搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原子钟噪声变化时改进的Kalman滤波时间尺度算法

宋会杰 董绍武 王翔 章宇 王燕平

引用本文:
Citation:

原子钟噪声变化时改进的Kalman滤波时间尺度算法

宋会杰, 董绍武, 王翔, 章宇, 王燕平

An improved Kalman filter time scale algorithm for atomic clock noise variation

Song Hui-Jie, Dong Shao-Wu, Wang Xiang, Zhang Yu, Wang Yan-Ping
PDF
HTML
导出引用
  • Kalman滤波时间尺度算法是一种实时的原子钟状态估计方法, 在时间保持工作中具有重要的实用价值. 本文引入自适应因子改进Kalman滤波时间尺度算法, 对Kalman滤波时间尺度算法中状态预测协方差矩阵引入自适应因子, 利用统计量实时计算自适应因子的量值, 控制状态预测协方差矩阵的增长, 降低原子钟状态估计的扰动, 从而提高时间尺度的准确度和稳定度. 模拟数据和实测数据表明, 原子钟噪声强度变化时或噪声强度估计存在误差时改进的Kalman滤波时间尺度算法有效地提高了时间尺度的准确度和长期稳定度.
    Kalman filter time scale algorithm is a method of real-time estimating atomic clock state. It is of great practical value in the time-keeping work. Reliable Kalman filter time scale algorithm requires a reliable atomic clock state model, a random model and a reasonable estimation method. However, it is difficult to construct accurate state model when the noises of atomic clock change. The random model is generally based on the prior statistical information about atomic clock noises, and the prior statistical information may be distorted. In the process of time scale calculation, the noises of atomic clocks need estimating in the Kalman filter time scale algorithm, which is quantified according to the intensity of the noise. With the change of the external environment or aging of atomic clock, the noise intensity may change, resulting in the disturbance of atomic clock state estimation in the Kalman filter time scale algorithm, which further affects the accuracy and stability of the time scale. On the other hand, the error of the noise intensity estimation of atomic clocks will also affect the performance of time scale. Therefore, it is necessary to control the disturbance caused by the variation of noise intensity or the estimation error of noise intensity. In this regard, an adaptive factor is introduced to improve the Kalman filter time scale algorithm, and another adaptive factor is introduced into the state prediction covariance matrix in Kalman filter time scale algorithm. And the values of the two adaptive factors are calculated in real time by using statistics to control the growth of the state prediction covariance. The disturbance of state estimation of atomic clock is reduced, and the accuracy and stability of time scale are improved. In this paper, the sampling interval of simulated data and the measured data are 300 s and 3600 s respectively. The simulated data and measured data are used to calculate the overlapping Allan deviations of the time scale. The results show that the improved Kalman filter time scale algorithm can improve the stability of the sampling time more than 14400 s compared with classical Kalman filter time scale algorithm, and affect the stability of the sampling time less than 14400 s. The degree of influence is related to the weight algorithm of atomic clock. The measured data in this paper are treated by the “predictability” weighting algorithm, which guarantees the long-term stability of time scale. So the simulated data and measured data show that compared with classical Kalman filter time scale algorithm, the improved Kalman filter clock time scale algorithm can improve the accuracy and the long-term stability of time scale.
      通信作者: 宋会杰, songhuijie@ntsc.ac.cn
      Corresponding author: Song Hui-Jie, songhuijie@ntsc.ac.cn
    [1]

    陈卫东, 刘要龙, 朱奇光, 陈颖 2013 物理学报 62 170506Google Scholar

    Chen W D, Liu Y L, Zhu Q G, Chen Y 2013 Acta Phys. Sin. 62 170506Google Scholar

    [2]

    刘洋洋, 廉保旺, 赵宏伟, 刘亚擎 2014 物理学报 63 228402Google Scholar

    Liu Y Y, Lian B W, Zhao H W, Zhao H W, Liu Y Q 2014 Acta Phys. Sin. 63 228402Google Scholar

    [3]

    林旭, 罗志才 2015 物理学报 64 080201Google Scholar

    Lin X, Luo Z C 2015 Acta Phys. Sin. 64 080201Google Scholar

    [4]

    赵龙 2012 物理学报 61 104301Google Scholar

    Zhao L 2012 Acta Phys. Sin. 61 104301Google Scholar

    [5]

    郭海荣, 杨元喜, 何海波, 徐天河 2010 测绘学报 39 146

    Guo H R, Yang Y X, He H B, Xu T H 2010 Acta Geod. Cartogr. Sin. 39 146

    [6]

    Greenhall C A 2003 Metrologia 40 335Google Scholar

    [7]

    Davis J A, Greenhall C A, Stacey P W 2005 Metrologia 42 1Google Scholar

    [8]

    Greenhall C A 2006 Metrologia 43 311

    [9]

    Suess M, Greenhall C A 2012 Metrologia 49 588Google Scholar

    [10]

    Parisi F, Panfilo G 2016 Metrologia 53 1185Google Scholar

    [11]

    伍贻威, 牟卫华, 龚航, 朱祥维, 欧钢 2016 武汉大学学报 信息科学版 41 1253

    Wu Y W, Mu W H, Gong H, Zhu X W, Ou G 2016 Geomat. Inf. Sci. Wuhan Univ. 41 1253

    [12]

    宋会杰, 董绍武, 王燕平, 安卫, 侯娟 2019 武汉大学学报. 信息科学版 44 1205

    Song H J, Dong S W, Wang Y P, An W, Hou J 2019 Geomat. Inf. Sci. Wuhan Univ. 44 1205

    [13]

    宋会杰, 董绍武, 屈俐俐, 王翔, 广伟 2017 仪器仪表学报 38 1809Google Scholar

    Song H J, Dong S W, Qu L L, Wang X, Guang W 2017 Chin. J. Sci. Instrum. 38 1809Google Scholar

    [14]

    Chaffee J W 1987 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 34 655Google Scholar

    [15]

    Brown K R Jr 1991 Proceeding of the 4th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 1991) Albuquerque, NM, USA, September 11−13, 1991 p223

    [16]

    杨元喜 2006 自适应动态导航定位 (第1版) (北京: 测绘出版社) 第189页

    Yang Y X 2006 Adaptive Navigation and Kinematic Positioning (1st Ed.) (Beijing: Surveying and Mapping Press) p189 (in Chinese)

    [17]

    Yang Y, He H, Xu G 2001 J. Geodesy 72 109

    [18]

    Yang Y, Song L, Xu T 2002 J. Geodesy 76 353Google Scholar

    [19]

    Cui X, Yang Y 2006 Proc. Natl. Acad. Sci. U.S.A. 16 846

    [20]

    Panfilo G, Harmegnies A, Tisserand L 2014 Metrologia 51 285Google Scholar

    [21]

    Levine J 1999 Rev. Sci. Instrum. 70 2567Google Scholar

    [22]

    Zucca C, Tavella P 2005 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52 289

    [23]

    Galleani L, Sacerdote L, Tavella P, Zucca C 2003 Metrologia 40 S257Google Scholar

    [24]

    Suess M, Matsakis D, Greenhall C A 2010 42nd Annual Precise Time and Time Interval Meeting Reston, Virginia, U.S, November 15−18, 2010 p481

  • 图 1  基于两种算法模拟的AHM1时间偏差改正值 (a) 基于Kalman滤波算法模拟的AHM1的时间偏差改正值; (b) 基于改进Kalman滤波算法模拟的AHM1时间偏差改正值

    Fig. 1.  The corrected time deviations of modeling AHM1 based on two algorithms: (a) The corrected time deviations of modelling AHM1 based on Kalman filter algorithm; (b) the corrected time deviations of modelling AHM1 based on modified Kalman filter algorithm.

    图 2  基于两种算法的模拟AHM2的时间偏差改正值 (a) 基于Kalman滤波算法模拟的AHM2的时间偏差改正值; (b) 基于改进Kalman滤波算法模拟的AHM2的时间偏差改正值

    Fig. 2.  The corrected time deviations of modelling AHM2 based on two algorithms: (a) The corrected time deviations of modelling AHM2 based on Kalman filter algorithm; (b) the corrected time deviations of modelling AHM2 based on modified Kalman filter algorithm.

    图 3  基于两种Kalman滤波算法的时间尺度

    Fig. 3.  Time scale based on two Kalman filter algorithms.

    图 4  基于两种Kalman滤波算法的时间尺度的重叠Allan偏差

    Fig. 4.  The overlapping Allan deviation of time scale based on two Kalman filter algorithms.

    图 5  基于两种Kalman滤波算法的时间尺度

    Fig. 5.  Time scales based on two Kalman filter algorithms.

    图 6  基于两种Kalman滤波算法的时间尺度的稳定度

    Fig. 6.  Time scale stabilities based on two Kalman filter algorithms.

    表 1  基于两种Kalman滤波算法的时间尺度的重叠Allan偏差

    Table 1.  The overlapping Allan deviations of time scale based on two Kalman filter algorithms.

    取样时间/102 sKF scale/10–14R-KF scale/10–14
    39.8513.80
    66.738.75
    124.385.20
    302.502.70
    601.761.85
    1201.221.24
    3000.850.73
    6000.880.57
    12000.890.63
    下载: 导出CSV

    表 2  原子钟的相对权重

    Table 2.  Relative weights of atomic clocks.

    原子钟编号HM4926HM4967HM0296Cs3436Cs2098
    相对权重0.300.300.140.190.07
    下载: 导出CSV

    表 3  原子钟的噪声强度

    Table 3.  Noise intensity of atomic clocks.

    原子钟
    编号
    q1WFM/10–36 [s2/s]q2RWFM/10–50 [s2/s3]q3RWFM/[s2/s5]
    HM49264.644.994.27 × 10–60
    HM49675.884.603.87 × 10–60
    HM02962.014.106.80 × 10–49
    Cs343626.9000
    Cs20985.4300
    下载: 导出CSV

    表 4  基于两种Kalman滤波算法的统计值

    Table 4.  Statistical values based on two Kalman filter algorithms.

    计算方法最大偏
    差值/ns
    最小值偏
    差值/ns
    平均偏
    差值/ns
    KF scale4.36–3.130.98
    R-KF scale1.11–2.65–0.47
    下载: 导出CSV

    表 5  基于两种Kalman滤波算法的时间尺度的重叠阿伦偏差值

    Table 5.  The overlapping Allan deviations of time scale based on two Kalman filter algorithms.

    Sample time/103 sKF scale/10–14R-KF scale/10–14
    3.601.941.64
    7.201.341.17
    14.401.030.92
    36.000.920.85
    72.000.740.69
    144.000.530.51
    360.000.270.25
    下载: 导出CSV
  • [1]

    陈卫东, 刘要龙, 朱奇光, 陈颖 2013 物理学报 62 170506Google Scholar

    Chen W D, Liu Y L, Zhu Q G, Chen Y 2013 Acta Phys. Sin. 62 170506Google Scholar

    [2]

    刘洋洋, 廉保旺, 赵宏伟, 刘亚擎 2014 物理学报 63 228402Google Scholar

    Liu Y Y, Lian B W, Zhao H W, Zhao H W, Liu Y Q 2014 Acta Phys. Sin. 63 228402Google Scholar

    [3]

    林旭, 罗志才 2015 物理学报 64 080201Google Scholar

    Lin X, Luo Z C 2015 Acta Phys. Sin. 64 080201Google Scholar

    [4]

    赵龙 2012 物理学报 61 104301Google Scholar

    Zhao L 2012 Acta Phys. Sin. 61 104301Google Scholar

    [5]

    郭海荣, 杨元喜, 何海波, 徐天河 2010 测绘学报 39 146

    Guo H R, Yang Y X, He H B, Xu T H 2010 Acta Geod. Cartogr. Sin. 39 146

    [6]

    Greenhall C A 2003 Metrologia 40 335Google Scholar

    [7]

    Davis J A, Greenhall C A, Stacey P W 2005 Metrologia 42 1Google Scholar

    [8]

    Greenhall C A 2006 Metrologia 43 311

    [9]

    Suess M, Greenhall C A 2012 Metrologia 49 588Google Scholar

    [10]

    Parisi F, Panfilo G 2016 Metrologia 53 1185Google Scholar

    [11]

    伍贻威, 牟卫华, 龚航, 朱祥维, 欧钢 2016 武汉大学学报 信息科学版 41 1253

    Wu Y W, Mu W H, Gong H, Zhu X W, Ou G 2016 Geomat. Inf. Sci. Wuhan Univ. 41 1253

    [12]

    宋会杰, 董绍武, 王燕平, 安卫, 侯娟 2019 武汉大学学报. 信息科学版 44 1205

    Song H J, Dong S W, Wang Y P, An W, Hou J 2019 Geomat. Inf. Sci. Wuhan Univ. 44 1205

    [13]

    宋会杰, 董绍武, 屈俐俐, 王翔, 广伟 2017 仪器仪表学报 38 1809Google Scholar

    Song H J, Dong S W, Qu L L, Wang X, Guang W 2017 Chin. J. Sci. Instrum. 38 1809Google Scholar

    [14]

    Chaffee J W 1987 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 34 655Google Scholar

    [15]

    Brown K R Jr 1991 Proceeding of the 4th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 1991) Albuquerque, NM, USA, September 11−13, 1991 p223

    [16]

    杨元喜 2006 自适应动态导航定位 (第1版) (北京: 测绘出版社) 第189页

    Yang Y X 2006 Adaptive Navigation and Kinematic Positioning (1st Ed.) (Beijing: Surveying and Mapping Press) p189 (in Chinese)

    [17]

    Yang Y, He H, Xu G 2001 J. Geodesy 72 109

    [18]

    Yang Y, Song L, Xu T 2002 J. Geodesy 76 353Google Scholar

    [19]

    Cui X, Yang Y 2006 Proc. Natl. Acad. Sci. U.S.A. 16 846

    [20]

    Panfilo G, Harmegnies A, Tisserand L 2014 Metrologia 51 285Google Scholar

    [21]

    Levine J 1999 Rev. Sci. Instrum. 70 2567Google Scholar

    [22]

    Zucca C, Tavella P 2005 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52 289

    [23]

    Galleani L, Sacerdote L, Tavella P, Zucca C 2003 Metrologia 40 S257Google Scholar

    [24]

    Suess M, Matsakis D, Greenhall C A 2010 42nd Annual Precise Time and Time Interval Meeting Reston, Virginia, U.S, November 15−18, 2010 p481

  • [1] 宋会杰, 董绍武, 王翔, 姜萌, 章宇, 郭栋, 张继海. 基于最优控制理论的国产光抽运小铯钟频率控制算法. 物理学报, 2024, 73(6): 060201. doi: 10.7498/aps.73.20231866
    [2] 火元莲, 王丹凤, 龙小强, 连培君, 齐永锋. 一种变尺度S型核分式低次幂自适应滤波算法. 物理学报, 2021, 70(15): 158401. doi: 10.7498/aps.70.20210075
    [3] 张玉燕, 殷东哲, 温银堂, 罗小元. 基于自适应Kalman滤波的平面阵列电容成像. 物理学报, 2021, 70(11): 118102. doi: 10.7498/aps.70.20210442
    [4] 张毅. 时间尺度上非迁移Birkhoff系统的Mei对称性定理. 物理学报, 2021, 70(24): 244501. doi: 10.7498/aps.70.20210372
    [5] 贾梦源, 赵刚, 侯佳佳, 谭巍, 邱晓东, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂. 双重频率锁定的腔衰荡吸收光谱技术及信号处理. 物理学报, 2016, 65(12): 128701. doi: 10.7498/aps.65.128701
    [6] 林旭, 罗志才. 一种新的卫星钟差Kalman滤波噪声协方差估计方法. 物理学报, 2015, 64(8): 080201. doi: 10.7498/aps.64.080201
    [7] 刘洋洋, 廉保旺, 赵宏伟, 刘亚擎. Kalman滤波辅助的室内伪卫星相对定位算法. 物理学报, 2014, 63(22): 228402. doi: 10.7498/aps.63.228402
    [8] 贾蒙, 樊养余, 李慧敏. 基于自适应因子轨道延拓法的不变流形计算. 物理学报, 2010, 59(11): 7686-7692. doi: 10.7498/aps.59.7686
    [9] 支蓉, 龚志强, 郑志海, 周磊. 基于矩阵理论的全球温度资料的尺度性研究. 物理学报, 2009, 58(3): 2113-2120. doi: 10.7498/aps.58.2113
    [10] 林敏, 方利民. 双稳系统演化的时间尺度与随机共振的加强. 物理学报, 2009, 58(4): 2136-2140. doi: 10.7498/aps.58.2136
    [11] 李 勇, 毕勤胜. 连续搅拌槽式反应器中自催化化学反应的延迟同步. 物理学报, 2008, 57(10): 6099-6102. doi: 10.7498/aps.57.6099
    [12] 白 云, 刘新元, 何定武, 汝鸿羽, 齐 亮, 季敏标, 赵 巍, 谢飞翔, 聂瑞娟, 马 平, 戴远东, 王福仁. 在SQUID心磁测量中基于奇异值分解和自适应滤波的噪声消除法. 物理学报, 2006, 55(5): 2651-2656. doi: 10.7498/aps.55.2651
    [13] 甘建超, 肖先赐. 基于相空间邻域的混沌时间序列自适应预测滤波器(Ⅱ)非线性自适应滤波. 物理学报, 2003, 52(5): 1102-1107. doi: 10.7498/aps.52.1102
    [14] 甘建超, 肖先赐. 基于相空间邻域的混沌时间序列自适应预测滤波器(Ⅰ)线性自适应滤波. 物理学报, 2003, 52(5): 1096-1101. doi: 10.7498/aps.52.1096
    [15] 韦保林, 罗晓曙, 汪秉宏, 全宏俊, 郭维, 傅金阶. 一种基于三阶Volterra滤波器的混沌时间序列自适应预测方法. 物理学报, 2002, 51(10): 2205-2210. doi: 10.7498/aps.51.2205
    [16] 张家树, 肖先赐. 用于混沌时间序列自适应预测的一种少参数二阶Volterra滤波器. 物理学报, 2001, 50(7): 1248-1254. doi: 10.7498/aps.50.1248
    [17] 张家树, 肖先赐. 混沌时间序列的Volterra自适应预测. 物理学报, 2000, 49(3): 403-408. doi: 10.7498/aps.49.403
    [18] 张家树, 肖先赐. 用一种少参数非线性自适应滤波器自适应预测低维混沌时间序列. 物理学报, 2000, 49(12): 2333-2339. doi: 10.7498/aps.49.2333
    [19] 张家树, 肖先赐. 混沌时间序列的自适应高阶非线性滤波预测. 物理学报, 2000, 49(7): 1221-1227. doi: 10.7498/aps.49.1221
    [20] 柯熙政, 吴振森. 原子钟噪声中的混沌现象及其统计特性. 物理学报, 1998, 47(9): 1436-1449. doi: 10.7498/aps.47.1436
计量
  • 文章访问数:  6358
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-18
  • 修回日期:  2020-05-11
  • 上网日期:  2020-06-01
  • 刊出日期:  2020-09-05

/

返回文章
返回