-
采用平面波超软赝势方法研究了非金属元素掺杂对二硒化钨/石墨烯肖特基电子特性的影响. 研究表明二硒化钨与石墨烯层间以范德瓦耳斯力结合形成稳定的结构. 能带结果表明二硒化钨与石墨烯在稳定层间距下形成n型肖特基势垒. 三维电子密度差分图表明石墨烯中的电子向二硒化钨移动, 使二硒化钨表面带负电, 石墨烯表面带正电, 界面形成内建电场. 分析表明, 将非金属原子掺杂二硒化钨可以有效地调控二硒化钨/石墨烯肖特基势垒的类型和高度. C, O原子掺杂二硒化钨时, 肖特基类型由p型转化为n型, 并有效降低了肖特基势垒的高度; N, B原子掺杂二硒化钨时, 掺杂二硒化钨体系表现出金属性, 与石墨烯接触表现为欧姆接触. 本文结果可为二维场效应晶体管的设计与制作提供相关指导.In order to effectively control the type and height of Schottky barrier, it is crucial to appropriately select the material and method of controlling the type and height of the Schottky barrier effectively. Two-dimensional materials exhibit massive potential in research and development due to their unique electrical, optical, thermal and mechanical properties. Graphene is a two-dimensional material found earliest, which has many excellent properties, such as high carrier mobility and large surface area. However, single-layered graphene has a zero band gap, which limits its response in electronic devices. Unlike the graphene, the transition metal sulfides have various band structures and chemical compositions, which greatly compensate for the defect of zero gap in graphene. From among many two-dimensional transition metal sulfides, we choose WSe2. The reason is that the single-layered WSe2 possesses the photoelectric excellent performance, band gap that can meet the majority of requirements in electronic and photoelectric devices, and transport properties that can be adjusted to p-type or bipolar which is first found in semiconductor materials. And compared with metal, the graphene at room temperature has superior properties such as high electron mobility, resistivity of 10-6 Ω·m lower than copper and silver, coefficient of thermal conductivity 5300 W/(m·K) large than 10 times that of copper, aluminum and other metal, and hardness exceeding the diamond, fracture strength up to 100 times more than that of iron and steel. The Two-dimensional semiconductors along with semimetallic graphene are seen as the basic building blocks for a new generation of nanoelectronic devices, in this sense, the artificially designed transition metal sulfide heterostructure is a promising option for ultrathin photodetectors. At present, most researchers focus on the control of the type and height of Schottky via heterojunction doped metallic element. However, there are few Schottky that are doped by nonmentallic element. Therefore, our work provides the interaction between WSe2 and graphene, which are described by the first principles effectively. The results show that there is the van der Waals interaction between the interface of WSe2 and that of graphene, and thus forming a stable structure. Through the analysis of energy band, it is found that the semiconductor properties of WSe2 are changed by the coupling between WSe2 and graphene, making the WSe2 transform from direct band gap into indirect band gap semiconductor. Furthermore, the total density of states and corresponding partial density of states of WSe2/graphene heterostructure are investigated, and the results show that the valence band is composed of hybrid orbitals of W 5d and Se 4p, whereas the conduction band is comprised of W 5d and C 2p orbitals, the orbital hybridization between W 5d and Se 4p will cause the photo generated electrons to transfer easily from the internal W atoms to the external Se atoms, thereby forming a build-in internal electric field from graphene to WSe2. Finally, for ascertaining the effect of doping WSe2 with nonmetallic elements, the WSe2/graphene Schottky is investigated by using the plane-wave ultrasoft pseudo potentials in detail. Besides, the lattice mismatch rate and lattice mismatch can prove the rationality of doping WSe2 by non-metallicelement. The stability of the combination between the doped WSe2 and graphene is demonstrated by the interface binding energy. The influence of nonmetallic atoms on WSe2 is analyzed before investigating the heterojunction of the doped WSe2 and graphene. The results show that the band gap of WSe2 doped by O atoms changes from 1.62 to 1.66 eV and the leading band moves upward by 0.04 eV. This indicates that O atom doping has little effect on the band gap of WSe2. When WSe2 is doped with N and B atoms, the impurity energy level appears near the Fermi level of WSe2, which results in the band gap being zero, and then it presents severe metallization. This is due to the Fermi level of WSe2 shifting. When the C atom is doped, the impurity level appears at the bottom of the guide band of WSe2, and the band gap is 0.78 eV. Furthermore, we analyze the effect of doping on heterojunction. In the W9Se17O1/graphene heterojunction, the Schottky barrier height of n-type and p-type are 0.77 eV and 0.79 eV respectively. It shows that the heterojunction type transforms form p-type into n-type, whose Schottky barrier height is reduced effectively. Due to the W9Se17N1 as well as W9Se17B1 with metallic properties combining with graphene, the Fermi energy level of graphene is shifted, its Dirac point is located above the Fermi energy level and its conduction band has a filling energy level. When doped with N and B atoms, WSe2/graphene belongs to the type of ohmic contact. When W9Se17C1 contacts the graphene, the graphene Dirac point is on the Fermi surface, and the Fermi energy level of W9Se17C1 is shifted by 0.59 eV. And then, the height of Schottky barrier of type-n for the heterojunction is 0.14 eV, the height of type-p is 0.59 eV and overall type of heterojunction is type-n. Therefore, by doping WSe2 with O, N, C and B, the WSe2/graphene Schottky type and barrier height can be adjusted. These will provide guidance for designing and manufacturing the 2D FET.
-
Keywords:
- heterostructure /
- WSe2 /
- band modulation /
- first-principles
[1] Gustafsson M V, Yankowitz M, Forsythe C, Rhodes D, Watanabe K, Taniguchi T, Hone J, Zhu X, Dean C R 2018 Nat. Mater. 17 411Google Scholar
[2] Rigosi A F, Hill H M, Li Y, Chernikov A, Heinz T F 2015 Nano Lett. 15 5033Google Scholar
[3] Tang Q, Liu C, Zhang B, Jie W 2018 J. Solid State Chem. 262 53Google Scholar
[4] Ni J, Quintana M, Song S 2020 Physica E 116 113768Google Scholar
[5] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar
[6] Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar
[7] Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192Google Scholar
[8] Cao M, Wang X, Cao W, Fang X, Wen B, Yuan J 2018 Small 14 1800987Google Scholar
[9] Cao M S, Song W L, Hou Z L, Wen B, Yuan J 2010 Carbon 48 788Google Scholar
[10] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar
[11] Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar
[12] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351Google Scholar
[13] Wen B, Cao M, Lu M, Cao W, Shi H, Liu J, Wang X, Jin H, Fang X, Wang W, Yuan J 2014 Adv. Mater. 26 3484Google Scholar
[14] Han S J, Garcia A V, Oida S, Jenkins K A, Haensch W 2014 Nat. Commun. 5 3086Google Scholar
[15] Wessely P J, Wessely F, Birinci E, Beckmann K, Riedinger B, Schwalke U 2012 Physica E 44 1132Google Scholar
[16] Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G 2009 Nano Lett. 9 1752Google Scholar
[17] Chhowalla M, Liu Z, Zhang H 2015 Chem. Soc. Rev. 44 2584Google Scholar
[18] Zou X, Liao L 2016 Sci. Sin. Phys. 46 107310
[19] Zhu Z, Zhu D, Qiu J, Yi M, Zhang J, Wen J 2017 J. Synth. Cryst. 46 1175
[20] Kumar A, Ahluwalia P K 2012 EPJ. B 85 1434
[21] Terrones H, López Urías F, Terrones M 2013 Sci. Rep. 3 2045Google Scholar
[22] Guo X, Guo P, Wang C, Chen Y, Guo L 2020 Chem. Eng. J. 383 123183Google Scholar
[23] He H K, Yang R, Huang H M, Yang F F, Wu Y Z, Shaibo J, Guo X 2020 Nanoscale 12 380Google Scholar
[24] Jeong T Y, Lee S Y, Jung S, Yee K J 2020 Curr. Appl. Phys. 20 272Google Scholar
[25] Desai S B, Seol G, Kang J S, Fang H, Battaglia C, Kapadia R, Ager J W, Guo J, Javey A 2014 Nano Lett. 14 4592Google Scholar
[26] Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P H, Eda G 2013 ACS Nano. 7 791Google Scholar
[27] Fang H, Chuang S, Chang T C, Takei K, Takahashi T, Javey A 2012 Nano Lett. 12 3788Google Scholar
[28] Zhou H, Wang C, Shaw J C, Cheng R, Chen Y, Huang X, Liu Y, Weiss N O, Lin Z, Huang Y, Duan X 2015 Nano Lett. 15 709Google Scholar
[29] 王丹, 邹娟, 唐黎明 2019 物理学报 68 037102Google Scholar
Wang D, Zou J, Tang L M 2019 Acta Phys. Sin. 68 037102Google Scholar
[30] Farkous M, Bikerouin M, Thuan D V, Benhouria Y, El-Yadri M, Feddi E, Erguig H, Dujardin F, Nguyen C V, Hieu N V, Bui H D, Hieu N N, Phuc H V 2020 Physica E 116 1386
[31] Roy K, Padmanabhan M, Goswami S, Sai T P, Ramalingam G, Raghavan S, Ghosh A 2013 Nat. Nanotechnol. 8 826Google Scholar
[32] Wang Z, Li Q, Chen Y, Cui B, Li Y, Besenbacher F, Dong M 2018 NPG Asia Mater. 10 703Google Scholar
[33] Xu H, Wu J, Feng Q, Mao N, Wang C, Zhang J 2014 Small 10 2300Google Scholar
[34] Qiu B, Zhao X W, Hu G C, Yue W W, Yuan X B, Ren J F 2020 Physica E 116 113729Google Scholar
[35] Hu J, Duan W, He H, Lv H, Huang C, Ma X 2019 J. Mater. Chem. C 7 7798Google Scholar
[36] Nam J H, Jang M J, Jang H Y, Park W, Wang X, Choi S M, Cho B 2020 J. Energ. Chem. 47 107Google Scholar
[37] Liu W, Kang J, Sarkar D, Khatami Y, Jena D, Banerjee K 2013 Nano Lett. 13 1983Google Scholar
[38] Zhang W, Chiu M H, Chen C H, Chen W, Li L J, Wee A T 2014 ACS Nano. 8 8653Google Scholar
[39] Tosun M, Chuang S, Fang H, Sachid A B, Hettick M, Lin Y, Zeng Y, Javey A 2014 ACS Nano. 8 4948Google Scholar
[40] Lee I, Rathi S, Li L, Lim D, Khan M A, Kannan E S, Kim G H 2015 Nanotechnology 26 455203Google Scholar
[41] 谭淼, 张磊, 梁万珍 2019 物理化学学报 35 385Google Scholar
Tan M, Zhang L, Liang W Z 2019 Acta Phys. Chim. Sin. 35 385Google Scholar
[42] Chuang H J, Tan X, Ghimire N J, Perera M M, Chamlagain B, Cheng M M, Yan J, Mandrus D, Tomanek D, Zhou Z 2014 Nano Lett. 14 3594Google Scholar
[43] Tang H L, Chiu M H, Tseng C C, Yang S H, Hou K J, Wei S Y, Huang J K, Lin Y F, Lien C H, Li L J 2017 ACS Nano. 11 12817Google Scholar
[44] Yue Y, Feng Y, Chen J, Zhang D, Feng W 2017 J. Mater. Chem. C 5 5887Google Scholar
[45] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H 2009 Nature 457 706Google Scholar
[46] Son Y W, Cohen M L, Louie S G 2006 Nature 444 347Google Scholar
[47] Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar
[48] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter. 14 2717Google Scholar
[49] Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar
[50] Farmani H, Farmani A, Biglari Z 2020 Physica E 116 113730Google Scholar
[51] Ortmann F, Bechstedt F, Schmidt W G 2006 Phys. Rev. B 73 1550
[52] Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005Google Scholar
[53] Chadi D J 1977 Phys. Rev. B 16 1746Google Scholar
[54] Rahm M, Hoffmann R, Ashcroft N W 2016 Chem. Eur. J. 22 14625Google Scholar
[55] Xie Y Z, Liu Y, Zhao Y D, Tsang Y H, Lau S P, Huang H T, Chai Y 2014 J. Mater. Chem. A 2 9142Google Scholar
[56] Yao L H, Cao M S, Yang H J, Liu X J, Fang X Y, Yuan J 2014 Comp. Mater. Sci. 85 179Google Scholar
[57] 郭丽娟, 胡吉松, 马新国, 项炬 2019 物理学报 68 097101Google Scholar
Guo L J, Hu J S, Ma X G, Xiang J 2019 Acta Phys. Sin. 68 097101Google Scholar
[58] Cao M S, Wang X X, Zhang M, Shu J C, Cao W Q, Yang H J, Fang X Y, Yuan J 2019 Adv. Funct. Mater. 29 1807398Google Scholar
[59] 危阳, 马新国, 祝林, 贺华, 黄楚云 2017 物理学报 66 087101Google Scholar
Wei Y, Ma X G, Zhu L, He H, Huang C Y 2017 Acta Phys. Sin. 66 087101Google Scholar
[60] Bjorkman T, Gulans A, Krasheninnikov A V, Nieminen R M 2012 Phys. Rev. Lett. 108 235502Google Scholar
[61] Du A, Sanvito S, Li Z, Wang D, Jiao Y, Liao T, Sun Q, Ng Y H, Zhu Z, Amal R, Smith S C 2012 J. Amer. Chem. Soc. 134 4393Google Scholar
[62] Zhou W, Zou X, Najmaei S, Liu Z, Shi Y, Kong J, Lou J, Ajayan P M, Yakobson B I, Idrobo J C 2013 Nano Lett. 13 2615Google Scholar
[63] Cao M S, Shu J C, Wang X X, Wang X, Zhang M, Yang H J, Fang X Y, Yuan J 2019 Ann. Der Phys. 531 1800390Google Scholar
[64] Zhang Y, Li H, Wang L, Wang H, Xie X, Zhang S L, Liu R, Qiu Z J 2015 Sci. Rep. 5 7938Google Scholar
-
图 1 单层二硒化钨掺杂俯视图 (a) 单层二硒化钨3 × 3 × 1超胞掺硼俯视图; (b) 单层二硒化钨3 × 3 × 1超胞掺碳俯视图; (c) 单层二硒化钨3 × 3 × 1超胞掺氮俯视图; (d) 单层二硒化钨3 × 3 × 1超胞掺氧俯视图
Fig. 1. Top views of monolayer WSe2 doping: (a) Top view of single layer WSe2 3 × 3 × 1 supercell boron doped; (b) top view of single layer WSe2 3 × 3 × 1 supercell carbon doped; (c) top view of single layer WSe2 3 × 3 × 1 supercell nitrogen doped; (d) top view of single layer WSe2 3 × 3 × 1 supercell oxygen doped.
图 2 单层二硒化钨(a)、石墨烯(b)及二硒化钨/石墨(c)能带图, n型(p型)SBH介于二硒化钨的费米能级和最小导带(价带最大值)之间, 费米能级归一化设置为零, 用红虚线表示
Fig. 2. Energy band structures of (a) monolayer WSe2, (b) grapheme, and (c) WSe2/graphene heterostructure. The n-type (p-type) SBH are indicated between the Fermi level and the conduction band minimum (the valence band maximum) of the WSe2 layer. The Fermi level is set to zero and marked by red dotted lines.
表 1 不同非金属元素掺杂WSe2/graphene异质结的晶格失配率、形成能、结合能、晶格失配能参数
Table 1. Lattice mismatch rate, formation energy, cohesive energy, and lattice mismatch energy parameters of WSe2/graphene heterojunction doped with different nonmetallic elements.
a1/nm a2/nm σ/% Ef/eV Ecoh/eV·nm–2 ΔEmismatch/eV·nm–2 W9Se18 0.990 0.984 0.625 0 –1.791 –1.690 W9Se17O1 0.979 0.984 0.500 0.373 –3.000 –6.896 W9Se17N1 0.983 0.984 0.020 0.732 –1.992 –7.022 W9Se17C1 0.987 0.984 0.304 2.650 –1.905 –6.923 W9Se17B1 0.989 0.984 0.586 5.430 –2.662 –6.500 -
[1] Gustafsson M V, Yankowitz M, Forsythe C, Rhodes D, Watanabe K, Taniguchi T, Hone J, Zhu X, Dean C R 2018 Nat. Mater. 17 411Google Scholar
[2] Rigosi A F, Hill H M, Li Y, Chernikov A, Heinz T F 2015 Nano Lett. 15 5033Google Scholar
[3] Tang Q, Liu C, Zhang B, Jie W 2018 J. Solid State Chem. 262 53Google Scholar
[4] Ni J, Quintana M, Song S 2020 Physica E 116 113768Google Scholar
[5] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar
[6] Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar
[7] Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192Google Scholar
[8] Cao M, Wang X, Cao W, Fang X, Wen B, Yuan J 2018 Small 14 1800987Google Scholar
[9] Cao M S, Song W L, Hou Z L, Wen B, Yuan J 2010 Carbon 48 788Google Scholar
[10] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar
[11] Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar
[12] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351Google Scholar
[13] Wen B, Cao M, Lu M, Cao W, Shi H, Liu J, Wang X, Jin H, Fang X, Wang W, Yuan J 2014 Adv. Mater. 26 3484Google Scholar
[14] Han S J, Garcia A V, Oida S, Jenkins K A, Haensch W 2014 Nat. Commun. 5 3086Google Scholar
[15] Wessely P J, Wessely F, Birinci E, Beckmann K, Riedinger B, Schwalke U 2012 Physica E 44 1132Google Scholar
[16] Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G 2009 Nano Lett. 9 1752Google Scholar
[17] Chhowalla M, Liu Z, Zhang H 2015 Chem. Soc. Rev. 44 2584Google Scholar
[18] Zou X, Liao L 2016 Sci. Sin. Phys. 46 107310
[19] Zhu Z, Zhu D, Qiu J, Yi M, Zhang J, Wen J 2017 J. Synth. Cryst. 46 1175
[20] Kumar A, Ahluwalia P K 2012 EPJ. B 85 1434
[21] Terrones H, López Urías F, Terrones M 2013 Sci. Rep. 3 2045Google Scholar
[22] Guo X, Guo P, Wang C, Chen Y, Guo L 2020 Chem. Eng. J. 383 123183Google Scholar
[23] He H K, Yang R, Huang H M, Yang F F, Wu Y Z, Shaibo J, Guo X 2020 Nanoscale 12 380Google Scholar
[24] Jeong T Y, Lee S Y, Jung S, Yee K J 2020 Curr. Appl. Phys. 20 272Google Scholar
[25] Desai S B, Seol G, Kang J S, Fang H, Battaglia C, Kapadia R, Ager J W, Guo J, Javey A 2014 Nano Lett. 14 4592Google Scholar
[26] Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P H, Eda G 2013 ACS Nano. 7 791Google Scholar
[27] Fang H, Chuang S, Chang T C, Takei K, Takahashi T, Javey A 2012 Nano Lett. 12 3788Google Scholar
[28] Zhou H, Wang C, Shaw J C, Cheng R, Chen Y, Huang X, Liu Y, Weiss N O, Lin Z, Huang Y, Duan X 2015 Nano Lett. 15 709Google Scholar
[29] 王丹, 邹娟, 唐黎明 2019 物理学报 68 037102Google Scholar
Wang D, Zou J, Tang L M 2019 Acta Phys. Sin. 68 037102Google Scholar
[30] Farkous M, Bikerouin M, Thuan D V, Benhouria Y, El-Yadri M, Feddi E, Erguig H, Dujardin F, Nguyen C V, Hieu N V, Bui H D, Hieu N N, Phuc H V 2020 Physica E 116 1386
[31] Roy K, Padmanabhan M, Goswami S, Sai T P, Ramalingam G, Raghavan S, Ghosh A 2013 Nat. Nanotechnol. 8 826Google Scholar
[32] Wang Z, Li Q, Chen Y, Cui B, Li Y, Besenbacher F, Dong M 2018 NPG Asia Mater. 10 703Google Scholar
[33] Xu H, Wu J, Feng Q, Mao N, Wang C, Zhang J 2014 Small 10 2300Google Scholar
[34] Qiu B, Zhao X W, Hu G C, Yue W W, Yuan X B, Ren J F 2020 Physica E 116 113729Google Scholar
[35] Hu J, Duan W, He H, Lv H, Huang C, Ma X 2019 J. Mater. Chem. C 7 7798Google Scholar
[36] Nam J H, Jang M J, Jang H Y, Park W, Wang X, Choi S M, Cho B 2020 J. Energ. Chem. 47 107Google Scholar
[37] Liu W, Kang J, Sarkar D, Khatami Y, Jena D, Banerjee K 2013 Nano Lett. 13 1983Google Scholar
[38] Zhang W, Chiu M H, Chen C H, Chen W, Li L J, Wee A T 2014 ACS Nano. 8 8653Google Scholar
[39] Tosun M, Chuang S, Fang H, Sachid A B, Hettick M, Lin Y, Zeng Y, Javey A 2014 ACS Nano. 8 4948Google Scholar
[40] Lee I, Rathi S, Li L, Lim D, Khan M A, Kannan E S, Kim G H 2015 Nanotechnology 26 455203Google Scholar
[41] 谭淼, 张磊, 梁万珍 2019 物理化学学报 35 385Google Scholar
Tan M, Zhang L, Liang W Z 2019 Acta Phys. Chim. Sin. 35 385Google Scholar
[42] Chuang H J, Tan X, Ghimire N J, Perera M M, Chamlagain B, Cheng M M, Yan J, Mandrus D, Tomanek D, Zhou Z 2014 Nano Lett. 14 3594Google Scholar
[43] Tang H L, Chiu M H, Tseng C C, Yang S H, Hou K J, Wei S Y, Huang J K, Lin Y F, Lien C H, Li L J 2017 ACS Nano. 11 12817Google Scholar
[44] Yue Y, Feng Y, Chen J, Zhang D, Feng W 2017 J. Mater. Chem. C 5 5887Google Scholar
[45] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H 2009 Nature 457 706Google Scholar
[46] Son Y W, Cohen M L, Louie S G 2006 Nature 444 347Google Scholar
[47] Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar
[48] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter. 14 2717Google Scholar
[49] Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar
[50] Farmani H, Farmani A, Biglari Z 2020 Physica E 116 113730Google Scholar
[51] Ortmann F, Bechstedt F, Schmidt W G 2006 Phys. Rev. B 73 1550
[52] Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005Google Scholar
[53] Chadi D J 1977 Phys. Rev. B 16 1746Google Scholar
[54] Rahm M, Hoffmann R, Ashcroft N W 2016 Chem. Eur. J. 22 14625Google Scholar
[55] Xie Y Z, Liu Y, Zhao Y D, Tsang Y H, Lau S P, Huang H T, Chai Y 2014 J. Mater. Chem. A 2 9142Google Scholar
[56] Yao L H, Cao M S, Yang H J, Liu X J, Fang X Y, Yuan J 2014 Comp. Mater. Sci. 85 179Google Scholar
[57] 郭丽娟, 胡吉松, 马新国, 项炬 2019 物理学报 68 097101Google Scholar
Guo L J, Hu J S, Ma X G, Xiang J 2019 Acta Phys. Sin. 68 097101Google Scholar
[58] Cao M S, Wang X X, Zhang M, Shu J C, Cao W Q, Yang H J, Fang X Y, Yuan J 2019 Adv. Funct. Mater. 29 1807398Google Scholar
[59] 危阳, 马新国, 祝林, 贺华, 黄楚云 2017 物理学报 66 087101Google Scholar
Wei Y, Ma X G, Zhu L, He H, Huang C Y 2017 Acta Phys. Sin. 66 087101Google Scholar
[60] Bjorkman T, Gulans A, Krasheninnikov A V, Nieminen R M 2012 Phys. Rev. Lett. 108 235502Google Scholar
[61] Du A, Sanvito S, Li Z, Wang D, Jiao Y, Liao T, Sun Q, Ng Y H, Zhu Z, Amal R, Smith S C 2012 J. Amer. Chem. Soc. 134 4393Google Scholar
[62] Zhou W, Zou X, Najmaei S, Liu Z, Shi Y, Kong J, Lou J, Ajayan P M, Yakobson B I, Idrobo J C 2013 Nano Lett. 13 2615Google Scholar
[63] Cao M S, Shu J C, Wang X X, Wang X, Zhang M, Yang H J, Fang X Y, Yuan J 2019 Ann. Der Phys. 531 1800390Google Scholar
[64] Zhang Y, Li H, Wang L, Wang H, Xie X, Zhang S L, Liu R, Qiu Z J 2015 Sci. Rep. 5 7938Google Scholar
计量
- 文章访问数: 11062
- PDF下载量: 280
- 被引次数: 0