搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

快重离子辐照对$ {\rm YBa_2Cu_3O_{7–\delta}} $薄膜微观结构及载流特性的影响

刘丽 刘杰 曾健 翟鹏飞 张胜霞 徐丽君 胡培培 李宗臻 艾文思

引用本文:
Citation:

快重离子辐照对$ {\rm YBa_2Cu_3O_{7–\delta}} $薄膜微观结构及载流特性的影响

刘丽, 刘杰, 曾健, 翟鹏飞, 张胜霞, 徐丽君, 胡培培, 李宗臻, 艾文思

Effect of swift heavy ions irradiation on the microstructure and current-carrying capability in YBa2Cu3O7-δ high temperature superconductor films

Liu Li, Liu Jie, Zeng Jian, Zhai Peng-Fei, Zhang Sheng-Xia, Xu Li-Jun, Hu Pei-Pei, Li Zong-Zhen, Ai Wen-Si
PDF
HTML
导出引用
  • 钇钡铜氧(YBCO)高温超导材料在能源、交通等方面具有广泛的应用前景, 然而强磁场下出现的低临界电流密度问题严重限制了其应用. 利用快重离子辐照技术可在YBCO中形成潜径迹对磁通涡旋进行钉扎, 从而有效改善其在磁场下的超导性能. 本文利用能量为1.9 GeV的Ta离子对YBCO高温超导薄膜进行辐照, 系统地研究了不同离子注量下YBCO薄膜的微观结构及磁场下电流传输特性的变化情况. 研究表明, Ta离子辐照在薄膜中沿入射路径方向产生贯穿整个超导层的一维非晶潜径迹, 其直径在5 nm到15 nm之间. 结合Higuchi模型分析了快重离子辐照对薄膜中磁通钉扎机制的影响. 研究发现: 在原始样品中本征面缺陷钉扎是主要的钉扎机制; 随着辐照注量的增加, 薄膜中的钉扎类型逐渐转变为由快重离子辐照引入的正常相缺陷钉扎. 临界电流密度与磁场的关系可用函数${J_c} \propto {B^{ - \alpha }}$进行拟合. 指数α随着注量的增加而降低, 当注量为5.0 × 1011 ions/cm2时已由最初的0.784降低至0.375, 说明临界电流密度对磁场的依赖关系大大减弱. 当辐照注量为8.0 × 1010 ions/cm2时, 潜径迹对磁通涡旋的钉扎效果最佳. 在该注量下, 高场(B > 0.3 T)下临界电流密度达到最大值且钉扎力提升了近两倍, 临界转变温度无明显变化(ΔTon ≈ 0.5 K). 实验结果表明, 快重离子辐照产生的潜径迹可以在不影响临界转变温度的前提下有效改善磁场下超导载流能力.
    YBa2Cu3O7−δ (YBCO) high temperature superconductor materials have many promising applications in energy, transportation and so on. Nonetheless, the application of YBCO in high magnetic field was limited because of low critical current. One-dimensional latent tracks produced by swift heavy ions irradiation can be effective pinning centers, thus enhancing superconductivity in external field. YBCO high temperature superconducting films were irradiated with 1.9 GeV Ta ions at room temperature and vacuum condition. Structure damages in irradiated samples were characterized by transmission electron microscopy (TEM). Continuous amorphous latent tracks, with diameter from 5 nm to 15 nm, throughout the whole superconducting layer can be observed from TEM images. Physical property measurement system (PPMS) was used to measure superconducting properties of samples before and after irradiation. When irradiated at optimal fluence of 8 × 1010 ions/cm2, critical current reaches its maximum value and pinning force was twice of unirradiated sample, while critical temperature almost unchanged. The analysis of experimental results shows that latent tracks produced by swift heavy ions irradiation can enhance in-field current-carrying capability, without decreasing critical temperature. In the power-law regime ${J_c} \propto {B^{ - \alpha }}$ values of ɑ decreased with the increasing of fluence, indicating a weaker magnetic field dependence of critical current. ɑ reaches its lowest value 0.375 when irradiated at a fluence of 5.0 × 1011 ions/cm2, corresponding to a lowest in-field Jc. This result may be a combination of increasing pinning centers and decreasing superconductor volumes that work together. Normalized pinning force fp = Fp/Fp,max of sample irradiated with different fluence as a function of magnetic field h = H/Hmax was analyzed using Higuchi model. Fitting results show that planar defects are main source of pinning when h > 1, independent of irradiation. Whereas, dominate pinning centers shifting from surface pinning to isotropic normal point pinning with increasing fluence when h < 1. Given that latent tracks produced by Ta ions irradiation act as strong anisotropic pinning centers, the reason of the dominate pinning centers change with increasing fluence remains to be further studied.
      通信作者: 刘杰, j.liu@impcas.ac.cn
    • 基金项目: 国家级-国家自然科学基金(11675233)
      Corresponding author: Liu Jie, j.liu@impcas.ac.cn
    [1]

    赵忠贤, 陈立泉, 杨乾声, 黄玉珍, 陈赓华, 唐汝明, 刘贵荣, 崔长庚, 陈烈, 王连忠, 郭树权, 李山林, 毕建清 1987 科学通报 32 412Google Scholar

    Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z, Guo S Q, Li S L, Bi J Q 1987 Chin. Sci. Bull. 32 412Google Scholar

    [2]

    Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W 1987 Phys. Rev. Lett. 58 908Google Scholar

    [3]

    Zangenberg N 2012 High Temperature Superconductors(HTS) in Accelerator Systems[M]//High Temperature Superconductors (HTS) for Energy Applications (Cambridge: Woodhead Publishing) pp369-392

    [4]

    Wang J, Wei B, Cao B, Guo X, Zhang X, Song X 2013 Phys. C Supercond. its Appl. 495 79Google Scholar

    [5]

    Sadovskyy I A, Koshelev A E, Glatz A, Ortalan V, Rupich M W, LeRoux M 2016 Phys. Rev. Appl. 5 014011Google Scholar

    [6]

    Crisan A, Dang V S, Mikheenko P 2017 Phys. C Supercond. its Appl. 533 118Google Scholar

    [7]

    Sato S, Honma T, Takahashi S, Sato K, Watanabe M, Ichikawa K, Takeda K, Nakagawa K, Saito A, Ohshima S 2013 IEEE Trans. Appl. Supercond. 23 7200404Google Scholar

    [8]

    Macmanus-Driscoll J L, Foltyn S R, Jia Q X, Wang H, Serquis A, Civale L, Maiorov B, Hawley M E, Maley M P, Peterson D E 2004 Nat. Mater. 3 439Google Scholar

    [9]

    Zhou Y X, Ghalsasi S, Rusakova I, Salama K 2007 Supercond. Sci. Technol. 20 S147

    [10]

    Kwok W K, Welp U, Glatz A, Koshelev A E, Kihlstrom K J, Crabtree G W 2016 Reports Prog. Phys. 79 116501Google Scholar

    [11]

    LeRoux M, Kihlstrom K J, Holleis S, Rupich M W, Sathyamurthy S, Fleshler S, Sheng H P, Miller D J, Eley S, Civale L, Kayani A, Niraula P M, Welp U, Kwok W K 2015 Appl. Phys. Lett. 107 192601

    [12]

    Fischer D X, Prokopec R, Emhofer J, Eisterer M 2018 Supercond. Sci. Technol. 31 044006Google Scholar

    [13]

    Khadzhai G Y, Litvinov Y V., Vovk R V., Zdorovko S F, Goulatis I L, Chroneos A 2018 J. Mater. Sci. Mater. Electron. 29 7725Google Scholar

    [14]

    Biswal R, John J, Behera D, Mallick P, Kumar S, Kanjilal D, Mohanty T, Raychaudhuri P, Mishra N C 2008 Supercond. Sci. Technol. 21 085016Google Scholar

    [15]

    Civale L, Marwick A D, Worthington T K, Kirk M A, Thompson J R, Sun Y 1991 Phys. Rev. Lett. 67 648Google Scholar

    [16]

    Bourgault D, Hervieu M, Bouffard S, Groult D, Raveau B 1989 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 42 61Google Scholar

    [17]

    Nakashima K, Chikumoto N, Ibi A, Miyata S, Yamada Y, Kubo T, Suzuki A, Terai T 2007 Phys. C Supercond. its Appl. 463 665

    [18]

    Sueyoshi T, Nishimura T, Fujiyoshi T, Mitsugi F, Ikegami T, Ishikawa N 2016 Supercond. Sci. Technol. 29 105006Google Scholar

    [19]

    Sueyoshi T, Sogo T, Nishimura T, Fujiyoshi T, Mitsugi F, Ikegami T, Awaji S, Watanabe K, Ichinose A, Ishikawa N 2016 Supercond. Sci. Technol. 29 065023Google Scholar

    [20]

    Hardy V, Hervieu M, Provost J, Simon Ch 2000 Phys. Rev. B 62 691Google Scholar

    [21]

    Sueyoshi T, Kotaki T, Uraguchi Y, Suenaga M, Makihara T, Fujiyoshi T, Ishikawa N 2016 Phys. C Supercond. its Appl. 530 72Google Scholar

    [22]

    Sadovskyy I A, Jia Y, Leroux M, Kwon J, Hu H, Fang L, Chaparro C, Zhu S, Welp U, Zuo J M, Zhang Y, Nakasaki R, Selvamanickam V, Crabtree G W, Koshelev A E, Glatz A, Kwok W K 2016 Adv. Mater 28 4593

    [23]

    Strickl, N M, Talantsev E F, Long N J, Xia J A, Searle S D, Kennedy J, Markwitz A, Rupich M W, Li X, Sathyamurthy S 2009 Phys. C Supercond. its Appl. 469 2060Google Scholar

    [24]

    Fuchs G, Nenkov K, Krabbes G, Weinstein R, Gandini A, Sawh R, Mayes B, Parks D 2007 Supercond. Sci. Technol. 20 S197Google Scholar

    [25]

    Biswal R, John J, Avasthi D K, Kanjilal D, Raychaudhuri P, Mishra N C 2010 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 268 3325Google Scholar

    [26]

    Gupta R P, Gupta M 1992 Phys. Rev. B 45 9958Google Scholar

    [27]

    Behera D, Mohanty T, Dash S K, Banerjee T, Kanjilal D, Mishra N C 2003 Radiat. Meas. 36 125Google Scholar

    [28]

    Weinstein R, Gandini A, Sawh R P, Parks D, Mayes B 2003 Phys. C Supercond. its Appl. 387 391Google Scholar

    [29]

    Murakami Y, Goto H, Taguchi Y, Nagasaka Y 2017 Int. J. Thermophys. 38 160Google Scholar

    [30]

    Cui X M, Liu G Q, Wang J, Huang Z C, Zhao Y T, Tao B W, Li Y R 2007 Phys. C Supercond. its Appl. 466 1Google Scholar

    [31]

    Higuchi T, Yoo S I, Murakami M 1999 Phys. Rev. B 59 1514

    [32]

    Cai Q, Liu Y C, Ma Z Q, Li H J, Yu L M 2013 Appl. Phys. Lett. 103 132601

    [33]

    Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 268 1818Google Scholar

    [34]

    Weinstein R, Gandini A, Sawh R, Mayes B, Parks D 2006 Supercond. Sci. Technol. 19 S575Google Scholar

    [35]

    Kwon J H, Meng Y, Wu L, Zhu Y, Zhang Y, Selvamanickam V, Welp U, Kwok W K, Zuo J M 2018 Supercond. Sci. Technol. 31 105006Google Scholar

    [36]

    Zhu Y, Cai Z X, Budhani R C, Suenaga M, Welch D O 1993 Phys. Rev. B 48 6436Google Scholar

    [37]

    Biswal R, John J, Mallick P, Dash B N, Kulriya P K, Avasthi D K, Kanjilal D, Behera D, Mohanty T, Raychaudhuri P, Mishra N C 2009 J. Appl. Phys. 106 053912Google Scholar

    [38]

    Zeng L, Lu Y M, Liu Z Y, Chen C Z, Gao B, Cai C B 2012 J. Appl. Phys. 112 053903

    [39]

    Chang H, Ren Y T, Sun Y Y, Wang Y Q, Xue Y Y, Chu C W 1995 Phys. C Supercond. its Appl. 252 333Google Scholar

    [40]

    Kujur A, Asokan K, Behera D 2013 Thin Solid Films 536 256Google Scholar

    [41]

    Vlastou R, Gazis E N, Papadopoulos C T, Liaropapis E, Palles D, Kossionides S, Kokkoris M, Pilakouta M, Assmann W, Huber H 1996 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 113 253Google Scholar

    [42]

    Wang S S, Li F, Wu H, Zhang Y, Muhammad S, Zhao P, Le X Y, Xiao Z S, Jiang L X, Ou X D, Ouyang X P 2019 Chinese Phys. B 28 027401Google Scholar

    [43]

    Hensel B, Roas B, Henke S, Hopfengärtner R, Lippert M, Ströbel J P, Vildić M, Saemann-Ischenko G, Klaumünzer S 1990 Phys. Rev. B 42 4135Google Scholar

    [44]

    Rullier-Albenque F, Legris A, Bouffard S, Paumier E, Lejay P 1991 Phys. C Supercond. its Appl. 175 111Google Scholar

    [45]

    Yan Y, Kirk M A 1998 Phys. Rev. B 57 6152

    [46]

    Yan Y, Kirk M A 1999 Philos. Mag. Lett. 79 841Google Scholar

    [47]

    Kirk M A, Yan Y 1999 Micron 30 507Google Scholar

  • 图 1  不同注量下YBCO高温超导薄膜的交流磁化率随温度的变化

    Fig. 1.  AC susceptibility versus temperature of YBCO high temperature superconductor films irradiated with different fluences.

    图 2  (a) 77 K下经Ta离子辐照后临界电流密度随磁场的变化情况; (b) 77 K下钉扎力随注量的变化情况

    Fig. 2.  (a) Field dependence of critical current density at 77 K after Ta ions irradiation; (b) The variance of pinning force at 77 K with increasing fluence.

    图 3  辐照前后YBCO薄膜的约化钉扎力曲线及拟合结果

    Fig. 3.  Scaling behavior of normalized pinning force curves for YBCO films before and after irradiation and fit curves.

    图 4  Ta离子在YBCO超导材料中的电子能损与核能损值

    Fig. 4.  The nuclear and electronic energy loss in YBCO superconductor under Ta ions irradiation.

    图 5  注量为1.0 × 1011 ions/cm2、能量为1.9 GeV的Ta离子辐照YBCO超导薄膜TEM图 (a) 低倍TEM图像; (b) 潜径迹的高分辨率TEM图像

    Fig. 5.  TEM images of 1.9 GeV Ta ions-irradiated YBCO high temperature superconductor film with the fluence of 1.0 × 1011 ions/cm2: (a) Low-resolution TEM image; (b) high-resolution TEM image of latent track.

    图 6  (a) 能量为1.9 GeV的Ta离子辐照前后YBCO高温超导薄膜的显微拉曼光谱; (b) O(2, 3)-B1g和O(4)-Ag峰的峰位随着注量的变化情况

    Fig. 6.  (a) Micro-Raman spectra of YBCO high temperature superconductor films between pristine sample and samples irradiated with 1.9 GeV Ta ions; (b) variations in the position of O(2, 3)-B1g and O(4)-Ag peaks with different fluences.

    表 1  钉扎力密度标度函数

    Table 1.  Fitting functions of scaling behavior of normalized pinning force.

    钉扎函数钉扎中心类型
    ${{\rm{f}}_{\rm{p}}}(h) = \dfrac{9}{4}h{\left(1 - \dfrac{h}{3}\right)^2}$Normal point pinning
    ${{\rm{f}}_{\rm{p}}}(h) = \dfrac{{25}}{{16}}\sqrt h {\left(1 - \dfrac{h}{5}\right)^2}$Surface pinning
    下载: 导出CSV
  • [1]

    赵忠贤, 陈立泉, 杨乾声, 黄玉珍, 陈赓华, 唐汝明, 刘贵荣, 崔长庚, 陈烈, 王连忠, 郭树权, 李山林, 毕建清 1987 科学通报 32 412Google Scholar

    Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z, Guo S Q, Li S L, Bi J Q 1987 Chin. Sci. Bull. 32 412Google Scholar

    [2]

    Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W 1987 Phys. Rev. Lett. 58 908Google Scholar

    [3]

    Zangenberg N 2012 High Temperature Superconductors(HTS) in Accelerator Systems[M]//High Temperature Superconductors (HTS) for Energy Applications (Cambridge: Woodhead Publishing) pp369-392

    [4]

    Wang J, Wei B, Cao B, Guo X, Zhang X, Song X 2013 Phys. C Supercond. its Appl. 495 79Google Scholar

    [5]

    Sadovskyy I A, Koshelev A E, Glatz A, Ortalan V, Rupich M W, LeRoux M 2016 Phys. Rev. Appl. 5 014011Google Scholar

    [6]

    Crisan A, Dang V S, Mikheenko P 2017 Phys. C Supercond. its Appl. 533 118Google Scholar

    [7]

    Sato S, Honma T, Takahashi S, Sato K, Watanabe M, Ichikawa K, Takeda K, Nakagawa K, Saito A, Ohshima S 2013 IEEE Trans. Appl. Supercond. 23 7200404Google Scholar

    [8]

    Macmanus-Driscoll J L, Foltyn S R, Jia Q X, Wang H, Serquis A, Civale L, Maiorov B, Hawley M E, Maley M P, Peterson D E 2004 Nat. Mater. 3 439Google Scholar

    [9]

    Zhou Y X, Ghalsasi S, Rusakova I, Salama K 2007 Supercond. Sci. Technol. 20 S147

    [10]

    Kwok W K, Welp U, Glatz A, Koshelev A E, Kihlstrom K J, Crabtree G W 2016 Reports Prog. Phys. 79 116501Google Scholar

    [11]

    LeRoux M, Kihlstrom K J, Holleis S, Rupich M W, Sathyamurthy S, Fleshler S, Sheng H P, Miller D J, Eley S, Civale L, Kayani A, Niraula P M, Welp U, Kwok W K 2015 Appl. Phys. Lett. 107 192601

    [12]

    Fischer D X, Prokopec R, Emhofer J, Eisterer M 2018 Supercond. Sci. Technol. 31 044006Google Scholar

    [13]

    Khadzhai G Y, Litvinov Y V., Vovk R V., Zdorovko S F, Goulatis I L, Chroneos A 2018 J. Mater. Sci. Mater. Electron. 29 7725Google Scholar

    [14]

    Biswal R, John J, Behera D, Mallick P, Kumar S, Kanjilal D, Mohanty T, Raychaudhuri P, Mishra N C 2008 Supercond. Sci. Technol. 21 085016Google Scholar

    [15]

    Civale L, Marwick A D, Worthington T K, Kirk M A, Thompson J R, Sun Y 1991 Phys. Rev. Lett. 67 648Google Scholar

    [16]

    Bourgault D, Hervieu M, Bouffard S, Groult D, Raveau B 1989 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 42 61Google Scholar

    [17]

    Nakashima K, Chikumoto N, Ibi A, Miyata S, Yamada Y, Kubo T, Suzuki A, Terai T 2007 Phys. C Supercond. its Appl. 463 665

    [18]

    Sueyoshi T, Nishimura T, Fujiyoshi T, Mitsugi F, Ikegami T, Ishikawa N 2016 Supercond. Sci. Technol. 29 105006Google Scholar

    [19]

    Sueyoshi T, Sogo T, Nishimura T, Fujiyoshi T, Mitsugi F, Ikegami T, Awaji S, Watanabe K, Ichinose A, Ishikawa N 2016 Supercond. Sci. Technol. 29 065023Google Scholar

    [20]

    Hardy V, Hervieu M, Provost J, Simon Ch 2000 Phys. Rev. B 62 691Google Scholar

    [21]

    Sueyoshi T, Kotaki T, Uraguchi Y, Suenaga M, Makihara T, Fujiyoshi T, Ishikawa N 2016 Phys. C Supercond. its Appl. 530 72Google Scholar

    [22]

    Sadovskyy I A, Jia Y, Leroux M, Kwon J, Hu H, Fang L, Chaparro C, Zhu S, Welp U, Zuo J M, Zhang Y, Nakasaki R, Selvamanickam V, Crabtree G W, Koshelev A E, Glatz A, Kwok W K 2016 Adv. Mater 28 4593

    [23]

    Strickl, N M, Talantsev E F, Long N J, Xia J A, Searle S D, Kennedy J, Markwitz A, Rupich M W, Li X, Sathyamurthy S 2009 Phys. C Supercond. its Appl. 469 2060Google Scholar

    [24]

    Fuchs G, Nenkov K, Krabbes G, Weinstein R, Gandini A, Sawh R, Mayes B, Parks D 2007 Supercond. Sci. Technol. 20 S197Google Scholar

    [25]

    Biswal R, John J, Avasthi D K, Kanjilal D, Raychaudhuri P, Mishra N C 2010 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 268 3325Google Scholar

    [26]

    Gupta R P, Gupta M 1992 Phys. Rev. B 45 9958Google Scholar

    [27]

    Behera D, Mohanty T, Dash S K, Banerjee T, Kanjilal D, Mishra N C 2003 Radiat. Meas. 36 125Google Scholar

    [28]

    Weinstein R, Gandini A, Sawh R P, Parks D, Mayes B 2003 Phys. C Supercond. its Appl. 387 391Google Scholar

    [29]

    Murakami Y, Goto H, Taguchi Y, Nagasaka Y 2017 Int. J. Thermophys. 38 160Google Scholar

    [30]

    Cui X M, Liu G Q, Wang J, Huang Z C, Zhao Y T, Tao B W, Li Y R 2007 Phys. C Supercond. its Appl. 466 1Google Scholar

    [31]

    Higuchi T, Yoo S I, Murakami M 1999 Phys. Rev. B 59 1514

    [32]

    Cai Q, Liu Y C, Ma Z Q, Li H J, Yu L M 2013 Appl. Phys. Lett. 103 132601

    [33]

    Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 268 1818Google Scholar

    [34]

    Weinstein R, Gandini A, Sawh R, Mayes B, Parks D 2006 Supercond. Sci. Technol. 19 S575Google Scholar

    [35]

    Kwon J H, Meng Y, Wu L, Zhu Y, Zhang Y, Selvamanickam V, Welp U, Kwok W K, Zuo J M 2018 Supercond. Sci. Technol. 31 105006Google Scholar

    [36]

    Zhu Y, Cai Z X, Budhani R C, Suenaga M, Welch D O 1993 Phys. Rev. B 48 6436Google Scholar

    [37]

    Biswal R, John J, Mallick P, Dash B N, Kulriya P K, Avasthi D K, Kanjilal D, Behera D, Mohanty T, Raychaudhuri P, Mishra N C 2009 J. Appl. Phys. 106 053912Google Scholar

    [38]

    Zeng L, Lu Y M, Liu Z Y, Chen C Z, Gao B, Cai C B 2012 J. Appl. Phys. 112 053903

    [39]

    Chang H, Ren Y T, Sun Y Y, Wang Y Q, Xue Y Y, Chu C W 1995 Phys. C Supercond. its Appl. 252 333Google Scholar

    [40]

    Kujur A, Asokan K, Behera D 2013 Thin Solid Films 536 256Google Scholar

    [41]

    Vlastou R, Gazis E N, Papadopoulos C T, Liaropapis E, Palles D, Kossionides S, Kokkoris M, Pilakouta M, Assmann W, Huber H 1996 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 113 253Google Scholar

    [42]

    Wang S S, Li F, Wu H, Zhang Y, Muhammad S, Zhao P, Le X Y, Xiao Z S, Jiang L X, Ou X D, Ouyang X P 2019 Chinese Phys. B 28 027401Google Scholar

    [43]

    Hensel B, Roas B, Henke S, Hopfengärtner R, Lippert M, Ströbel J P, Vildić M, Saemann-Ischenko G, Klaumünzer S 1990 Phys. Rev. B 42 4135Google Scholar

    [44]

    Rullier-Albenque F, Legris A, Bouffard S, Paumier E, Lejay P 1991 Phys. C Supercond. its Appl. 175 111Google Scholar

    [45]

    Yan Y, Kirk M A 1998 Phys. Rev. B 57 6152

    [46]

    Yan Y, Kirk M A 1999 Philos. Mag. Lett. 79 841Google Scholar

    [47]

    Kirk M A, Yan Y 1999 Micron 30 507Google Scholar

  • [1] 赖瑶瑶, 陈鑫梦, 柴振华, 施保昌. 基于格子Boltzmann方法的钉扎螺旋波反馈控制. 物理学报, 2024, 73(4): 040502. doi: 10.7498/aps.73.20231549
    [2] 闻海虎. 高温超导体磁通钉扎和磁通动力学研究简介. 物理学报, 2021, 70(1): 017405. doi: 10.7498/aps.70.20201881
    [3] 梁超, 张洁, 赵可, 羊新胜, 赵勇. 拓扑超导体FeSexTe1–x单晶超导性能与磁通钉扎. 物理学报, 2020, 69(23): 237401. doi: 10.7498/aps.69.20201125
    [4] 叶学民, 张湘珊, 李明兰, 李春曦. 液滴在不同润湿性表面上蒸发时的动力学特性. 物理学报, 2018, 67(11): 114702. doi: 10.7498/aps.67.20180159
    [5] 王银博, 薛驰, 冯庆荣. 钛离子辐照对MgB2超导薄膜的载流能力和磁通钉扎能力的影响. 物理学报, 2012, 61(19): 197401. doi: 10.7498/aps.61.197401
    [6] 孙辉辉, 杨烨, 王磊, Cheng C. H., 冯勇, 赵勇. 柠檬酸掺杂的MgB2超导体钉扎机理的研究. 物理学报, 2010, 59(5): 3488-3493. doi: 10.7498/aps.59.3488
    [7] 吴修胜, 杨春利, 陈志军, 陈初升, 刘卫. La1-xSrxFeO3-δ(0≤x≤2/3)的低频内耗研究. 物理学报, 2009, 58(9): 6419-6424. doi: 10.7498/aps.58.6419
    [8] 何国良, 贺延文, 赵志刚, 刘 楣. 无序超导体磁通运动的两次退钉扎效应和重新进入超导相. 物理学报, 2006, 55(2): 839-843. doi: 10.7498/aps.55.839
    [9] 姜宏伟, 李明华, 于广华, 朱逢吾, 郑鹉. Bi对自旋阀钉扎场的影响及机理. 物理学报, 2002, 51(6): 1366-1370. doi: 10.7498/aps.51.1366
    [10] 柴春林, 滕蛟, 于广华, 朱逢吾, 赖武彦, 肖纪美. 退火对FeMn钉扎自旋阀性质的影响. 物理学报, 2002, 51(8): 1846-1850. doi: 10.7498/aps.51.1846
    [11] 刘 峰, 阎守胜. 非理想第二类超导体局域磁弛豫的计算模拟:非均匀钉扎势和表面势垒影响. 物理学报, 2000, 49(9): 1829-1837. doi: 10.7498/aps.49.1829
    [12] 冯 勇, 周 廉, 杨万民, 张翠萍, 汪京荣, 于泽铭, 吴晓祖. PMP法YGdBaCuO超导体的磁通钉扎研究. 物理学报, 2000, 49(1): 146-152. doi: 10.7498/aps.49.146
    [13] 王智河, 曹效文, 陈敬林, 李可斌. YBa2Cu3O7-δ外延薄膜的有效钉扎势. 物理学报, 1998, 47(10): 1720-1726. doi: 10.7498/aps.47.1720
    [14] 丁世英, 史可信, 曾朝阳, 余正, 施智祥, 邱里. Tl2Ba2Ca2Cu3Oy超导体磁通钉扎能的分布. 物理学报, 1991, 40(6): 985-989. doi: 10.7498/aps.40.985
    [15] 金新, 张贻瞳, 鹿牧, 张长贵, 颜涌, 于杨, 沈剑沧, 姚希贤. (BiPb)-Sr-Ca-Cu-O2223相高Tc超导体磁通钉扎与蠕动. 物理学报, 1991, 40(4): 630-633. doi: 10.7498/aps.40.630
    [16] 丁世英, 施智祥, 颜家烈, 余正, 史可信, 童红武, 邱里. Tl2Ba2Ca2Cu3Oy超导体低场钉扎力的性质. 物理学报, 1990, 39(12): 1999-2004. doi: 10.7498/aps.39.1999
    [17] 丁世英, 颜家烈, 余正, 童红武, 史可信, 邱里. YBaCuO超导陶瓷的有效钉扎力. 物理学报, 1990, 39(6): 157-162. doi: 10.7498/aps.39.157
    [18] 丁世英, 余正, 史可信. 非理想平面散射中心的磁通钉扎. 物理学报, 1987, 36(12): 1635-1639. doi: 10.7498/aps.36.1635
    [19] 曹忠胜, 崔长庚, 周廉. Nb3Sn超导材料的高场钉扎行为. 物理学报, 1987, 36(7): 940-944. doi: 10.7498/aps.36.940
    [20] 蔡学榆, 尹道乐, 李传义. A-15超导材料的高场钉扎机制. 物理学报, 1983, 32(9): 1183-1186. doi: 10.7498/aps.32.1183
计量
  • 文章访问数:  8023
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-17
  • 修回日期:  2020-01-17
  • 刊出日期:  2020-04-05

/

返回文章
返回