搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲调制条件下介质阻挡特高频放电特性的数值模拟

高书涵 王绪成 张远涛

引用本文:
Citation:

脉冲调制条件下介质阻挡特高频放电特性的数值模拟

高书涵, 王绪成, 张远涛

Numerical study on discharge characteristics in ultra-high frequency band modulated by pulses with electrodes covered by barriers

Gao Shu-Han, Wang Xu-Cheng, Zhang Yuan-Tao
PDF
HTML
导出引用
  • 大气压条件下, 引入脉冲调制是一种有效地提高射频放电稳定性的方法. 已有的研究表明, 当电源频率提高到甚高频乃至特高频频段的时候, 在脉冲调制条件下射频放电会表现出新的放电现象与放电规律. 本文借助于流体模型, 研究了当电源频率提高至500 MHz, 脉冲调制条件下介质阻挡放电的放电特性. 数值计算表明, 在电压开启的第一个周期内的正负半周期会各出现一次大电流放电的现象, 瞬时阳极鞘层的电场结构及介质表面电荷对该现象的产生具有重要影响; 并深入研究了占空比、调制频率与电压调制比对该大电流脉冲的影响, 以及大电流脉冲在放电从脉冲调制状态过渡到连续状态逐渐消失的过程. 本研究将对深入理解脉冲调制参数对介质阻挡放电的影响起到积极作用.
    Pulse-modulated discharge is an effective way to improve the stability of radio-frequency (rf) discharges. Previous studies have shown that with the power frequency increasing to the ultra-high frequency (UHF) band, the introduction of pulse modulation in rf discharges will bring about new discharge behaviors. In this paper, the fluid model is adopted to numerically investigate the new discharge characteristics in dielectric barrier discharges (DBDs) with the rf frequency larger than 500 MHz. A very large current peak occurs in the first positive and negative half cycle during the power-on phase, respectively. The spatial structure of electric field is given to further understand the underpinning physics of the large current peaks. Furthermore, the effects of duty cycle, modulation frequency and voltage modulation rates on the large current peaks are examined based on the computational data. This numerical study will deepen the understanding of DBDs modulated by pulses in the UHF band.
      通信作者: 张远涛, ytzhang@sdu.edu.cn
    • 基金项目: 国家级-大气压等离子体与细胞相互作用的理论研究(11675095)
      Corresponding author: Zhang Yuan-Tao, ytzhang@sdu.edu.cn
    [1]

    Park J, Henins I, Herrmann H W, Selwyn G S 2001 J. Appl. Phys. 89 15Google Scholar

    [2]

    Iza F, Kim G J, Lee S M, Lee J K, Walsh J L, Zhang Y T, Kong M G 2008 Plasma Processes Polym. 5 322Google Scholar

    [3]

    Walsh J L, Zhang Y T, Iza F, Kong M G 2008 Appl. Phys. Lett. 93 221505Google Scholar

    [4]

    Zhang Y T, Li Q Q, Lou J, Li Q M 2010 Appl. Phys. Lett. 97 141504Google Scholar

    [5]

    Massines F, Rabehi A, Decomps P, Gadri R B, Ségur P, Mayoux C 1998 J. Appl. Phys. 83 2950Google Scholar

    [6]

    Lou J, Zhang Y T T 2013 IEEE Trans. Plasma Sci. 41 274Google Scholar

    [7]

    Balcon N, Hagelaar G J M, Boeuf J P 2008 IEEE Trans. Plasma Sci. 36 2782Google Scholar

    [8]

    Fridman G, Friedman G, Gutsol A, Shekhter A B, Vasilets V N, Fridman A 2008 Plasma Processes Polym. 5 503Google Scholar

    [9]

    Laroussi M 2005 Plasma Processes Polym. 2 391Google Scholar

    [10]

    Sousa J S, Niemi K, Cox L J, Algwari Q T, Gans T, O’connell D 2011 J. Appl. Phys. 109 123302Google Scholar

    [11]

    Waskoenig J, Niemi K, Knake N, Graham L M, Reuter S, Schulz-von der Gathen V, Gans T 2010 Plasma Sources Sci. Technol. 19 045018Google Scholar

    [12]

    Zhang Y T, Chi Y Y, He J 2014 Plasma Processes Polym. 11 639Google Scholar

    [13]

    Moravej M, Babayan S E, Nowling G R, Yang X, Hicks R F 2004 Plasma Sources Sci. Technol. 13 8Google Scholar

    [14]

    Boeuf J P, Pitchford L C 2005 J. Appl. Phys. 97 103307Google Scholar

    [15]

    Farouk T, Farouk B, Gutsol A, Fridman A 2008 Plasma Sources Sci. Technol. 17 035015Google Scholar

    [16]

    Zhang Y T, He J 2013 Phys. Plasmas 20 013502Google Scholar

    [17]

    Kwon H C, Jung S Y, Kim H Y, Won I H, Lee J K 2014 Phys. Plasmas 21 033511Google Scholar

    [18]

    He J, Hu J, Liu D W, Zhang Y T 2013 Plasma Sources Sci. Technol. 22 035008Google Scholar

    [19]

    Huang X, Sun L Q, Bao Y, Zhang J, Shi J J 2011 Phys. Plasmas 18 033503Google Scholar

    [20]

    Huo W G, Jian S J, Yao J, Ding Z F 2014 Phys. Plasmas 21 053505Google Scholar

    [21]

    Hu J T, Liu X Y, Liu J H, Xiong Z L, Liu D W, Lu X P, Iza F, Kong M G 2012 Phys. Plasmas 19 063505Google Scholar

    [22]

    Zhang Y T, Liu Y, Liu B 2017 Plasma Sci. Technol. 19 085402Google Scholar

    [23]

    Lee M U, Lee J K, Yun G S 2018 Plasma Processes Polym. 15 1700124Google Scholar

    [24]

    Wang G, Kuang Y, Zhang Y T 2020 Plasma Sci. Technol. 22 015404

    [25]

    Liu X Y, Hu J T, Liu J H, Xiong Z L, Liu D W, Lu X P, Shi J J 2012 Appl. Phys. Lett. 101 043705Google Scholar

    [26]

    Leins M, Kopecki J, Gaiser S, Schulz A, Walker M, Schumacher U, Stroth U, Hirth T 2014 Contrib. Plasma Phys. 54 14Google Scholar

    [27]

    王艳辉, 王德真 2003 物理学报 52 1694Google Scholar

    Wang Y H, Wang D Z 2003 Acta Phys. Sin. 52 1694Google Scholar

    [28]

    Zhang Y T, Wang D Z, Wang Y H 2005 Phys. Plasmas 12 103508Google Scholar

    [29]

    徐学基, 诸定昌 1996 气体放电物理 (上海: 复旦大学出版社) 第277页

    Xu X J, Zhu D C 1996 Discharge Physics of Gas (Shanghai: Fudan University Press) p277 (in Chinese)

    [30]

    张远涛, 王德真, 王艳辉 2005 物理学报 54 4808Google Scholar

    Zhang Y T, Wang D Z, Wang Y H 2005 Acta Phys. Sin. 54 4808Google Scholar

    [31]

    Lee D, Park J M, Hong S H, Kim Y 2005 IEEE Trans. Plasma Sci. 33 949Google Scholar

    [32]

    Zhang Y, Gu B A, Peng X W, Wang D Z, Wang W C 2008 Thin Solid Films 516 7547Google Scholar

    [33]

    Lee H W, Park G Y, Seo Y S, Im Y H, Shim S B, Lee H J 2011 J. Phys. D: Appl. Phys. 44 053001Google Scholar

    [34]

    Yuan X H, Raja L L 2003 IEEE Trans. Plasma Sci. 31 495Google Scholar

    [35]

    Zhang Y T, Wang D Z, Kong M G 2006 J. Appl. Phys. 100 063304Google Scholar

  • 图 1  调制频率为6.25 MHz, 电压为800 V, 占空比为60%时脉冲调制的介质阻挡电流脉冲波形

    Fig. 1.  Temple evolution of current densities in DBDs with a modulation frequency of 6.25 MHz, voltage amplitude of 800 V and duty cycle of 60%.

    图 2  调制频率为6.25 MHz, 电压为800 V时, 占空比从10%到100%的脉冲调制电流密度波形

    Fig. 2.  Temporal evolution of current densities at a given modulation frequency of 6.25 MHz and voltage amplitude of 800 V for various duty cycles from 10% to 100%.

    图 3  双电流脉冲正负峰值及稳定后的电流脉冲峰值随占空比的变化曲线

    Fig. 3.  Peak values of current densities as a function of duty cycle at a given modulation frequency and voltage amplitude.

    图 4  正电流脉冲峰值时刻电场强度的空间分布随占空比的变化

    Fig. 4.  Spatial distribution of electric fields at the moment when the positive current density reaches the top value for various duty cycles.

    图 5  正电流脉冲峰值时刻电子密度(实线)与离子密度(虚线)随占空比的变化曲线

    Fig. 5.  Spatial profiles of electron density (solid line) and ion density (dash line) at the instant when the positive current density reaches the peak value for various duty cycles.

    图 6  负电流脉冲峰值时刻电场强度的空间分布随占空比的变化

    Fig. 6.  Spatial distribution of the electric fields at the moment when the negative current density reaches the top value for various duty cycles.

    图 7  电压为600 V, 占空比为60%时, 调制频率从6.25 MHz到50 MHz的脉冲调制电流密度波形

    Fig. 7.  Temporal evolution of current densities at a given voltage amplitude of 600 V and duty cycle of 60% for various modulation frequencies from 6.25 MHz to 50 MHz

    图 8  电压为800 V, 占空比为60%时, 双电流脉冲正负峰值及稳定后的电流脉冲峰值随调制频率的变化曲线

    Fig. 8.  Peak values of current densities as a function of modulation frequency at a given applied voltage of 800 V and duty cycle of 60%.

    图 9  调制频率为6.25 MHz, 电压为800 V时, 电压调制比从0 (对应电压为0)到1.0(对应电压为800 V)的脉冲调制电流密度波形

    Fig. 9.  Temporal evolutions of current densities at a given modulation frequency of 6.25 MHz and voltage amplitude of 800 V for various voltage modulated rates from 0 to 1.0.

    图 10  调制频率为6.25 MHz, 电压为800 V时, 双电流脉冲正负峰值及稳定后的电流脉冲峰值随电压调制比的变化曲线

    Fig. 10.  Peak values of current densities as a function of voltage modulated rates at a given modulate frequency of 6.25 MHz and voltage amplitude of 800 V.

  • [1]

    Park J, Henins I, Herrmann H W, Selwyn G S 2001 J. Appl. Phys. 89 15Google Scholar

    [2]

    Iza F, Kim G J, Lee S M, Lee J K, Walsh J L, Zhang Y T, Kong M G 2008 Plasma Processes Polym. 5 322Google Scholar

    [3]

    Walsh J L, Zhang Y T, Iza F, Kong M G 2008 Appl. Phys. Lett. 93 221505Google Scholar

    [4]

    Zhang Y T, Li Q Q, Lou J, Li Q M 2010 Appl. Phys. Lett. 97 141504Google Scholar

    [5]

    Massines F, Rabehi A, Decomps P, Gadri R B, Ségur P, Mayoux C 1998 J. Appl. Phys. 83 2950Google Scholar

    [6]

    Lou J, Zhang Y T T 2013 IEEE Trans. Plasma Sci. 41 274Google Scholar

    [7]

    Balcon N, Hagelaar G J M, Boeuf J P 2008 IEEE Trans. Plasma Sci. 36 2782Google Scholar

    [8]

    Fridman G, Friedman G, Gutsol A, Shekhter A B, Vasilets V N, Fridman A 2008 Plasma Processes Polym. 5 503Google Scholar

    [9]

    Laroussi M 2005 Plasma Processes Polym. 2 391Google Scholar

    [10]

    Sousa J S, Niemi K, Cox L J, Algwari Q T, Gans T, O’connell D 2011 J. Appl. Phys. 109 123302Google Scholar

    [11]

    Waskoenig J, Niemi K, Knake N, Graham L M, Reuter S, Schulz-von der Gathen V, Gans T 2010 Plasma Sources Sci. Technol. 19 045018Google Scholar

    [12]

    Zhang Y T, Chi Y Y, He J 2014 Plasma Processes Polym. 11 639Google Scholar

    [13]

    Moravej M, Babayan S E, Nowling G R, Yang X, Hicks R F 2004 Plasma Sources Sci. Technol. 13 8Google Scholar

    [14]

    Boeuf J P, Pitchford L C 2005 J. Appl. Phys. 97 103307Google Scholar

    [15]

    Farouk T, Farouk B, Gutsol A, Fridman A 2008 Plasma Sources Sci. Technol. 17 035015Google Scholar

    [16]

    Zhang Y T, He J 2013 Phys. Plasmas 20 013502Google Scholar

    [17]

    Kwon H C, Jung S Y, Kim H Y, Won I H, Lee J K 2014 Phys. Plasmas 21 033511Google Scholar

    [18]

    He J, Hu J, Liu D W, Zhang Y T 2013 Plasma Sources Sci. Technol. 22 035008Google Scholar

    [19]

    Huang X, Sun L Q, Bao Y, Zhang J, Shi J J 2011 Phys. Plasmas 18 033503Google Scholar

    [20]

    Huo W G, Jian S J, Yao J, Ding Z F 2014 Phys. Plasmas 21 053505Google Scholar

    [21]

    Hu J T, Liu X Y, Liu J H, Xiong Z L, Liu D W, Lu X P, Iza F, Kong M G 2012 Phys. Plasmas 19 063505Google Scholar

    [22]

    Zhang Y T, Liu Y, Liu B 2017 Plasma Sci. Technol. 19 085402Google Scholar

    [23]

    Lee M U, Lee J K, Yun G S 2018 Plasma Processes Polym. 15 1700124Google Scholar

    [24]

    Wang G, Kuang Y, Zhang Y T 2020 Plasma Sci. Technol. 22 015404

    [25]

    Liu X Y, Hu J T, Liu J H, Xiong Z L, Liu D W, Lu X P, Shi J J 2012 Appl. Phys. Lett. 101 043705Google Scholar

    [26]

    Leins M, Kopecki J, Gaiser S, Schulz A, Walker M, Schumacher U, Stroth U, Hirth T 2014 Contrib. Plasma Phys. 54 14Google Scholar

    [27]

    王艳辉, 王德真 2003 物理学报 52 1694Google Scholar

    Wang Y H, Wang D Z 2003 Acta Phys. Sin. 52 1694Google Scholar

    [28]

    Zhang Y T, Wang D Z, Wang Y H 2005 Phys. Plasmas 12 103508Google Scholar

    [29]

    徐学基, 诸定昌 1996 气体放电物理 (上海: 复旦大学出版社) 第277页

    Xu X J, Zhu D C 1996 Discharge Physics of Gas (Shanghai: Fudan University Press) p277 (in Chinese)

    [30]

    张远涛, 王德真, 王艳辉 2005 物理学报 54 4808Google Scholar

    Zhang Y T, Wang D Z, Wang Y H 2005 Acta Phys. Sin. 54 4808Google Scholar

    [31]

    Lee D, Park J M, Hong S H, Kim Y 2005 IEEE Trans. Plasma Sci. 33 949Google Scholar

    [32]

    Zhang Y, Gu B A, Peng X W, Wang D Z, Wang W C 2008 Thin Solid Films 516 7547Google Scholar

    [33]

    Lee H W, Park G Y, Seo Y S, Im Y H, Shim S B, Lee H J 2011 J. Phys. D: Appl. Phys. 44 053001Google Scholar

    [34]

    Yuan X H, Raja L L 2003 IEEE Trans. Plasma Sci. 31 495Google Scholar

    [35]

    Zhang Y T, Wang D Z, Kong M G 2006 J. Appl. Phys. 100 063304Google Scholar

  • [1] 刘凯, 方泽, 戴栋. 正弦削波电压调控大气压氦气非平滑表面介质阻挡放电均匀性的仿真研究. 物理学报, 2023, 72(13): 135201. doi: 10.7498/aps.72.20230385
    [2] 陈龙, 王迪雅, 陈俊宇, 段萍, 杨叶慧, 檀聪琦. 霍尔推力器放电通道低频振荡特性及抑制方法. 物理学报, 2023, 72(17): 175201. doi: 10.7498/aps.72.20230680
    [3] 齐兵, 田晓, 王静, 王屹山, 司金海, 汤洁. 射频/直流驱动大气压氩气介质阻挡放电的一维仿真研究. 物理学报, 2022, 71(24): 245202. doi: 10.7498/aps.71.20221361
    [4] 艾飞, 刘志兵, 张远涛. 结合机器学习的大气压介质阻挡放电数值模拟研究. 物理学报, 2022, 71(24): 245201. doi: 10.7498/aps.71.20221555
    [5] 胡艳婷, 张钰如, 宋远红, 王友年. 相位角对容性耦合电非对称放电特性的影响. 物理学报, 2018, 67(22): 225203. doi: 10.7498/aps.67.20181400
    [6] 赵凯, 牟宗信, 张家良. 同轴介质阻挡放电发生器介质层等效电容和负载特性研究. 物理学报, 2014, 63(18): 185208. doi: 10.7498/aps.63.185208
    [7] 李雪辰, 常媛媛, 刘润甫, 赵欢欢, 狄聪. 较大体积的大气压空气介质阻挡放电特性研究. 物理学报, 2013, 62(16): 165205. doi: 10.7498/aps.62.165205
    [8] 戴栋, 王其明, 郝艳捧. 大气压氦气介质阻挡放电中的周期一不对称放电实验研究. 物理学报, 2013, 62(13): 135204. doi: 10.7498/aps.62.135204
    [9] 张增辉, 张冠军, 邵先军, 常正实, 彭兆裕, 许昊. 大气压Ar/NH3介质阻挡辉光放电的仿真研究. 物理学报, 2012, 61(24): 245205. doi: 10.7498/aps.61.245205
    [10] 董丽芳, 李树峰, 范伟丽. 介质阻挡放电丝结构转变中的缺陷研究. 物理学报, 2011, 60(6): 065205. doi: 10.7498/aps.60.065205
    [11] 邵先军, 马跃, 李娅西, 张冠军. 低气压氙气介质阻挡放电的一维仿真研究. 物理学报, 2010, 59(12): 8747-8754. doi: 10.7498/aps.59.8747
    [12] 郝艳捧, 阳林, 涂恩来, 陈建阳, 朱展文, 王晓蕾. 实验研究大气压多脉冲辉光放电的模式和机理. 物理学报, 2010, 59(4): 2610-2616. doi: 10.7498/aps.59.2610
    [13] 李雪辰, 贾鹏英, 刘志辉, 李立春, 董丽芳. 介质阻挡放电丝模式和均匀模式转化的特性. 物理学报, 2008, 57(2): 1001-1007. doi: 10.7498/aps.57.1001
    [14] 尹增谦, 万景瑜, 黄明强, 王慧娟. 介质阻挡放电中的能量转换过程研究. 物理学报, 2007, 56(12): 7078-7083. doi: 10.7498/aps.56.7078
    [15] 王艳辉, 王德真. 介质阻挡均匀大气压氮气放电特性研究. 物理学报, 2006, 55(11): 5923-5929. doi: 10.7498/aps.55.5923
    [16] 董丽芳, 毛志国, 冉俊霞. 氩气介质阻挡放电不同放电模式的电学特性研究. 物理学报, 2005, 54(7): 3268-3272. doi: 10.7498/aps.54.3268
    [17] 王艳辉, 王德真. 大气压下多脉冲均匀介质阻挡放电的研究. 物理学报, 2005, 54(3): 1295-1300. doi: 10.7498/aps.54.1295
    [18] 张远涛, 王德真, 王艳辉. 大气压介质阻挡丝状放电时空演化数值模拟. 物理学报, 2005, 54(10): 4808-4815. doi: 10.7498/aps.54.4808
    [19] 尹增谦, 王 龙, 董丽芳, 李雪辰, 柴志方. 介质阻挡放电中微放电的映射方程. 物理学报, 2003, 52(4): 929-934. doi: 10.7498/aps.52.929
    [20] 董丽芳, 李雪辰, 尹增谦, 王龙. 大气压介质阻挡放电中的自组织斑图结构. 物理学报, 2002, 51(10): 2296-2301. doi: 10.7498/aps.51.2296
计量
  • 文章访问数:  6446
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-06
  • 修回日期:  2020-03-05
  • 刊出日期:  2020-06-05

/

返回文章
返回