]

    McKinney J D 2014 Nature 507 310Google Scholar

    [12]

    Lariontsev E G, ZolotoverkhI I 2002 J. Opt. B: Quantum Semiclass. Opt. 4 15Google Scholar

    [13]

    Kok P, NemotoK, RalphTC, DowlingJP, MilburnGJ 2007 Rev. Mod. Phys. 79 135Google Scholar

    [14]

    Fürst M, Weier H, Nauerth S, Marangon D G, Weinfurter H 2010 Opt. Express 18 13029Google Scholar

    [15]

    Cialdi S, Rossi M A C, Benedetti C, Vacchini B, Tamascelli D, Olivares S 2017 Appl. Phys. Lett. 110 081107Google Scholar

    [16]

    Henty B E, Stancil D D 2004 Phys. Rev. Lett. 93 243904Google Scholar

    [17]

    Liu F Y, Yu X L, Liang P, Cheng Z G, Han Z Y, Dong B W 2012 Eur. J. Radiol. 81 1455Google Scholar

    [18]

    Panzer B, Gomez-Garcia D, Leuschen C, Paden J, Rodriguez-Morales F, Patel A 2013 J. Glaciol. 59 244Google Scholar

    [19]

    Guo B, Wang Y, Li J, Stoica P, Wu R 2006 J. Electromagnet. Wave. 20 53Google Scholar

    [20]

    Mallet F, Castellanos-Beltran M A, Ku H S, Glancy S, Lehnert K W 2011 Phys. Rev. Lett. 106 220502Google Scholar

    [21]

    Kurpiers P, Magnard P, Walter T, Royer B, Wallraff A 2018 Nature 558 7709

    [22]

    Filippov S N, Man’ko V I 2012 Opt. Spectrosc. 112 365Google Scholar

    [23]

    Eichler C, Bozyigit D, Lang C, Steffen L, Fink J, Wallraff A 2011 Phys. Rev. Lett. 106 220503Google Scholar

    [24]

    Hofheinz M, Huard B, Portier F 2016 C.R.Physique 17 679Google Scholar

    [25]

    Singh V, Bosman S J, Schneider B H, Blanter Y M, Castellanos-Gomez A, Steele G A 2014 Nat. Nanotechnol. 9 820Google Scholar

    [26]

    Boner P J 2006 Nuncius. 21 31Google Scholar

    [27]

    Maxwell J C 1873 Nature 7 478Google Scholar

    [28]

    Lebedew P 1901 Ann. Phys. 311 433Google Scholar

    [29]

    Nichols E F, Hull G F 1903 Ann. Phys. 12 225

    [30]

    Meystre P 2013 Ann. Phys-Berlin. 523 215

    [31]

    Braginsky V B, Manukin A B 1967 Sov. Phys JETP. 25 653

    [32]

    Dorsel A, McCullen J D, Meystre P, Vignes E, Walther H 1983 Phys. Rev. Lett. 51 1550Google Scholar

    [33]

    Fabre C, Pinard M, Bourzeix S, Heidmann A, Giacobino E, Reynaud S 1994 Phys. Rev. A 49 1337Google Scholar

    [34]

    Barish B C, Weiss R 1999 Phys. Today 52 44

    [35]

    Schliesser A, Riviere R, Anetsberger G, Arcizet O, Kippenberg T J 2008 Nat. Phys. 4 415Google Scholar

    [36]

    Marquardt F, Harris J G E, Girvin S M 2006 Phys. Rev. Lett. 96 103901Google Scholar

    [37]

    Carmon T, Cross M C, Vahala K J 2007 Phys. Rev. Lett. 98 167203Google Scholar

    [38]

    Binnig G, Quate C F, Gerber C 1986 Phys. Rev. Lett. 56 930Google Scholar

    [39]

    Kippenberg T J, Vahala K J 2008 Science 321 1172Google Scholar

    [40]

    Chen B, Jiang C, Li J J, Zhu K D 2011 Phys. Rev. A 84 055802Google Scholar

    [41]

    Perot A, Fabry C 1899 Bull. Astronomique 16 5

    [42]

    Zhang J, Peng K, Braunstein S L 2003 Phys. Rev. A 68 013808Google Scholar

    [43]

    Vitali D, Mancini S, Tombesi P 2007 J. Phys A-Math. Theor. 40 8055Google Scholar

    [44]

    Wilson D J, Regal C A, Papp S B, Kimble H J 2009 Phys. Rev. Lett. 103 207204Google Scholar

    [45]

    Bitarafan M H, Ramp H, Allen T W, Potts C, Rojas X, MacDonald A J R, Davis J P, Decorby R G 2015 J. Opt. Soc. Am. B 32 1214Google Scholar

    [46]

    Pontin A, Mourounas L S, Geraci A A, Barker P F 2018 New J. Phys. 20 023017Google Scholar

    [47]

    Delić U, Grass D, Reisenbauer M, Damm T, Weitz M, Kiesel N, Aspelmeyer M 2019 arXiv: 1902.06605

    [48]

    Armani D K, Kippenberg T J, Spillane S M, Vahala K J 2003 Nature 421 925Google Scholar

    [49]

    Hossein-Zadeh M, Rokhsari H, Hajimiri A, Vahala K J 2006 Phys. Rev. A 74 023813Google Scholar

    [50]

    Henze R, Pyrlik C, Thies A, Ward J M, Wicht A, Benson O 2013 Appl. Phys. Lett. 102 041104Google Scholar

    [51]

    Kavungal V, Farrell G, Wu Q, Mallik A K, Semenova Y 2017 J. Lightwave Technol. 36 1757

    [52]

    Choi H, Chen D Y, Du F, Zeto R, Armani A 2019 Photonics Res. 7 926Google Scholar

    [53]

    Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin S M, Harris J G E 2008 Nature 452 72Google Scholar

    [54]

    Jayich A M, Harris J G E, Sankey J C, Yang C, Zwickl B M 2010 Nat. Phys. 6 707Google Scholar

    [55]

    Wang C, Lin Q, He B 2019 Phys. Rev. A 99 023829Google Scholar

    [56]

    Painter O, Vuckovic J, Scherer A 1999 J. Opt. Soc. Am. B 16 275Google Scholar

    [57]

    Eichenfield M, Camacho R, Chan J, Vahala K J, Painter O 2009 Nature 459 550Google Scholar

    [58]

    Safavi-Naeini A H, Hill J T, MeenehanS M, Chan J, Groblacher S, Painter O 2014 Phys. Rev. Lett. 112 153603Google Scholar

    [59]

    Burek M J, Cohen J D, Meenehan S M, El-Sawah N, Chia C, Ruelle T, Meesala S, Rochman J, Atikian H A, Markham M, Twitchen D J, Lukin M D, Painter O, Lončar M 2015 Optica 3 1404

    [60]

    Riedinger R, Wallucks A, Marinković I, Löschnauer C, Aspelmeyer M, Hong S, Gröblacher S 2018 Nature 556 473Google Scholar

    [61]

    Rajasekar R, Robinson S 2019 Plasmonics 14 3Google Scholar

    [62]

    Regal C A, Teufel J D, Lehnert K W 2008 Nat. Phys. 4 555Google Scholar

    [63]

    Teufel J D, Li D, Allman M S, Cicak K, Simmonds R W 2011 Nature 471 204Google Scholar

    [64]

    Fink J M, Kalaee M, Pitanti A, Norte R, Heinzle L, Davanco M, Srinivasan K, Painter O 2016 Nat. Commun. 7 12396Google Scholar

    [65]

    Li Y C, Tang J S, Jiang J L, Pan J Z, Dai X, Wei X Y, Lu Y P, Lu S, Tu X C, Wang H B, Xia K Y, Sun G Z, Wu P H 2019 AIP Adv. 9 015029Google Scholar

    [66]

    Bienfait A, Satzinger K J, Zhong Y P, Chang H S, Chou M H, Conner C R, Dumur É, Grebel J, Peairs G A, Povey R G, Cleland A N 2019 Science 364 368Google Scholar

    [67]

    Meschede D, Walther H, Müller G 1985 Phys. Rev. Lett. 54 551Google Scholar

    [68]

    Haroche S 2013 Rev. Mod. Phys. 85 1083Google Scholar

    [69]

    Haroche S, Kleppner D 1989 Phys. Today 42 24

    [70]

    Yurke B, Kaminsky P G, Miller R E, Whittaker E A, Smith A D, Silver A H, Simon R W 1988 Phys. Rev. Lett. 60 764Google Scholar

    [71]

    Martinis J M, Devoret M H, Clarke J 1985 Phys. Rev. Lett. 55 1543Google Scholar

    [72]

    Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M, Schoelkopf R J 2004 Nature 431 162Google Scholar

    [73]

    Ku H S, Mallet F, Vale L R, Irwin K D, Russek S E, Hilton G C, Lehnert K W 2011 IEEE T. Appl. Supercon. 21 452Google Scholar

    [74]

    Ku H S, Kindel W F, Mallet F, Glancy S, Irwin K D, Hilton G C, Vale L R, Lehnert K W 2015 Phys. Rev. A 91 042305Google Scholar

    [75]

    Li P B, Gao S Y, Li F L 2013 Phys. Rev. A 88 0438021

    [76]

    PalomakiTA, Teufel J D, Simmonds R W, Lehnert K W 2013 Science 342 710Google Scholar

    [77]

    Sete E A, Eleuch H 2014 Phys. Rev. A 89 013841Google Scholar

    [78]

    Ockeloen-Korppi C F, Damskagg E, Pirkkalainen J M, Heikkilä T T, Massel F, Sillanpää M A 2017 Phys. Rev. Lett. 118 103601Google Scholar

    [79]

    Barzanjeh S, Guha S, Weedbrook C, Vitali D, Shapiro J. H, Pirandola S 2015 Phys. Rev. Lett. 114 080503Google Scholar

    [80]

    Aggarwal N, Debnath K, Mahajan S 2014 Int. J. Quantum Inf. 12 14500241

    [81]

    Pan G X, Xiao R J, Zhou L 2016 Int. J. Theor. Phys. 55 329Google Scholar

    [82]

    Tian L 2015 Ann. Phys.-Berlin 527 1Google Scholar

    [83]

    TianL 2013 Phys. Rev. Lett. 110 233602Google Scholar

    [84]

    Andrews R W, Regal C A 2014 Nat. Phys. 114 080503

    [85]

    Abdi M, Tombesi P, Vitali D 2015 Ann. Phys.-Berlin 527 139Google Scholar

    [86]

    Huang S M 2015 Phys. Rev. A 92 043845Google Scholar

    [87]

    Xiong B, Li X, Wang X Y, Zhou L 2017 Ann. Phys.-New York 385 757Google Scholar

    [88]

    Higginbotham A P, Burns P S, Urmey M D, Peterson R W, Kampel N S, Brubaker B M, Smith G, Lehnert K W, Regal C A 2018 Nat. Phys. 14 1038Google Scholar

    [89]

    Ma P C, Yan L L, Chen G B, Li X W, Liu S J, Zhan Y B 2018 Laser Phys. Lett. 15 035201Google Scholar

    [90]

    Zhong C C, Wang Z X, Zou C L, Zhang M Z, Han X, Fu W, Xu M R, Shankar S, Devoret M H, Tang H X, Jiang L 2019 arXiv: 1901.08228 v1[quant-ph]

    [91]

    Wang Y D, Clerk A A 2012 Phys. Rev. Lett. 108 153603Google Scholar

    [92]

    Li B, Li P B, Zhou Y, Ma S L, Li F L 2017 Phys. Rev. A 96 032342Google Scholar

    [93]

    LaHaye M D 2004 Science 304 74Google Scholar

    [94]

    陈雪, 刘晓威, 张可烨, 袁春华, 张卫平 2015 物理学报 64 164211Google Scholar

    Chen X, Liu X W, Zhang K Y, Yuan C H, Zhang W P 2015 Acta Phys. Sin. 64 164211Google Scholar

    [95]

    Han Y, Cheng J, Zhou L 2012 J. Mod. Optic. 59 1336Google Scholar

    [96]

    Qi T, Han Y, Zhou L 2013 J. Mod. Optic. 60 431Google Scholar

    [97]

    Akram M J, Ghafoor F, Saif F 2014 J. Phys. B-At. Mol. Opt. 48 65502

    [98]

    Tsang M 2010 Phys. Rev. A 81 063837Google Scholar

    [99]

    Teufel J D, Donner T, Li D, Harlow J W, Allman M S, Cicak K, Sirois A J, Whittaker J D, Lehnert K W, Simmonds R W 2011 Nature 475 359Google Scholar

    [100]

    Threepak T, Luangvilay X, Mitatha S, Yupapin P P 2010 Microw. Opt. Techn. Lett. 52 1353Google Scholar

  • [1] 王鑫, 任飞帆, 韩嵩, 韩海燕, 严冬. 里德伯原子辅助光力系统的完美光力诱导透明及慢光效应. 物理学报, 2023, 72(9): 094203. doi: 10.7498/aps.72.20222264
    [2] 刘妮, 马硕, 梁九卿. 双腔双光力系统中的光非互易传输特性. 物理学报, 2023, 72(6): 060702. doi: 10.7498/aps.72.20222246
    [3] 郑智勇, 陈立杰, 向吕, 王鹤, 王一平. 一维超导微波腔晶格中反旋波效应对拓扑相变和拓扑量子态的调制. 物理学报, 2023, 72(24): 244204. doi: 10.7498/aps.72.20231321
    [4] 谢宝豪, 陈华俊, 孙轶. 多模光力系统中光力诱导透明引起的慢光效应. 物理学报, 2023, 72(15): 154203. doi: 10.7498/aps.72.20230663
    [5] 张利巍, 李贤丽, 杨柳. 蓝失谐驱动下双腔光力系统中的光学非互易性. 物理学报, 2019, 68(17): 170701. doi: 10.7498/aps.68.20190205
    [6] 田聪, 鹿翔, 张英杰, 夏云杰. 纠缠相干光场对量子态最大演化速率的操控. 物理学报, 2019, 68(15): 150301. doi: 10.7498/aps.68.20190385
    [7] 谷开慧, 严冬, 张孟龙, 殷景志, 付长宝. 原子辅助光力系统中快慢光的量子调控. 物理学报, 2019, 68(5): 054201. doi: 10.7498/aps.68.20181424
    [8] 陆赫林, 杜春光. 回音壁微腔光力系统的相干控制与完全相干透射. 物理学报, 2016, 65(21): 214204. doi: 10.7498/aps.65.214204
    [9] 肖佳, 徐大海, 伊珍, 谷文举. 三机械薄膜腔光力系统相互作用的研究. 物理学报, 2016, 65(12): 124202. doi: 10.7498/aps.65.124202
    [10] 钟东洲, 计永强, 邓涛, 周开利. 电光调制对外部光注入垂直腔表面发射激光器的偏振转换及其非线性动力学行为的操控性研究. 物理学报, 2015, 64(11): 114203. doi: 10.7498/aps.64.114203
    [11] 王冬, 徐莎, 曹延伟, 秦奋. 光子晶体高功率微波模式转换器设计. 物理学报, 2014, 63(1): 018401. doi: 10.7498/aps.63.018401
    [12] 刘小娟, 周并举, 刘一曼, 姜春蕾. 运动双原子与光场依赖强度耦合系统中的纠缠操纵与量子态制备. 物理学报, 2012, 61(23): 230301. doi: 10.7498/aps.61.230301
    [13] 马瑞琼, 李永放, 时 坚. 量子态的非相干光时域测量. 物理学报, 2008, 57(9): 5593-5599. doi: 10.7498/aps.57.5593
    [14] 夏云杰, 高德营. 纠缠相干态及其非经典特性. 物理学报, 2007, 56(7): 3703-3708. doi: 10.7498/aps.56.3703
    [15] 李培丽, 黄德修, 张新亮, 朱光喜. 基于多电极单端耦合半导体光放大器的交叉增益调制型波长转换器. 物理学报, 2006, 55(6): 2746-2750. doi: 10.7498/aps.55.2746
    [16] 张新亮, 孙军强, 刘德明, 黄德修, 易河清. 基于半导体光放大器的交叉增益型波长转换器转换特性的研究. 物理学报, 2000, 49(4): 741-746. doi: 10.7498/aps.49.741
    [17] 潘 庆, 王 海, 张 云, 苏 红, 谢常德, 彭墀, 于正刚, 路庆明. 多用非经典光场产生系统的实验研究. 物理学报, 1998, 47(10): 1625-1631. doi: 10.7498/aps.47.1625
    [18] 姚德民, 郭光灿. 非经典态光场的判据. 物理学报, 1988, 37(3): 463-469. doi: 10.7498/aps.37.463
    [19] 刘淑琴, 董太乾. 光抽运实验中的微波-射频多量子跃迁(续). 物理学报, 1985, 34(6): 828-832. doi: 10.7498/aps.34.828
    [20] 刘淑琴, 董太乾. 光抽运实验中的微波-射频多量子跃迁. 物理学报, 1984, 33(9): 1291-1293. doi: 10.7498/aps.33.1291
计量
  • 文章访问数:  12876
  • PDF下载量:  344
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-12
  • 修回日期:  2020-01-09
  • 刊出日期:  2020-03-05

/

返回文章
返回