搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

经由脉冲式爆炸连接的复合式张弛振荡

宋锦 魏梦可 姜文安 张晓芳 韩修静 毕勤胜

引用本文:
Citation:

经由脉冲式爆炸连接的复合式张弛振荡

宋锦, 魏梦可, 姜文安, 张晓芳, 韩修静, 毕勤胜

Compound relaxation oscillations connected by pulse-shaped explosion

Song Jin, Wei Meng-Ke, Jiang Wen-An, Zhang Xiao-Fang, Han Xiu-Jing, Bi Qin-Sheng
PDF
HTML
导出引用
  • 张弛振荡现象普遍存在于自然科学以及工程技术的各个领域, 探索张弛振荡的可能路径是张弛振荡研究的重要问题之一. 最近, 一种名为“脉冲式爆炸”(pulse-shaped explosion, PSE)的可以诱发张弛振荡的新机制被相继报道. PSE意味着平衡点和极限环表现出了与参数变化相关的脉冲式急剧量变, 这导致系统出现急剧转迁现象, 进而诱发张弛振荡. 本文以多频激励Mathieu-van der Pol-Duffing系统为例, 探讨了复合式的张弛振荡现象. 当参数激励和外部激励存在相位差时, 快子系统包含了两个不同的向量场部分, 由此得到了系统的双稳定特性. 特别地, 在狭小的参数范围内, 分岔会随着PSE的产生而产生, 这使得PSE更具复杂性. 基于此, 揭示了两种复合式的张弛振荡, 其特征是每一周期的演化过程包含了由PSE连接的两个张弛振荡簇. 我们的研究深化了对PSE及张弛振荡复杂动力学行为的理解.
    Relaxation oscillations are ubiquitous in various fields of natural science and engineering technology. Exploring possible routes to relaxation oscillations is one of the important issues in the study of relaxation oscillations. Recently, the pulse-shaped explosion (PSE), a novel mechanism which can lead to relaxation oscillations, has been reported. The PSE means pulse-shaped sharp quantitative changes related the variation of system parameters in branches of equilibrium points and limit cycles, which leads the system’s trajectory to undertake sharp transitions and further induces relaxation oscillations. Regarding externally and parametrically excited nonlinear systems with different frequency ratios, some work on PSE has been reported. The present paper focuses on the PSE and the related relaxation oscillations in a externally and parametrically excited Mathieu-van der Pol-Duffing system. We show that if there is an initial phase difference between the slow excitations with the same frequency ratio, the fast subsystem may compose of two parts with different expressions, each of which determines a different vector field. As a result, the bistable behaviors are observed in the system. In particular, one of the vector fields exhibits two groups of bifurcation behaviors, which are symmetric with respect to the positive and negative PSE, and each can induce a cluster in the relaxation oscillations. Based on this, we present several routes to compound relaxation oscillations, and obtain new types of relaxation oscillations connected by pulse-shaped explosion, which we call compound “subHopf/fold-cycle” relaxation oscillations and compound “supHopf/supHopf” relaxation oscillations, respectively. Our results show that the two clusters in the resultant relaxation oscillations are connected by the PSE, and the initial phase difference plays an important role in transitions to different attractors and the generation of relaxation oscillations. Although the research in this paper is based on a specific nonlinear system, we would like to point out that the bistable behaviors, the PSE and the resultant compound relaxation oscillations can also be observed in other dynamical systems. The reason is that the fast subsystem composes of two different vector fields induced by the initial phase difference, which dose not rely on a specific system. The results of this paper deepen the research about PSE as well as the complex dynamics of relaxation oscillations.
      通信作者: 韩修静, xjhan@mail.ujs.edu.cn
    • 基金项目: 国家级-基于延迟分岔的混合模式振动的动力学机制与分类(11572141)
      Corresponding author: Han Xiu-Jing, xjhan@mail.ujs.edu.cn
    [1]

    Belhaq M, Ghouli Z, Hamdi M 2018 Nonlinear Dyn. 94 2537Google Scholar

    [2]

    Mani A K, Narayanan M D, Sen M 2018 Nonlinear Dyn. 93 945Google Scholar

    [3]

    Miwadinou C H, Hinvi L A, Monwanou A V, Orou J B C 2017 Nonlinear Dyn. 88 97Google Scholar

    [4]

    Miwadinou C H, Monwanou A V, Yovogan J, Hinvi L A, Tuwa P R N, Orou J B C 2018 Chin. J. Phys. 56 1089Google Scholar

    [5]

    于文婷, 张娟, 唐军 2017 物理学报 66 200201Google Scholar

    Yu W T, Zhang J, Tang J 2017 Acta Phys. Sin. 66 200201Google Scholar

    [6]

    Ferraro M, D'annessa I, Moroni E, Morra G, Paladino A, Rinaldi S, Compostella, F, Colombo G 2019 J. Med. Chem. 62 60Google Scholar

    [7]

    谢献忠, 沈伟成, 彭剑, 龙昊 2016 防灾减灾工程学报 36 972

    XieX Z, Sheng W C, Peng J, Long H 2016 Journal of Disaster Prevention and Mitigation Engineering 36 972

    [8]

    Tuttle T D, Seering W P 1996 IEEE Trans. Rob. Autom. 12 368Google Scholar

    [9]

    梁晓冰, 刘希顺, 刘安芝, 王博亮 2009 物理学报 58 5065Google Scholar

    Liang X B, Liu X S, Liu A Z, Wang B L 2009 Acta Phys. Sin. 58 5065Google Scholar

    [10]

    Li Y X, Rinzel J 1994 J. Theor. Biol. 166 461Google Scholar

    [11]

    Newby J M, Bressloff P C, Keener J P 2013 Phys. Rev. Lett. 111 128101Google Scholar

    [12]

    Zhang J J, Chen D Y, Zhang H, Xu B B, Li H H, Aggidis G A, Chatterton S 2019 J. Vib. Control 25 2863Google Scholar

    [13]

    He J H, Ji F Y 2019 Therm. Sci. 23 2131Google Scholar

    [14]

    Deng B 2004 Chaos 14 1083Google Scholar

    [15]

    Roberts A 2016 SIAM J. Appl.Dyn. Syst. 15 609Google Scholar

    [16]

    Krupa M, Touboul J D 2016 J. Dyn. Differ. Equ. 28 471Google Scholar

    [17]

    Golmakani A, Homburg A J 2011 Dynam Syst. 26 61Google Scholar

    [18]

    Cheng W, Xiang Z 2019 J. Differ. Equ. 267 3397Google Scholar

    [19]

    Nikolay D D, Stepan A T 2019 Appl. Math. Lett. 96 208Google Scholar

    [20]

    LI JZ, Tomsovic S 2019 Phys. Rev. E 99 032212Google Scholar

    [21]

    Han X J, Xia F B, Ji P, Bi Q S, Kurths J 2016 Commun. Nonlinear Sci. Numer. Simul. 36 517Google Scholar

    [22]

    Cao J D, Guerrini L, Cheng Z S 2019 Appl. Math. Comput. 343 21

    [23]

    Li L, Wang Z, Li Y X, Shen H, Lu J W 2018 Appl. Math. Comput. 330 152

    [24]

    Han M A, Zhang W N 2010 J. Differ. Equ. 248 2399Google Scholar

    [25]

    Jiang H P, Zhang T H, Song Y L 2015 Int. J. Bifurcation Chaos 25 1550058Google Scholar

    [26]

    Monica C, PItchaimani M 2016 Nonlinear Anal. Real World Appl. 27 55Google Scholar

    [27]

    Wang Z, Wang X H, Li Y X, Huang X 2017 Int. J. Bifurcation Chaos 27 1750209Google Scholar

    [28]

    魏梦可, 韩修静, 张晓芳, 毕勤胜 2019 力学学报 51 904Google Scholar

    Wei M k, Han X J, Zhang X F, Bi Q S 2019 Chinese Journal of Theoretical and Applied Mechanics 51 904Google Scholar

    [29]

    Han X J, Bi Q S, Kurths J 2018 Phys. Rev. E 98 010201Google Scholar

    [30]

    Mohamad M A, Sapsis T P 2016 Ocean Eng. 120 289Google Scholar

    [31]

    Lakrad F, Azouani A, Abouhazim N, Belhaq M 2005 Chaos, Solitons Fractals 24 813Google Scholar

    [32]

    Wiggers V, Rech P C 2018 Eur. Phys. J. B 91 144Google Scholar

    [33]

    Shukla A K, Ramamohan T R, Srinivas S 2014 Phys. Scr. 89 075202Google Scholar

    [34]

    Kumar P, Kumar A, Erlicher S 2017 Physica D 358 1Google Scholar

    [35]

    Tamba V K, Kingni S T, Kuiate G F, Fotsin H B, Talla P K 2018 Pramana-J Phys. 91 12Google Scholar

    [36]

    He J H 2005 Chaos, Solitons Fractals 26 695Google Scholar

    [37]

    He J H 1999 Int. J. NonLinear Mech. 34 699Google Scholar

    [38]

    He J H, Abdou M A 2007 Chaos, Solitons Fractals 34 1421Google Scholar

    [39]

    He J H 2019 Results in Physics 15 102546Google Scholar

    [40]

    Li Y J, Wu Z Q, Wang F, Zhang G Q, Wang Y C 2019 J. Low Freq. Noise Vib. Act. Control UNSP 1461348419878534

    [41]

    He J H 2014 Indian J. Phys. 88 193Google Scholar

    [42]

    Han X J, Bi Q.S, Ji P, Kurths J 2015 Phys. Rev. E 92 012911Google Scholar

    [43]

    Sprott J C, Li C B 2014 Phys. Rev. E 89 066901Google Scholar

    [44]

    Arumugam R, Sarkar S, Banerjee T, Sinha S, Dutta P S 2019 Phys. Rev. E 99 012911

  • 图 1  系统(1)中典型的复合式张弛振荡 (a) $\alpha = 1.5$; (b) $\alpha = 0.4$; (c) $\alpha = 0.2$. 其他参数固定在$\gamma = 4$, $\delta = 1.00$, ${\beta _1} = 0.99$, ${\beta _2} = 1$, $\omega = 0.01$$\theta = - {{\text{π}}}/{2}$

    Fig. 1.  Typical compound relaxation oscillations in system (1): (a) $\alpha = 1.5$; (b) $\alpha = 0.4$; (c) $\alpha = 0.2$. Other parameters are fixed at $\gamma = 4$, $\delta = 1$, ${\beta _1} = 0.99$, ${\beta _2} = 1$, $\omega = 0.01$ and $\theta = - {{\text{π}}}/{2}$.

    图 2  (a)子系统(2a)和(b)子系统(2b)在参数平面$(w, \alpha )$上的分岔集. 其中GH为广义Hopf分岔SubH为亚临界Hopf分岔, SupH为超临界Hopf分岔, LPC为极限环的分岔. 系统参数的取值与图1相同

    Fig. 2.  Bifurcation sets of the subsystem (2a) (a) and (2b) (b) in the parameter plane $(w, \alpha )$. Here GH represent the generalized Hopf bifurcation, SubH represent the subcritical Hopf bifurcation, SupH represent the supercritical Hopf bifurcation, LPC represent the limit point cycle bifurcation. The values of system parameters are the same as those in Fig. 1.

    图 3  快子系统(2)在A, B, C各区域中典型的稳定性和分岔行为 (a1), (a2) $\alpha = 1.5$; (b1), (b2) $\alpha = 0.4$; (c1), (c2) $\alpha = 0.2$. 其他参数的取值与图1相同

    Fig. 3.  Typical stability and bifurcation behaviors of the fast subsystem (2) in the areas A, B and C: (a1), (a2) $\alpha = 1.5$; (b1), (b2) $\alpha = 0.4$; (c1), (c2) $\alpha = 0.2$. The values of other parameters are the same as those in Fig. 1.

    图 4  子系统(2b)在参数平面$\left( {w, {\beta _{\rm{1}}}} \right)$上的分岔集. 其他参数的取值与图1(a)相同

    Fig. 4.  Bifurcation sets of the subsystem (2b) in the parameter plane $\left( {w, {\beta _{\rm{1}}}} \right)$. The values of other parameters are the same as those in Fig. 1(a).

    图 5  为子系统(2b)的分岔图 (a) ${\beta _1} = 1.1$; (b) ${\beta _1} = 1$. 其他参数的取值与图1(a)相同

    Fig. 5.  Bifurcation diagrams of the subsystem (2b): (a) ${\beta _1} = $1.1; (b) ${\beta _1} = 1$. The values of other parameters are the same as those in Fig. 1(a).

    图 6  图1(a)中的张弛振荡的快慢分析 (a)张弛振荡的转换相图与图3(a1)中的分岔图的叠加(与子系统(2a)相关); (b)张弛振荡的转换相图与图3(a2)中分岔图的叠加(与子系统(2b)相关); (c)一个完整周期下的张弛振荡. 这里$\alpha = 1.5$, 而其他参数与图1相同

    Fig. 6.  Fast-slow analysis of the relaxation oscillations in Fig. 1(a): (a) Overlay of the transformed phase diagram of the relaxation oscillations and the bifurcation diagram in Fig. 3(a1) (related to the subsystem (2a)); (b) overlay of the transformed phase diagram of the relaxation oscillations and the bifurcation diagram in Fig. 3(a2) (related to the subsystem (2b)); (c) a whole period of the relaxation oscillations. Here $\alpha = 1.5$and other parameters are the same as those in Fig. 1.

    图 7  图1(b)中的张弛振荡的快慢分析

    Fig. 7.  Fast-slow analysis of the relaxation oscillations in Fig. 1(b).

    图 8  图1(c)中的张弛振荡的快慢分析

    Fig. 8.  Fast-slow analysis of the relaxation oscillations in Fig. 1(c).

  • [1]

    Belhaq M, Ghouli Z, Hamdi M 2018 Nonlinear Dyn. 94 2537Google Scholar

    [2]

    Mani A K, Narayanan M D, Sen M 2018 Nonlinear Dyn. 93 945Google Scholar

    [3]

    Miwadinou C H, Hinvi L A, Monwanou A V, Orou J B C 2017 Nonlinear Dyn. 88 97Google Scholar

    [4]

    Miwadinou C H, Monwanou A V, Yovogan J, Hinvi L A, Tuwa P R N, Orou J B C 2018 Chin. J. Phys. 56 1089Google Scholar

    [5]

    于文婷, 张娟, 唐军 2017 物理学报 66 200201Google Scholar

    Yu W T, Zhang J, Tang J 2017 Acta Phys. Sin. 66 200201Google Scholar

    [6]

    Ferraro M, D'annessa I, Moroni E, Morra G, Paladino A, Rinaldi S, Compostella, F, Colombo G 2019 J. Med. Chem. 62 60Google Scholar

    [7]

    谢献忠, 沈伟成, 彭剑, 龙昊 2016 防灾减灾工程学报 36 972

    XieX Z, Sheng W C, Peng J, Long H 2016 Journal of Disaster Prevention and Mitigation Engineering 36 972

    [8]

    Tuttle T D, Seering W P 1996 IEEE Trans. Rob. Autom. 12 368Google Scholar

    [9]

    梁晓冰, 刘希顺, 刘安芝, 王博亮 2009 物理学报 58 5065Google Scholar

    Liang X B, Liu X S, Liu A Z, Wang B L 2009 Acta Phys. Sin. 58 5065Google Scholar

    [10]

    Li Y X, Rinzel J 1994 J. Theor. Biol. 166 461Google Scholar

    [11]

    Newby J M, Bressloff P C, Keener J P 2013 Phys. Rev. Lett. 111 128101Google Scholar

    [12]

    Zhang J J, Chen D Y, Zhang H, Xu B B, Li H H, Aggidis G A, Chatterton S 2019 J. Vib. Control 25 2863Google Scholar

    [13]

    He J H, Ji F Y 2019 Therm. Sci. 23 2131Google Scholar

    [14]

    Deng B 2004 Chaos 14 1083Google Scholar

    [15]

    Roberts A 2016 SIAM J. Appl.Dyn. Syst. 15 609Google Scholar

    [16]

    Krupa M, Touboul J D 2016 J. Dyn. Differ. Equ. 28 471Google Scholar

    [17]

    Golmakani A, Homburg A J 2011 Dynam Syst. 26 61Google Scholar

    [18]

    Cheng W, Xiang Z 2019 J. Differ. Equ. 267 3397Google Scholar

    [19]

    Nikolay D D, Stepan A T 2019 Appl. Math. Lett. 96 208Google Scholar

    [20]

    LI JZ, Tomsovic S 2019 Phys. Rev. E 99 032212Google Scholar

    [21]

    Han X J, Xia F B, Ji P, Bi Q S, Kurths J 2016 Commun. Nonlinear Sci. Numer. Simul. 36 517Google Scholar

    [22]

    Cao J D, Guerrini L, Cheng Z S 2019 Appl. Math. Comput. 343 21

    [23]

    Li L, Wang Z, Li Y X, Shen H, Lu J W 2018 Appl. Math. Comput. 330 152

    [24]

    Han M A, Zhang W N 2010 J. Differ. Equ. 248 2399Google Scholar

    [25]

    Jiang H P, Zhang T H, Song Y L 2015 Int. J. Bifurcation Chaos 25 1550058Google Scholar

    [26]

    Monica C, PItchaimani M 2016 Nonlinear Anal. Real World Appl. 27 55Google Scholar

    [27]

    Wang Z, Wang X H, Li Y X, Huang X 2017 Int. J. Bifurcation Chaos 27 1750209Google Scholar

    [28]

    魏梦可, 韩修静, 张晓芳, 毕勤胜 2019 力学学报 51 904Google Scholar

    Wei M k, Han X J, Zhang X F, Bi Q S 2019 Chinese Journal of Theoretical and Applied Mechanics 51 904Google Scholar

    [29]

    Han X J, Bi Q S, Kurths J 2018 Phys. Rev. E 98 010201Google Scholar

    [30]

    Mohamad M A, Sapsis T P 2016 Ocean Eng. 120 289Google Scholar

    [31]

    Lakrad F, Azouani A, Abouhazim N, Belhaq M 2005 Chaos, Solitons Fractals 24 813Google Scholar

    [32]

    Wiggers V, Rech P C 2018 Eur. Phys. J. B 91 144Google Scholar

    [33]

    Shukla A K, Ramamohan T R, Srinivas S 2014 Phys. Scr. 89 075202Google Scholar

    [34]

    Kumar P, Kumar A, Erlicher S 2017 Physica D 358 1Google Scholar

    [35]

    Tamba V K, Kingni S T, Kuiate G F, Fotsin H B, Talla P K 2018 Pramana-J Phys. 91 12Google Scholar

    [36]

    He J H 2005 Chaos, Solitons Fractals 26 695Google Scholar

    [37]

    He J H 1999 Int. J. NonLinear Mech. 34 699Google Scholar

    [38]

    He J H, Abdou M A 2007 Chaos, Solitons Fractals 34 1421Google Scholar

    [39]

    He J H 2019 Results in Physics 15 102546Google Scholar

    [40]

    Li Y J, Wu Z Q, Wang F, Zhang G Q, Wang Y C 2019 J. Low Freq. Noise Vib. Act. Control UNSP 1461348419878534

    [41]

    He J H 2014 Indian J. Phys. 88 193Google Scholar

    [42]

    Han X J, Bi Q.S, Ji P, Kurths J 2015 Phys. Rev. E 92 012911Google Scholar

    [43]

    Sprott J C, Li C B 2014 Phys. Rev. E 89 066901Google Scholar

    [44]

    Arumugam R, Sarkar S, Banerjee T, Sinha S, Dutta P S 2019 Phys. Rev. E 99 012911

  • [1] 张正娣, 刘亚楠, 李静, 毕勤胜. 分段Filippov系统的簇发振荡及擦边运动机理. 物理学报, 2018, 67(11): 110501. doi: 10.7498/aps.67.20172421
    [2] 肖金标, 王登峰. 硅基槽式纳米线多模干涉型模阶数转换器全矢量分析. 物理学报, 2017, 66(7): 074203. doi: 10.7498/aps.66.074203
    [3] 张正娣, 刘杨, 张苏珍, 毕勤胜. 余维-1非光滑分岔下的簇发振荡及其机理. 物理学报, 2017, 66(2): 020501. doi: 10.7498/aps.66.020501
    [4] 吴天一, 陈小可, 张正娣, 张晓芳, 毕勤胜. 非对称型簇发振荡吸引子结构及其机理分析. 物理学报, 2017, 66(11): 110501. doi: 10.7498/aps.66.110501
    [5] 邢雅清, 陈小可, 张正娣, 毕勤胜. 多平衡态下簇发振荡产生机理及吸引子结构分析. 物理学报, 2016, 65(9): 090501. doi: 10.7498/aps.65.090501
    [6] 于永吉, 陈薪羽, 王超, 吴春婷, 董渊, 李述涛, 金光勇. 基于MgO:APLN的多光参量振荡器实验研究及其逆转换过程演化分析. 物理学报, 2015, 64(4): 044203. doi: 10.7498/aps.64.044203
    [7] 葛烨, 胡以华, 舒嵘, 洪光烈. 一种新型的用于差分吸收激光雷达中脉冲式光学参量振荡器的种子激光器的频率稳定方法. 物理学报, 2015, 64(2): 020702. doi: 10.7498/aps.64.020702
    [8] 余跃, 张春, 韩修静, 姜海波, 毕勤胜. 周期切换下Chen系统的振荡行为与非光滑分岔分析. 物理学报, 2013, 62(2): 020508. doi: 10.7498/aps.62.020508
    [9] 高超, 毕勤胜, 张正娣. 一个跃变电路切换系统的振荡行为及分岔机理分析. 物理学报, 2013, 62(2): 020504. doi: 10.7498/aps.62.020504
    [10] 姜海波, 李涛, 曾小亮, 张丽萍. 周期脉冲作用下Logistic映射的复杂动力学行为及其分岔分析. 物理学报, 2013, 62(12): 120508. doi: 10.7498/aps.62.120508
    [11] 姜海波, 张丽萍, 陈章耀, 毕勤胜. 脉冲作用下Chen系统的非光滑分岔分析. 物理学报, 2012, 61(8): 080505. doi: 10.7498/aps.61.080505
    [12] 季颖, 毕勤胜. 高维广义蔡氏电路中的快慢动力学行为及其分岔分析. 物理学报, 2012, 61(1): 010202. doi: 10.7498/aps.61.010202
    [13] 吴天一, 张正娣, 毕勤胜. 切换电路系统的振荡行为及其非光滑分岔机理. 物理学报, 2012, 61(7): 070502. doi: 10.7498/aps.61.070502
    [14] 李绍龙, 张正娣, 吴天一, 毕勤胜. 广义BVP电路系统的振荡行为及其非光滑分岔机理. 物理学报, 2012, 61(6): 060504. doi: 10.7498/aps.61.060504
    [15] 夏志林, 郭培涛, 薛亦渝, 黄才华, 李展望. 短脉冲激光诱导薄膜损伤的等离子体爆炸过程分析. 物理学报, 2010, 59(5): 3523-3530. doi: 10.7498/aps.59.3523
    [16] 季颖, 毕勤胜. 参外联合激励复合非线性振子的分岔分析. 物理学报, 2009, 58(7): 4431-4438. doi: 10.7498/aps.58.4431
    [17] 萧寒, 唐驾时, 梁翠香. 单频外激励弹簧摆的鞍结分岔控制. 物理学报, 2009, 58(5): 2989-2995. doi: 10.7498/aps.58.2989
    [18] 巩华荣, 宫玉彬, 唐昌建, 王文祥, 魏彦玉, 黄民智. 微波管中离子张弛振荡的混沌现象. 物理学报, 2005, 54(1): 159-163. doi: 10.7498/aps.54.159
    [19] 丁晓玲, 王健, 王旭明, 何大韧. 一类不可逆保守系统中的混沌类吸引子. 物理学报, 2002, 51(3): 482-486. doi: 10.7498/aps.51.482
    [20] 何希哲, 邹立寿. 张弛限累振荡电路分析及其阻抗检验. 物理学报, 1975, 24(3): 223-230. doi: 10.7498/aps.24.223
计量
  • 文章访问数:  6701
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-29
  • 修回日期:  2020-01-17
  • 刊出日期:  2020-04-05

/

返回文章
返回