-
利用实验室研制的近红外激光外差光谱仪, 开展了基于最优估计算法的温室气体柱浓度反演和系统测量误差的近似评估等相关工作. 首先, 通过光谱数据库、参考正向模型计算结果与傅里叶变换红外光谱技术探测结果筛选出了探测窗口, 并以此为依据选择了相应的激光器和探测器; 其次, 建立了基于参考正向模型最优估计浓度反演算法, 采用Levenberg-Marquardt (LM) 迭代方法, 实现了整层大气CO2柱浓度及垂直分布廓线的反演, 并开展了长期观测对比实验, 验证了反演算法的可行性; 最后, 通过模拟所选探测窗口波段在不同白噪声条件下的正向大气透过率谱, 获得了系统SNR与柱浓度测量误差之间的近似对应关系. 该研究是探测系统不可或缺的理论计算部分, 将有助于完善激光外差技术在大气探测中的应用.In this paper, a near-infrared laser heterodyne spectrometer developed by the laboratory is used to investigate the inversion of greenhouse gas column concentration and approximately evaluate the system measurement errors based on the optimal estimation algorithm. Firstly, the spectral database and the calculation results from the reference forward model are compared with the ground-based FTIR results, thereby selecting the detection window, the corresponding laser and detector. Secondly, the optimal estimation concentration inversion algorithm based on the reference forward model is established, and the Levenberg-Marquardt (LM) iterative method is adopted to realize the inversion of the concentration and vertical distribution profile of atmospheric CO2 column in the whole layer, and the long-term observation comparative experiment is carried out to verify the feasibility of this algorithm. Finally, by simulating the selected detection window spectrum in different white noise, the approximate corresponding relationship between the system signal-noise-ratio (SNR) and CO2 column concentration measuring error is eventually obtained. This research is an indispensable theoretical calculation part of the detection system and will conduce to improving the application of laser heterodyne technology in atmospheric observations.
-
Keywords:
- laser heterodyne /
- measuring error /
- the reference forward model /
- CO2 column concentration
[1] 向亮, 高庆先, 周锁铨, 陈永立 2009 气候变化研究进展 5 278Google Scholar
Xiang L, Gao Q X, Zhou S Q, Chen Y L 2009 Adv. Clim. Change Res. 5 278Google Scholar
[2] 邵君宜, 林兆祥, 刘林美, 龚威 2017 物理学报 66 104206Google Scholar
Shao J Y, Lin Z X, Liu L M, Gong W 2017 Acta Phys. Sin. 66 104206Google Scholar
[3] 吴军 2013 博士学位论文 (合肥: 中国科学技术大学)
Wu J 2013 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)
[4] Knorr W 2009 Geophys. Res. Lett. 36 L21710Google Scholar
[5] 丁武文, 孙利群, 衣路英 2017 物理学报 66 100702Google Scholar
Ding W W, Sun L Q, Yi L Y 2017 Acta Phys. Sin. 66 100702Google Scholar
[6] 管林强, 邓昊, 姚路, 聂伟, 许振宇, 李想, 臧益鹏, 胡迈, 范雪丽, 杨晨光, 阚瑞峰 2019 物理学报 68 084204Google Scholar
Guan L Q, Deng H, Yao L, Nie W, Xu Z Y, Li X, Zang Y P, Hu M, Fan X L, Yang C G, Kan R F 2019 Acta Phys. Sin. 68 084204Google Scholar
[7] Guo X Q, Zheng F, Li C L, Yang X F, Li N, Liu S, Wei J L 2019 Opt. Lasers Eng. 115 243Google Scholar
[8] Sun K, Chao X, Sur R, Goldenstein C S, Jeffries J B, Hanson R K 2013 Meas. Sci. Technol. 24 125203Google Scholar
[9] Sun C Y, Cao Y, Chen J J, Wang J J, Cheng g, Wang G S, Gao X M 2020 Chin. Phys. B 29 010704Google Scholar
[10] 王薇, 刘文清, 张天舒, 2014 光学学报 34 0130003Google Scholar
Wang W, Liu W Q, Zhang T S 2014 Acta Optic. Sin. 34 0130003Google Scholar
[11] Zhao Y J, Wexler A S, Hase F, Pan Y, Mitloehner F M 2016 J. Environ. Prot. 7 1719Google Scholar
[12] Sonnabend G, Wirtz D, Frank Schmülling, Schieder R 2002 Appl. Opt. 41 2978Google Scholar
[13] Weidmann D, Reburn W J, Smith K M 2007 Appl. Opt. 46 7162Google Scholar
[14] Tsai T R, Rose R A, Weidmann D, Wysocki G 2012 Appl. Opt. 51 8779Google Scholar
[15] Wang J, Wang G, Tan T, Zhu G, Sun C, Cao Z, Chen W, Gao X 2019 Opt. Express 27 9610Google Scholar
[16] 张尚露, 黄印博, 卢兴吉, 曹振松, 戴聪明, 刘强, 高晓明, 饶瑞中, 王英俭 2019 光谱学与光谱分析 39 1317Google Scholar
Zhang S L, Huang Y B, Lu X j, Cao Z S, Dai C M, Liu Q, Gao X M, Zhong R R, Wang Y J 2019 Spectrosc. Spect. Anal. 39 1317Google Scholar
[17] Dudhia A 2017 J. Quant. Spectrosc. Radiat. Transfer 186 243Google Scholar
[18] Gordon I E, Rothman L S, Hill C, Kochanov R V, Tan Y, Bernath P F, Chance K V 2017 J. Quant. Spectrosc. Radiat. Transfer 203 3Google Scholar
[19] Rodgers C D 2000 Inverse Methods for Atmospheric Sounding: Theory and Practise (1st Ed.) (Singapore: World Scientific Publishing)
[20] Rodgers C D 1990 J. Geophys. Res. 95 5587Google Scholar
[21] 石广玉 2007 大气辐射学 (北京: 科学出版社)
Shi G Y 2007 Atmospheric Radiology (Beijing: Science Press) (in Chinese)
-
图 7 LHR数据反演结果 (a) 实验和拟合LHR谱图以及迭代过程的收敛性 (插图); (b) 残差; (c) 和 (d)分别获取的CO2的先验和反演的垂直浓度分布图
Fig. 7. Inversion results of LHR data: (a) Experimental and fitted LHR spectrogram and convergence of iterative process (illustration); (b) residue; (c) and (d) obtained prior and inversion vertical concentration profiles of CO2, respectively.
表 1 数据反演中使用的状态向量的定义
Table 1. Definition of the state vector used in the data retrieval.
状态
向量先验值 定义 x (CO2) 1 先验廓线的比例因子
(ECMWF) 45层.a a0 基线中a0、b0和c0的多项式系数由对预处理的LHR信号与模型结果(去除吸收部分后)的比值进行二阶多项式拟合得到. b b0 c c0 -
[1] 向亮, 高庆先, 周锁铨, 陈永立 2009 气候变化研究进展 5 278Google Scholar
Xiang L, Gao Q X, Zhou S Q, Chen Y L 2009 Adv. Clim. Change Res. 5 278Google Scholar
[2] 邵君宜, 林兆祥, 刘林美, 龚威 2017 物理学报 66 104206Google Scholar
Shao J Y, Lin Z X, Liu L M, Gong W 2017 Acta Phys. Sin. 66 104206Google Scholar
[3] 吴军 2013 博士学位论文 (合肥: 中国科学技术大学)
Wu J 2013 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)
[4] Knorr W 2009 Geophys. Res. Lett. 36 L21710Google Scholar
[5] 丁武文, 孙利群, 衣路英 2017 物理学报 66 100702Google Scholar
Ding W W, Sun L Q, Yi L Y 2017 Acta Phys. Sin. 66 100702Google Scholar
[6] 管林强, 邓昊, 姚路, 聂伟, 许振宇, 李想, 臧益鹏, 胡迈, 范雪丽, 杨晨光, 阚瑞峰 2019 物理学报 68 084204Google Scholar
Guan L Q, Deng H, Yao L, Nie W, Xu Z Y, Li X, Zang Y P, Hu M, Fan X L, Yang C G, Kan R F 2019 Acta Phys. Sin. 68 084204Google Scholar
[7] Guo X Q, Zheng F, Li C L, Yang X F, Li N, Liu S, Wei J L 2019 Opt. Lasers Eng. 115 243Google Scholar
[8] Sun K, Chao X, Sur R, Goldenstein C S, Jeffries J B, Hanson R K 2013 Meas. Sci. Technol. 24 125203Google Scholar
[9] Sun C Y, Cao Y, Chen J J, Wang J J, Cheng g, Wang G S, Gao X M 2020 Chin. Phys. B 29 010704Google Scholar
[10] 王薇, 刘文清, 张天舒, 2014 光学学报 34 0130003Google Scholar
Wang W, Liu W Q, Zhang T S 2014 Acta Optic. Sin. 34 0130003Google Scholar
[11] Zhao Y J, Wexler A S, Hase F, Pan Y, Mitloehner F M 2016 J. Environ. Prot. 7 1719Google Scholar
[12] Sonnabend G, Wirtz D, Frank Schmülling, Schieder R 2002 Appl. Opt. 41 2978Google Scholar
[13] Weidmann D, Reburn W J, Smith K M 2007 Appl. Opt. 46 7162Google Scholar
[14] Tsai T R, Rose R A, Weidmann D, Wysocki G 2012 Appl. Opt. 51 8779Google Scholar
[15] Wang J, Wang G, Tan T, Zhu G, Sun C, Cao Z, Chen W, Gao X 2019 Opt. Express 27 9610Google Scholar
[16] 张尚露, 黄印博, 卢兴吉, 曹振松, 戴聪明, 刘强, 高晓明, 饶瑞中, 王英俭 2019 光谱学与光谱分析 39 1317Google Scholar
Zhang S L, Huang Y B, Lu X j, Cao Z S, Dai C M, Liu Q, Gao X M, Zhong R R, Wang Y J 2019 Spectrosc. Spect. Anal. 39 1317Google Scholar
[17] Dudhia A 2017 J. Quant. Spectrosc. Radiat. Transfer 186 243Google Scholar
[18] Gordon I E, Rothman L S, Hill C, Kochanov R V, Tan Y, Bernath P F, Chance K V 2017 J. Quant. Spectrosc. Radiat. Transfer 203 3Google Scholar
[19] Rodgers C D 2000 Inverse Methods for Atmospheric Sounding: Theory and Practise (1st Ed.) (Singapore: World Scientific Publishing)
[20] Rodgers C D 1990 J. Geophys. Res. 95 5587Google Scholar
[21] 石广玉 2007 大气辐射学 (北京: 科学出版社)
Shi G Y 2007 Atmospheric Radiology (Beijing: Science Press) (in Chinese)
计量
- 文章访问数: 8360
- PDF下载量: 119
- 被引次数: 0