搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

量子点-Su-Schrieffer-Heeger原子链系统的电子输运特性

张蓝云 薛海斌 陈彬 陈建宾 邢丽丽

引用本文:
Citation:

量子点-Su-Schrieffer-Heeger原子链系统的电子输运特性

张蓝云, 薛海斌, 陈彬, 陈建宾, 邢丽丽

Electron transport through a quantum-dot-Su-Schrieffer-Heeger-chain system

Zhang Lan-Yun, Xue Hai-Bin, Chen Bin, Chen Jian-Bin, Xing Li-Li
PDF
HTML
导出引用
  • Su-Schrieffer-Heeger(SSH)原子链是典型的具有拓扑边缘态的一维系统, 并且已在光子和冷原子系统中实验实现. 本文在紧束缚近似下, 利用传输矩阵方法研究了量子点-SSH原子链系统的电子输运特性, 这里, 量子点的作用是调节SSH原子链与电极的隧穿耦合强度. 当量子点与SSH原子链弱耦合时, 量子点-SSH原子链系统的四重简并边缘态对应SSH原子链存在边缘态的情形, 而其二重简并边缘态对应SSH原子链不存在边缘态的情形; 当量子点与SSH原子链强耦合时, 其边缘态仅在胞内跳跃振幅大于胞间跳跃振幅情形下存在, 此时, SSH原子链不存在边缘态. 尤其是, 当量子点-SSH原子链系统与外加电极之间为强隧穿耦合时, 其边缘态的电子共振透射峰的个数将减少2, 例如: 对于四重简并的边缘态, 即SSH原子链存在边缘态的情形, 其电子共振透射峰的个数将变为2; 而对于二重简并的边缘态, 即SSH原子链不存在边缘态的情形, 其电子的共振透射峰将消失. 因而, 可以通过调节量子点与SSH原子链、外加电极之间的隧穿耦合强度, 观察边缘态电子共振透射峰的个数变化情况来判断SSH原子链是否处于非平庸拓扑态.
    The Su-Schrieffer-Heeger (SSH) is a typical one-dimensional system with topological edge states, which has been experimentally realized in the photon and cold atom systems.Therefore, how to confirm the existence of the edge states from theoretical and experimental has become one of the most important topics in condensed matter physics. In this paper, using the tight-binding approximation and transfer-matrix method, we have studied the transport signatures of electron through a quantum dot-SSH chain hybrid system. Here,the two quantum dots play a role in modulating the tunneling coupling strength between the SSH chain and the two electrodes.When the quantum dots are weakly coupled to the SSH chain, the quadruple-degenerate edge states of the quantum dot-SSH chain hybrid system correspond to that the SSH chain has two degenerate zero-energy edge states; whereas the twofold-degenerate ones correspond to that the SSH chain has no edge states. While the quantum dots are strongly coupled to the SSH chain, the edge states only exist when the intra-cell hopping amplitude is larger than the inter-cell hopping amplitude. In this situation, however, there is no edge states in the SSH chain. In particular, when the quantum dot-SSH chain hybrid system is strongly coupled to the two external electrodes, the number of transmission resonance peaks of the edge states of the quantum dot-SSH chain hybrid system will be reduced by 2. For example, in the case of the quadruple-degenerate edge states, the number of transmission resonance peaks will be two; whereas in the case of twofold-degenerate ones, that will disappear. Therefore, by modulating the tunneling coupling strength between the quantum dots and the SSH chain and that between the quantum dots and the two external electrodes, we can observe the variation of the number of transmission resonance peaks of edge states to detect whether the SSH chain is in the nontrivial topological state or not.
      通信作者: 薛海斌, xuehaibin@tyut.edu.cn
    • 基金项目: 省部级-山西省应用基础研究计划项目(201601D011015, 201801D221021, 201801D221031)
      Corresponding author: Xue Hai-Bin, xuehaibin@tyut.edu.cn
    [1]

    Asbóth J K, Oroszlány L, Pályi A 2016 A Short Course on Topological Insulators (Budapest: Springer) pp: 1-99

    [2]

    Jürß C, Bauer D 2019 Phys. Rev. B 99 195428Google Scholar

    [3]

    Wang Y, Lu Y H, Mei F, Gao J, Li Z M, Tang H, Zhu S L, Jia S, Jin X M 2019 Phys. Rev. Lett. 122 193903Google Scholar

    [4]

    Longhi S 2013 Opt. Lett. 38 003716Google Scholar

    [5]

    Atala M, Aidelsburger M, Barreiro J T, Abanin D, Kitagawa T, Demler E, Bloch I 2013 Nat. Phys. 9 795Google Scholar

    [6]

    Du L, Wu J H, Artoni M, La Rocca G C 2019 Phys. Rev. A 100 012112Google Scholar

    [7]

    Obana D, Liu F, Wakabayashi K 2019 Phys. Rev. B 100 075437Google Scholar

    [8]

    Ryu S, Hatsugai Y 2002 Phys. Rev. Lett. 89 077002Google Scholar

    [9]

    卢曼昕, 邓文基 2019 物理学报 68 120301Google Scholar

    Lu M X, Deng W J 2019 Acta Phys. Sin. 68 120301Google Scholar

    [10]

    许楠, 张岩 2019 物理学报 68 104206Google Scholar

    Xu N, Zhang Y 2019 Acta Phys. Sin. 68 104206Google Scholar

    [11]

    Li C, Lin S, Zhang G, Song Z 2017 Phys. Rev. B 96 125418Google Scholar

    [12]

    Padavić K, Hegde S S, DeGottardi W, Vishveshwara S 2018 Phys. Rev. B 98 024205Google Scholar

    [13]

    Marques A M, Dias R G 2017 Phys. Rev. B 95 115443Google Scholar

    [14]

    Li L, Xu Z, Chen S 2014 Phys. Rev. B 89 085111Google Scholar

    [15]

    Asbóth J K, Tarasinski B, Delplace P 2014 Phys. Rev. B 90 125143Google Scholar

    [16]

    Ozcakmakli Turker Z, Yuce C 2019 Phys. Rev. A 99 022127Google Scholar

    [17]

    Yuce C 2018 Phys. Rev. A 98 012111Google Scholar

    [18]

    Yuce C 2018 Phys. Rev. A 97 042118Google Scholar

    [19]

    Hafezi M 2014 Phys. Rev. Lett. 112 210405Google Scholar

    [20]

    Bardyn C E, Huber C D, Zilberberg O 2014 New J. Phys. 16 123013Google Scholar

    [21]

    Poshakinskiy A V, Poddubny A N, Hafezi M 2015 Phys. Rev. A 91 043830Google Scholar

    [22]

    Aidelsburger M, Lohse M, Schweizer C, Atala M, Barreiro J T, Nascimbene S, Cooper N R, Bloch I, Goldman N 2015 Nat. Phys. 11 162Google Scholar

    [23]

    Dong B, Lei X L 2018 Ann. Phys. 396 245Google Scholar

    [24]

    Böhling S, Engelhardt G, Platero G, Schaller G 2018 Phys. Rev. B 98 035132Google Scholar

    [25]

    Niklas M, Benito M, Kohler S, Platero G 2016 Nanotechnology 27 454002Google Scholar

    [26]

    Dutta P, Maiti S K 2015 Rev. Theor. Sci. 3 224Google Scholar

  • 图 1  量子点-SSH原子链系统的示意图. 其中, 空心圆为电极上的原子, 阴影圆表示量子点, 红色圆表示A原子, 蓝色圆表示B原子. ${t_0}$是电极上最近邻两个原子之间的跳跃振幅, ${t_\eta }(\eta = {\rm{L, R}})$表示导线与量子点之间的隧穿耦合强度, $\tau $为量子点与SSH原子链之间的隧穿耦合强度, $\upsilon $为胞内的跳跃振幅, $\omega $为胞间的跳跃振幅, N为原胞数目

    Fig. 1.  Schematic of the considered quantum dot-SSH chain hybrid system. The hollow circles denote atoms on the leads, the shadow circles are the quantum dots, red circles are the A atoms, the blue circles represent the B atoms.${t_0}$ is the hopping amplitude between the two nearest-neighbor atoms on the leads. ${t_\eta }~(\eta = {\rm{L, R}})$ describes the strength of tunneling coupling between the lead-η and quantum dot-η, $\tau $ is the strength of tunneling coupling between quantum dot and SSH chain, $\upsilon $ and $\omega $ denote the intra-cell and inter-cell hopping amplitudes, respectively. N is the number of unit cells.

    图 2  (a) SSH原子链的能谱图; (b)和(c)量子点-SSH原子链系统的能谱图, 其中, (b) $\tau = 0.01$, (c) $\tau = 1.00$. 胞间跳跃振幅$\omega = 1.00$, 原胞数目$N = 10$

    Fig. 2.  (a) Energy spectrum of the SSH chain; (b) and (c) Energy spectrum of the quantum dot-SSH chain hybrid system, where (b) $\tau = 0.01$ and (c) $\tau = 1.00$. Here, $\omega = 1.00$ and $N = 10$.

    图 3  (a) SSH原子链的零能模波函数在每个格点位置上的几率分布, 其中, $\upsilon = 0.50$; (b)−(d) 量子点-SSH原子链系统的零能模波函数在每个格点位置上的几率分布, 其中: (b) $\tau = 0.01$, $\upsilon = 0.50$; (c) $\tau = 0.01$, $\upsilon = 1.50$; (d) $\tau = 1.00$$\upsilon = 2.00$

    Fig. 3.  (a) The probability distributions of wave functions of the zero-energy modes at each sites in the SSH chain with $\upsilon = 0.50$; (b)−(d) The probability distributions of wave functions of the zero-energy modes at each sites in the quantum dot-SSH chain hybrid system, where (b) $\tau = 0.01$, $\upsilon = 0.50$, (c)$\tau = 0.01$, $\upsilon = 1.50$, (d)$\tau = 1.00$$\upsilon = 2.00$.

    图 4  (a), (c)和(e)量子点-SSH原子链系统在零能级附近的能谱图; (b), (d)和(f)量子点-SSH原子链系统与左、右电极第–1个和第1个原子耦合的系统在零能级附近的能谱图, 其中, ${t_{\rm{L}}} = {t_{\rm{R}}} = 1.00$

    Fig. 4.  (a), (c) and (e)Energy spectrum of the quantum dot-SSH chain hybrid system in the vicinity of the zero energy; (b), (d) and (f) Energy spectrum of the quantum dot-SSH chain hybrid system coupled to the first atom (–1) of the left lead and the first atom (1) of the right one in the vicinity of the zero energy at ${t_{\rm{L}}} = {t_{\rm{R}}} = 1.00$.

    图 5  对于不同的隧穿耦合强度, 量子点-SSH原子链系统的电子透射率随入射电子能量的变化. 其中, $\tau = 0.01$, $\upsilon = 0.60$, $\omega = 1.00$, $N = 10$

    Fig. 5.  The transmission probability versus the energy of incident electron for different strengths of tunneling coupling at $\tau = 0.01$, $\upsilon = 0.60$, $\omega = 1.00$ and $N = 10$.

    图 6  量子点-SSH原子链系统与左、右电极第–1个和第1个原子耦合系统的零能模波函数在每个格点位置上的几率分布. 其他参数与图5相同.

    Fig. 6.  The probability distributions of wave functions of the zero-energy modes at each sites in the quantum dot-SSH chain hybrid system coupled to the first atom (–1) of the left lead and the first atom (1) of the right one. The other parameters are the same as in Fig. 5.

    图 7  对于不同的隧穿耦合强度, 量子点-SSH原子链系统的电子透射率随入射电子能量的变化. 其中, $\tau = 0.01$, $\omega = 1.00$, $N = 10$. (a1)和(a2) $\upsilon = 1.50$; (b1)和(b2) $\upsilon = 2.00$

    Fig. 7.  The transmission probability versus the energy of incident electron for different strengths of tunneling coupling at $\tau = 0.01$, $\omega = 1.00$ and $N = 10$. (a1) and (a2) $\upsilon = 1.50$; (b1) and (b2) $\upsilon = 2.00$.

    图 8  对于不同的隧穿耦合强度, 量子点-SSH原子链系统的电子透射率随入射电子能量的变化. 其中, $\tau = 1.00$, $\omega = 1.00$, $N = 10$. (a1)和(a2) $\upsilon = 2.00$; (b1)和(b2) $\upsilon = 2.50$

    Fig. 8.  The transmission probability versus the energy of incident electron for different strengths of tunneling coupling at $\tau = 1.00$, $\omega = 1.00$ and $N = 10$. (a1) and (a2) $\upsilon = 2.00$; (b1) and (b2) $\upsilon = 2.50$.

  • [1]

    Asbóth J K, Oroszlány L, Pályi A 2016 A Short Course on Topological Insulators (Budapest: Springer) pp: 1-99

    [2]

    Jürß C, Bauer D 2019 Phys. Rev. B 99 195428Google Scholar

    [3]

    Wang Y, Lu Y H, Mei F, Gao J, Li Z M, Tang H, Zhu S L, Jia S, Jin X M 2019 Phys. Rev. Lett. 122 193903Google Scholar

    [4]

    Longhi S 2013 Opt. Lett. 38 003716Google Scholar

    [5]

    Atala M, Aidelsburger M, Barreiro J T, Abanin D, Kitagawa T, Demler E, Bloch I 2013 Nat. Phys. 9 795Google Scholar

    [6]

    Du L, Wu J H, Artoni M, La Rocca G C 2019 Phys. Rev. A 100 012112Google Scholar

    [7]

    Obana D, Liu F, Wakabayashi K 2019 Phys. Rev. B 100 075437Google Scholar

    [8]

    Ryu S, Hatsugai Y 2002 Phys. Rev. Lett. 89 077002Google Scholar

    [9]

    卢曼昕, 邓文基 2019 物理学报 68 120301Google Scholar

    Lu M X, Deng W J 2019 Acta Phys. Sin. 68 120301Google Scholar

    [10]

    许楠, 张岩 2019 物理学报 68 104206Google Scholar

    Xu N, Zhang Y 2019 Acta Phys. Sin. 68 104206Google Scholar

    [11]

    Li C, Lin S, Zhang G, Song Z 2017 Phys. Rev. B 96 125418Google Scholar

    [12]

    Padavić K, Hegde S S, DeGottardi W, Vishveshwara S 2018 Phys. Rev. B 98 024205Google Scholar

    [13]

    Marques A M, Dias R G 2017 Phys. Rev. B 95 115443Google Scholar

    [14]

    Li L, Xu Z, Chen S 2014 Phys. Rev. B 89 085111Google Scholar

    [15]

    Asbóth J K, Tarasinski B, Delplace P 2014 Phys. Rev. B 90 125143Google Scholar

    [16]

    Ozcakmakli Turker Z, Yuce C 2019 Phys. Rev. A 99 022127Google Scholar

    [17]

    Yuce C 2018 Phys. Rev. A 98 012111Google Scholar

    [18]

    Yuce C 2018 Phys. Rev. A 97 042118Google Scholar

    [19]

    Hafezi M 2014 Phys. Rev. Lett. 112 210405Google Scholar

    [20]

    Bardyn C E, Huber C D, Zilberberg O 2014 New J. Phys. 16 123013Google Scholar

    [21]

    Poshakinskiy A V, Poddubny A N, Hafezi M 2015 Phys. Rev. A 91 043830Google Scholar

    [22]

    Aidelsburger M, Lohse M, Schweizer C, Atala M, Barreiro J T, Nascimbene S, Cooper N R, Bloch I, Goldman N 2015 Nat. Phys. 11 162Google Scholar

    [23]

    Dong B, Lei X L 2018 Ann. Phys. 396 245Google Scholar

    [24]

    Böhling S, Engelhardt G, Platero G, Schaller G 2018 Phys. Rev. B 98 035132Google Scholar

    [25]

    Niklas M, Benito M, Kohler S, Platero G 2016 Nanotechnology 27 454002Google Scholar

    [26]

    Dutta P, Maiti S K 2015 Rev. Theor. Sci. 3 224Google Scholar

  • [1] 江翠, 李家锐, 亓迪, 张莲莲. 具有宇称-时间反演对称性的虚势能对T-型石墨烯结构能谱和边缘态的影响. 物理学报, 2024, 73(20): 207301. doi: 10.7498/aps.73.20240871
    [2] 杨艳丽, 段志磊, 薛海斌. 非厄米Su-Schrieffer-Heeger链边缘态和趋肤效应依赖的电子输运特性. 物理学报, 2023, 72(24): 247301. doi: 10.7498/aps.72.20231286
    [3] 李荫铭, 孔鹏, 毕仁贵, 何兆剑, 邓科. 双表面周期性弹性声子晶体板中的谷拓扑态. 物理学报, 2022, 71(24): 244302. doi: 10.7498/aps.71.20221292
    [4] 夏群, 邓文基. 体态和边缘态的电导峰. 物理学报, 2022, 71(13): 137301. doi: 10.7498/aps.71.20212424
    [5] 薛海斌, 段志磊, 陈彬, 陈建宾, 邢丽丽. 自旋轨道耦合Su-Schrieffer-Heeger原子链系统的电子输运特性. 物理学报, 2021, 70(8): 087301. doi: 10.7498/aps.70.20201742
    [6] 卢曼昕, 邓文基. 一维二元复式晶格的拓扑不变量与边缘态. 物理学报, 2019, 68(12): 120301. doi: 10.7498/aps.68.20190214
    [7] 许楠, 张岩. 三聚化非厄密晶格中具有趋肤效应的拓扑边缘态. 物理学报, 2019, 68(10): 104206. doi: 10.7498/aps.68.20190112
    [8] 张卫锋, 李春艳, 陈险峰, 黄长明, 叶芳伟. 时间反演对称性破缺系统中的拓扑零能模. 物理学报, 2017, 66(22): 220201. doi: 10.7498/aps.66.220201
    [9] 王青, 盛利. 磁场中的拓扑绝缘体边缘态性质. 物理学报, 2015, 64(9): 097302. doi: 10.7498/aps.64.097302
    [10] 王怀强, 杨运友, 鞠艳, 盛利, 邢定钰. 铁磁绝缘体间的极薄Bi2Se3薄膜的相变研究. 物理学报, 2013, 62(3): 037202. doi: 10.7498/aps.62.037202
    [11] 邓伟胤, 朱瑞, 邓文基. Zigzag型边界石墨烯纳米带的电子态. 物理学报, 2013, 62(6): 067301. doi: 10.7498/aps.62.067301
    [12] 邓伟胤, 朱瑞, 邓文基. 有限尺寸石墨烯的电子态. 物理学报, 2013, 62(8): 087301. doi: 10.7498/aps.62.087301
    [13] 孟宪兰, 高绪团, 渠 朕, 康大伟, 刘德胜, 解士杰. 界面耦合对DNA分子电荷输运性质的影响. 物理学报, 2008, 57(8): 5316-5322. doi: 10.7498/aps.57.5316
    [14] 杜晓宇, 郑婉华, 任 刚, 王 科, 邢名欣, 陈良惠. 二维光子晶体耦合腔阵列的慢波效应研究. 物理学报, 2008, 57(1): 571-575. doi: 10.7498/aps.57.571
    [15] 袁宁一, 何泽军, 赵常宁, 李 峰, 周 懿, 李金华. 纳米ZnO和ZnO-SiO2复合薄膜的光学性质研究. 物理学报, 2008, 57(4): 2537-2542. doi: 10.7498/aps.57.2537
    [16] 杜晓宇, 郑婉华, 张冶金, 任 刚, 王 科, 邢名欣, 陈良惠. 慢光在光子晶体弯折波导中的高透射传播. 物理学报, 2008, 57(11): 7005-7011. doi: 10.7498/aps.57.7005
    [17] 杜 娟, 张淳民, 赵葆常, 孙 尧. 稳态大视场偏振干涉成像光谱仪中视场补偿型Savart偏光镜透射率研究. 物理学报, 2008, 57(10): 6311-6318. doi: 10.7498/aps.57.6311
    [18] 高成勇, 夏海瑞, 徐建强, 司书春, 张怀金, 王继杨, 宋化龙. Ca2+掺杂铌酸锶钡晶体的光折射变化特性研究. 物理学报, 2007, 56(8): 4648-4652. doi: 10.7498/aps.56.4648
    [19] 姚 远, 赵晓鹏, 赵 晶, 周 欣. 非对称开口六边形谐振单环的微波透射特性. 物理学报, 2006, 55(12): 6435-6440. doi: 10.7498/aps.55.6435
    [20] 彭志红, 张淳民, 赵葆常, 李英才, 吴福全. 新型偏振干涉成像光谱仪中Savart偏光镜透射率的研究. 物理学报, 2006, 55(12): 6374-6381. doi: 10.7498/aps.55.6374
计量
  • 文章访问数:  7669
  • PDF下载量:  241
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-11
  • 修回日期:  2020-01-30
  • 刊出日期:  2020-04-05

/

返回文章
返回