搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

摩擦不对称耦合布朗马达的定向输运

张旭 曹佳慧 艾保全 高天附 郑志刚

引用本文:
Citation:

摩擦不对称耦合布朗马达的定向输运

张旭, 曹佳慧, 艾保全, 高天附, 郑志刚

Investigation on the directional transportation of coupled Brownian motors with asymmetric friction

Zhang Xu, Cao Jia-Hui, Ai Bao-Quan, Gao Tian-Fu, Zheng Zhi-Gang
PDF
HTML
导出引用
  • 本文研究了耦合布朗马达在溶液摩擦对称性破缺条件下的定向输运问题. 详细讨论了溶液阻尼系数比, 周期外力以及耦合作用对布朗粒子定向输运的影响. 研究发现: 溶液摩擦的不对称性不仅能促进摩擦棘轮的定向输运, 且合适的溶液阻尼系数比还可以使耦合棘轮的定向输运达到最强. 此外, 一定摩擦阻尼条件下外力振幅可以使耦合粒子的定向输运呈现多峰结构. 研究还发现合适的自由长度和耦合强度也能增强摩擦棘轮的输运特性. 研究结果不仅能够启发实验上选取合适的摩擦阻尼来优化布朗马达的输运, 也可为信息容量大、反应速度快的纳米器件的制备提供一定的理论参考.
    Biological molecular motors exist in cells widely. They can make use of intracellular free energy to complete all kinds of internal biological transports by transforming chemical energy into mechanical energy. The kind of directional movement of biological molecular motors plays a very important role in intracellular material transportation. In order to study the transport mechanism of molecular motors further, a large number of ratchet models are proposed, such as rocking ratchets and flashing ratchets. By investigating various kinds of ratchets we can not only understand the directional movement mechanism of Brownian particles, but can find suitable conditions in which the performance of Brownian motors’ directional transportation could be enhanced. Meanwhile, the investigation of ratchets could also be applied in manufacturing nanometer devices.At present, the directional transportation of Brownian ratchet has attracted extensive interests of researchers. In general, most friction factors of Brownian ratchet models are considered unit. In fact, the concentration of solutions and cell fluid impurity affect the actual frictional damping conditions, so the real frictional coefficient of Brownian motors is often changed. In addition, lots of experimental studies have shown that the movement of Brownian motors is collectively directed motion and the kind of directional movement is induced by intermolecular coupling interaction. As a result, it is more valuable to investigate the transporting performance of coupled Brownian particles that existed in different frictional damping conditions. In order to enhance the transporting performance of Brownian ratchet in different frictional damping conditions, we discuss how the frictional damping factor influences the directional movement of coupled Brownian particles deeply when Brownian particles drag loads. In this paper, we established the overdamped frictional ratchets, and then we investigated how frictional damping coefficient ratio, coupling strength and external force amplitude affect the transportation of coupled Brownian ratchets. On the basis of the investigation, some interesting results are found. The directional transport of frictional ratchets can be promoted by adjusting the frictional damping factor. Besides, the transportation can obtain the maximum under the appropriate friction factor case. In addition, under certain frictional damping condition, the directional transportation of the friction ratchets present multi-peak structure as the external force amplitude increases. Meanwhile, the appropriate free length and coupling strength can also enhance the transportation characteristic of frictional ratchets. All conclusions obtained in this paper can not be applied in selecting suitable frictional damping conditions experimentally to improve the directional transportation of coupled Brownian ratchets, but they can also be used in developing and manufacturing nanometer devices.
      通信作者: 高天附, tianfugao@synu.edu.cn ; 郑志刚, zgzheng@hqu.edu.cn
    • 基金项目: 国家级-国家自然科学基金(11875135)
      Corresponding author: Gao Tian-Fu, tianfugao@synu.edu.cn ; Zheng Zhi-Gang, zgzheng@hqu.edu.cn
    [1]

    Xie P 2010 Int. J. Biol. Sci. 6 665

    [2]

    舒咬根, 欧阳钟灿 2007 物理 36 735Google Scholar

    Shu Y G, Ouyang Z C 2007 Physics 36 735Google Scholar

    [3]

    Matsuda A, Li J, Brumm P, Adachi T, Inoue Y, Kim T 2019 Biolphys. J. 116 2161Google Scholar

    [4]

    Brown A I, Sivak D A 2019 Europhys. Lett. 126 40004Google Scholar

    [5]

    Grossert C, Leder M, Denisov S, Hänggi P, Weitz M 2016 Nat. Commun. 7 10440Google Scholar

    [6]

    Lee A K, Lee J R, Lee K H 2012 Physica B 407 4298Google Scholar

    [7]

    Wickenbrock A, Cubero D, Wahab N A A, Phoonthong P, Renzoni F 2011 Phys. Rev. E 84 021127Google Scholar

    [8]

    Lade S J 2010 J. Phys. A: Math. Theor. 43 249801Google Scholar

    [9]

    Ethier S N, Lee J L 2018 R. Soc. OpenSci. 5 171685Google Scholar

    [10]

    Vorotnikov D 2013 J. Math. Biol. 68 1677

    [11]

    Roca F, Villaluenga J P G, Dinis L 2014 Europhys. Lett. 107 10006Google Scholar

    [12]

    Bao J D 2018 College Physics 37 11

    [13]

    Huang S N, Zhu W J, Huang X Q, Ai B Q, Li F G 2019 Chin. Phys. B 28 040502Google Scholar

    [14]

    艾保全, 王先菊, 刘国涛, 刘良钢, 郑华 2001 中山大学学报: 自然科学版 40 27

    Ai B Q, Wang X J, Liu G T, Liu L G, Zheng H 2001 ActaSci. Natur. Univ. Sunyatseni 40 27

    [15]

    吕明涛, 延明月, 艾保全, 高天附, 郑志刚 2017 物理学报 66 220501Google Scholar

    Lv M T, Yan M Y, Ai B Q, Gao T F, Zheng Z G 2017 Acta. Phys. Sin. 66 220501Google Scholar

    [16]

    Holmes H R, Böhringer K F 2018 Adv. Colloid. Interface. Sci. 255 18Google Scholar

    [17]

    Latorre J C, Kramer P R, Pavliotis G A 2014 J. Comput. Phys. 257 57Google Scholar

    [18]

    Ryabov A, Holubec V, Yaghoubi M H, Varga M, Foulaadvand M E, Chvosta P 2016 J. Stat. Mech.: Theory Exp. 2016 093202Google Scholar

    [19]

    Radtke M, Patzelt A, Knorr F, Lademann J, Netz R R 2017 Eur. J. Pharm. Biopharm. 116 125Google Scholar

    [20]

    Hojo M, Arai N, Ebisuzaki T 2018 Mol. Simul. 44 523Google Scholar

    [21]

    Pattanayak S, Das R, Kumar M, Mishra S 2019 Eur. Phys. J. E 42 62Google Scholar

    [22]

    延明月, 张旭, 刘晨昊, 黄仁忠, 高天附, 郑志刚 2018 物理学报 67 190501Google Scholar

    Yan M Y, Zhang X, Liu C H, Huang R Z, Gao T F, Zheng Z G 2018 Acta Phys. Sin. 67 190501Google Scholar

    [23]

    Lombardo J, Broadwater D, Collins R, Cebe K, Brady R, Harrison S 2019 Hum. Pathol. 86 129Google Scholar

    [24]

    Toyoshima H 1951 J. Japn. Fores. Soc. 33 203

    [25]

    Toyoshima H 1951 J. Japn. Fores. Soc. 33 83

    [26]

    Pascu M N, Popescu I 2016 Stoch. Proc. Appl. 126 628Google Scholar

    [27]

    Jacka S D, Mijatović A, Širaj D 2014 Stoch. Proc. Appl. 124 1055Google Scholar

    [28]

    Atzberger P J 2006 Phys. Lett. A 351 225Google Scholar

    [29]

    Guo W, Du L C, Liu Z Z, Yang H, Mei D C 2017 Chin. Phys. B 26 010502Google Scholar

    [30]

    von Gehlen S, Evstigneev M, Reimann P 2009 Phys. Rev. E 79 031114Google Scholar

    [31]

    Saikia S, Mahato M C 2010 Physica A 389 4052Google Scholar

    [32]

    von Gehlen S, Evstigneev M, Reimann P 2008 Phys. Rev. E 77 031106Google Scholar

  • 图 1  摩擦对称性破缺耦合粒子的模型示意图

    Fig. 1.  Coupling particles model with broken friction symmetry.

    图 2  耦合粒子的平均速度$\left\langle v \right\rangle$随弹簧自由长度l的变化曲线, 其中γ1 = 5.0, k = 20.0, α = 0.3, A = 1.0, λ = 0.1

    Fig. 2.  The average velocity $\left\langle v \right\rangle$ of coupled particles varying with the free length l, where ${\gamma _1} = 5.0$, $k = 20.0$, $\alpha = 0.3$, $A = 1.0$, $\lambda = 0.1$.

    图 3  耦合粒子的平均速度$\left\langle v \right\rangle$随耦合强度k的变化曲线, 插图为$A = 20.0$时的变化曲线, 其中${\gamma _1} = 5.0$, $l = 0.25$, $\alpha = 0.3$, $D = 0.35$, $\lambda = 0.1$

    Fig. 3.  The average velocity $\left\langle v \right\rangle$ of coupled particles varying with the strength of coupling k, the insert figure described the average velocity curve when $A = 20.0$, where ${\gamma _1} = 5.0$, $l = 0.25$, $\alpha = 0.3$, $D = 0.35$, $\lambda = 0.1$.

    图 4  耦合粒子的平均速度$\left\langle v \right\rangle$随外力振幅A的变化曲线, 其中γ1 = 5.0, l = 0.25, k = 20.0, D = 0.35, λ = 0.1

    Fig. 4.  The average velocity $\left\langle v \right\rangle$ of coupled particles varying with the amplitude A of external force, where ${\gamma _1} = 5.0$, $l = 0.25$, $k = 20.0$, $D = 0.35$, $\lambda = 0.1$.

    图 5  耦合粒子的平均速度$\left\langle v \right\rangle$随摩擦阻尼系数比$\alpha$的变化曲线, 插图为$\lambda = 0.6$时的变化曲线, 其中${\gamma _1} = 5.0$, $k = 20.0$, $l = 0.25$, $A = 20.0$, $D = 0.35$

    Fig. 5.  The average velocity $\left\langle v \right\rangle$ of coupled particles varying with the frictional damping coefficient ratio $\alpha$, the insert figure described the average velocity curve when $\lambda = 0.6$, where ${\gamma _1} = 5.0$, $k = 20.0$, $l = 0.25$, $A = 20.0$, $D = 0.35$.

  • [1]

    Xie P 2010 Int. J. Biol. Sci. 6 665

    [2]

    舒咬根, 欧阳钟灿 2007 物理 36 735Google Scholar

    Shu Y G, Ouyang Z C 2007 Physics 36 735Google Scholar

    [3]

    Matsuda A, Li J, Brumm P, Adachi T, Inoue Y, Kim T 2019 Biolphys. J. 116 2161Google Scholar

    [4]

    Brown A I, Sivak D A 2019 Europhys. Lett. 126 40004Google Scholar

    [5]

    Grossert C, Leder M, Denisov S, Hänggi P, Weitz M 2016 Nat. Commun. 7 10440Google Scholar

    [6]

    Lee A K, Lee J R, Lee K H 2012 Physica B 407 4298Google Scholar

    [7]

    Wickenbrock A, Cubero D, Wahab N A A, Phoonthong P, Renzoni F 2011 Phys. Rev. E 84 021127Google Scholar

    [8]

    Lade S J 2010 J. Phys. A: Math. Theor. 43 249801Google Scholar

    [9]

    Ethier S N, Lee J L 2018 R. Soc. OpenSci. 5 171685Google Scholar

    [10]

    Vorotnikov D 2013 J. Math. Biol. 68 1677

    [11]

    Roca F, Villaluenga J P G, Dinis L 2014 Europhys. Lett. 107 10006Google Scholar

    [12]

    Bao J D 2018 College Physics 37 11

    [13]

    Huang S N, Zhu W J, Huang X Q, Ai B Q, Li F G 2019 Chin. Phys. B 28 040502Google Scholar

    [14]

    艾保全, 王先菊, 刘国涛, 刘良钢, 郑华 2001 中山大学学报: 自然科学版 40 27

    Ai B Q, Wang X J, Liu G T, Liu L G, Zheng H 2001 ActaSci. Natur. Univ. Sunyatseni 40 27

    [15]

    吕明涛, 延明月, 艾保全, 高天附, 郑志刚 2017 物理学报 66 220501Google Scholar

    Lv M T, Yan M Y, Ai B Q, Gao T F, Zheng Z G 2017 Acta. Phys. Sin. 66 220501Google Scholar

    [16]

    Holmes H R, Böhringer K F 2018 Adv. Colloid. Interface. Sci. 255 18Google Scholar

    [17]

    Latorre J C, Kramer P R, Pavliotis G A 2014 J. Comput. Phys. 257 57Google Scholar

    [18]

    Ryabov A, Holubec V, Yaghoubi M H, Varga M, Foulaadvand M E, Chvosta P 2016 J. Stat. Mech.: Theory Exp. 2016 093202Google Scholar

    [19]

    Radtke M, Patzelt A, Knorr F, Lademann J, Netz R R 2017 Eur. J. Pharm. Biopharm. 116 125Google Scholar

    [20]

    Hojo M, Arai N, Ebisuzaki T 2018 Mol. Simul. 44 523Google Scholar

    [21]

    Pattanayak S, Das R, Kumar M, Mishra S 2019 Eur. Phys. J. E 42 62Google Scholar

    [22]

    延明月, 张旭, 刘晨昊, 黄仁忠, 高天附, 郑志刚 2018 物理学报 67 190501Google Scholar

    Yan M Y, Zhang X, Liu C H, Huang R Z, Gao T F, Zheng Z G 2018 Acta Phys. Sin. 67 190501Google Scholar

    [23]

    Lombardo J, Broadwater D, Collins R, Cebe K, Brady R, Harrison S 2019 Hum. Pathol. 86 129Google Scholar

    [24]

    Toyoshima H 1951 J. Japn. Fores. Soc. 33 203

    [25]

    Toyoshima H 1951 J. Japn. Fores. Soc. 33 83

    [26]

    Pascu M N, Popescu I 2016 Stoch. Proc. Appl. 126 628Google Scholar

    [27]

    Jacka S D, Mijatović A, Širaj D 2014 Stoch. Proc. Appl. 124 1055Google Scholar

    [28]

    Atzberger P J 2006 Phys. Lett. A 351 225Google Scholar

    [29]

    Guo W, Du L C, Liu Z Z, Yang H, Mei D C 2017 Chin. Phys. B 26 010502Google Scholar

    [30]

    von Gehlen S, Evstigneev M, Reimann P 2009 Phys. Rev. E 79 031114Google Scholar

    [31]

    Saikia S, Mahato M C 2010 Physica A 389 4052Google Scholar

    [32]

    von Gehlen S, Evstigneev M, Reimann P 2008 Phys. Rev. E 77 031106Google Scholar

  • [1] 郭瑞雪, 艾保全. 可形变自驱动粒子在不对称周期管中的定向输运. 物理学报, 2023, 72(20): 200501. doi: 10.7498/aps.72.20230825
    [2] 应耀俊, 李海彬. 不对称双势阱中玻色-爱因斯坦凝聚体的动力学. 物理学报, 2023, 72(13): 130303. doi: 10.7498/aps.72.20230419
    [3] 刘艳艳, 孙佳明, 范黎明, 高天附, 郑志刚. 非保守力作用下二维耦合布朗粒子的定向输运. 物理学报, 2023, 72(4): 040501. doi: 10.7498/aps.72.20221741
    [4] 邓红梅, 黄磊, 李静, 陆叶, 李传起. 基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器. 物理学报, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [5] 任芮彬, 刘德浩, 王传毅, 罗懋康. 时间非对称外力驱动分数阶布朗马达的定向输运. 物理学报, 2015, 64(9): 090505. doi: 10.7498/aps.64.090505
    [6] 秦天奇, 王飞, 杨博, 罗懋康. 带反馈的分数阶耦合布朗马达的定向输运. 物理学报, 2015, 64(12): 120501. doi: 10.7498/aps.64.120501
    [7] 王飞, 谢天婷, 邓翠, 罗懋康. 系统非对称性及记忆性对布朗马达输运行为的影响. 物理学报, 2014, 63(16): 160502. doi: 10.7498/aps.63.160502
    [8] 王飞, 邓翠, 屠浙, 马洪. 耦合分数阶布朗马达在非对称势中的输运. 物理学报, 2013, 62(4): 040501. doi: 10.7498/aps.62.040501
    [9] 王莉芳, 高天附, 黄仁忠, 郑玉祥. 外力作用下反馈耦合布朗棘轮的定向输运. 物理学报, 2013, 62(7): 070502. doi: 10.7498/aps.62.070502
    [10] 陈艳, 蒋敏强, 戴兰宏. 金属玻璃温度依赖的拉压屈服不对称研究. 物理学报, 2012, 61(3): 036201. doi: 10.7498/aps.61.036201
    [11] 李体俊. 坐标算符本征矢的表示与不对称投影算符的积分. 物理学报, 2008, 57(7): 3969-3972. doi: 10.7498/aps.57.3969
    [12] 李 微, 赵同军, 郭鸿涌, 纪 青, 展 永. 布朗马达的非均匀高斯跃迁模型. 物理学报, 2004, 53(11): 3684-3689. doi: 10.7498/aps.53.3684
    [13] 缪中林, 陈平平, 蔡玮颖, 李志锋, 徐文兰, 袁先漳, 刘平, 史国良, 陈昌明, 朱德彰, 潘浩昌, 胡军, 李明乾, 陆卫. 组合注入质子导致不对称耦合双量子阱截面混合效应研究. 物理学报, 2001, 50(1): 116-119. doi: 10.7498/aps.50.116
    [14] 张彦鹏, 唐天同, 付盘铭. 四能级系统极化拍频的不对称特性. 物理学报, 1999, 48(2): 242-249. doi: 10.7498/aps.48.242
    [15] 展永, 包景东, 卓益忠, 吴锡真. 布朗马达的定向输运模型. 物理学报, 1997, 46(10): 1880-1887. doi: 10.7498/aps.46.1880
    [16] 王德宁, 潘慧珍. 四层不对称波导的一些近似关系式. 物理学报, 1984, 33(11): 1610-1618. doi: 10.7498/aps.33.1610
    [17] 陈启洲, 胡宁. 奇异粒子衰变的上下不对称问题. 物理学报, 1964, 20(4): 374-377. doi: 10.7498/aps.20.374
    [18] 江安才. 直线式不对称三原分子之振动转动光谱及其势能函数. 物理学报, 1944, 5(1): 49-63. doi: 10.7498/aps.5.49
    [19] 胡宁. 一排等距平行直杆后及方格后激流平均速度及温度之分布. 物理学报, 1944, 5(1): 30-48. doi: 10.7498/aps.5.30
    [20] 胡宁. 圆柱体后及轴对称体后激流平均速度及温度之分布. 物理学报, 1944, 5(1): 1-29. doi: 10.7498/aps.5.1
计量
  • 文章访问数:  6250
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-24
  • 修回日期:  2020-03-09
  • 刊出日期:  2020-05-20

/

返回文章
返回