搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Straining流对柱状晶体在三元过冷熔体中生长的影响

范海龙 陈明文

引用本文:
Citation:

Straining流对柱状晶体在三元过冷熔体中生长的影响

范海龙, 陈明文

Effect of straining flow on growth of columnar crystal in ternary undercooled melt

Fan Hai-Long, Chen Ming-Wen
PDF
HTML
导出引用
  • 研究了三元过冷熔体中柱状晶体在非等温条件下受straining流作用的生长问题, 给出了柱状晶体生长形态的近似解析表达式. 发现流入的straining流加快了界面的生长速度, 而流出的straining流减缓了界面的生长速度, 即straining流使得柱状晶体的界面发生变形. 同时发现, 随着流动速度的增大, 界面变形也更为显著. 通过比较straining流对纯熔体、二元熔体、三元熔体中柱状晶体界面的影响, 发现相比于纯熔体, 柱状晶体在稀合金熔体中的界面形态受straining流的影响更大.
    As an important microstructure, columnar crystal growth technology, especially the growth technology of single columnar crystal plays an important role in improving the performances of semiconductor, optical devices and other related products. In many practical applications, because the alloy is composed of multi-component and there is inevitably flow in the melt, it is necessary to study the growth of columnar crystals in multi-component melt with flow separately. The growth of columnar crystal in a ternary undercooled melt subjected to straining flow under non-isothermal conditions is studied, and the approximate analytical expression for growth morphology of columnar crystal is given by using asymptotic method. It can be seen from the expression that straining flow is an important reason for irregular columnar crystal. When analyzing the effect of straining flow on the growth of columnar crystal in ternary melt, it is found that the incoming flow accelerates the growth velocity of the interface, while the outgoing straining flow reduces the growth velocity of the interface, namely, the straining flow makes the interface of columnar crystal deformed. At the same time, it is found that the interface deformation becomes more intense with the increase of flow velocity. The above conclusion can also be applied to the effect of straining flow on the interface morphology of columnar crystal in pure melt and binary melt. The comparison of the effects of straining flow on the interface of columnar crystal among pure melt, binary melt and ternary melt, shows that the interface morphology of columnar crystal in dilute alloy melt is more affected by straining flow than in the pure melt, but the more components are more easily affected by flow. However, the number of components in melt is not a decisive factor for the change of interface morphology of the columnar crystal, but the constitutional undercooling is an important factor for determining the interface morphology of multicomponent alloy. According to the conclusion of this paper, the influence of straining flow on the interface morphology of columnar crystal growth can be quantitatively predicted, which provides the necessary theoretical guidance in accurately controlling the interface morphology in the future.
      通信作者: 陈明文, chenmw@ustb.edu.cn
    • 基金项目: 国家级-国家自然科学基金(11401021)
      Corresponding author: Chen Ming-Wen, chenmw@ustb.edu.cn
    [1]

    Mullins W W, Sekerka R F 1963 J. Appl. Phys. 34 323Google Scholar

    [2]

    Flood S C, Hunt J D 1987 J. Cryst. Growth 82 543Google Scholar

    [3]

    Libbrecht K G, Yu H 2001 J. Cryst. Growth 222 822Google Scholar

    [4]

    Ares A E, Gueijman S F, Schvezov C E 2002 J. Cryst. Growth 241 235Google Scholar

    [5]

    Viardin A, Založnik M, Souhar Y, Apel M, Combeau H 2017 Acta Mater. 122 386Google Scholar

    [6]

    Wang L, Wang N, Provatas N 2017 Acta Mater. 126 302Google Scholar

    [7]

    Debroy P P, Sekerka R F 1996 Phys. Rev. E 53 6244Google Scholar

    [8]

    Ren S, Li P, Jiang D, Tan Y, Li J, Zhang L 2016 Appl. Therm. Eng. 106 875Google Scholar

    [9]

    Lü C, Ai Y, Yu Q, Chen W, He W, Zhang J, Min X 2019 J. Cryst. Growth 507 395Google Scholar

    [10]

    Battaglioli S, Robinson A J, McFadden S 2018 Int. J. Heat Mass Tran. 126 66Google Scholar

    [11]

    Buchholz A, Engler S 1996 Comput. Mater. Sci. 7 221Google Scholar

    [12]

    Lee S Y, Lee S M, Hong C P 2000 ISIJ Int. 40 48Google Scholar

    [13]

    Coriell S R, Parker R L 1965 J. Appl. Phys. 36 632Google Scholar

    [14]

    陈亚军, 陈琦, 王自东, 胡汉起, 刘玉敏, 连玉栋 2004 清华大学学报(自然科学版) 44 1464Google Scholar

    Chen Y J, Chen Q, Wang Z D, Hu H Q, Liu Y M, Lian Y D 2004 Tsinghua Sci. Technol. 44 1464Google Scholar

    [15]

    Du L, Zhang P, Yang S, Chen J, Du H 2018 Mod. Phys. Lett. B 32 1850078

    [16]

    Murakami K, Aihara H, Okamoto T 1984 Acta Metall. 32 933Google Scholar

    [17]

    Szajnar J 2004 J. Mater. Process. Technol. 157 761

    [18]

    Altieri A L, Davis S H 2017 J. Cryst. Growth 467 162Google Scholar

    [19]

    Colin J 2018 J. Cryst. Growth 493 76Google Scholar

    [20]

    Vogel A, Cantor B 1977 J. Cryst. Growth 37 309Google Scholar

    [21]

    Fan H L, Chen M W, Shan Y Y 2019 Surf. Rev. Lett. 11 1950170

  • 图 1  $Oxy$平面上应变流对柱状晶体形态演化的影响, 其中$t = 396, $ $\varGamma = 0.25, $ $M_{\rm{C}}^1=0.01, $ $M_{\rm{C}}^2=0.02, $ $C_{{\rm{L}}, \infty }^1 = $1.0, $C_{{\rm{L}}, \infty }^2 = 3.0, $ ${A_\lambda } = 3.3, $ ${m_1} = - 1.6, $ ${m_2} = $ –2.33, $E = 0.3, $ ${M_{\rm{k}}} = 0.01, $ ${k_{\rm{T}}} = 1.23, $ ${\lambda _{\rm{S}}} = 0.01, $ $\lambda _{\rm{D}}^1 = $ 0.01, $\lambda _{\rm{D}}^2 = 0.02, $ $\varepsilon = 0.05$

    Fig. 1.  The morphology evolution of columnar crystal in a straining flow on the cross-section of $Oxy$plane at $t = 396, $ where $\varGamma = 0.25, $ $M_{\rm{C}}^1=0.01, $ $M_{\rm{C}}^2=0.02, $ $C_{{\rm{L}}, \infty }^1 = 1.0, $ $C_{{\rm{L}}, \infty }^2 = 3.0, $ ${A_\lambda } = 3.3, $ ${m_1} = - 1.6, $ ${m_2} = - 2.33, $ E = 0.3, ${M_{\rm{k}}} = 0.01, $ ${k_{\rm{T}}} = 1.23, $ ${\lambda _{\rm{S}}} = 0.01, $ $\lambda _{\rm{D}}^1 = 0.01, $ $\lambda _{\rm{D}}^2 = $ 0.02, $ \varepsilon = 0.05$

    图 2  $t = 396$时, 柱状晶体的界面形态. 其中$\varGamma = 0.25, $ $M_{\rm{C}}^{\rm{1}}=0.01, $ $M_{\rm{C}}^{\rm{2}}=0.02, $ $C_{{\rm{L}}, \infty }^1 = 1.0, $ $C_{{\rm{L}}, \infty }^2 = 3.0, $ ${A_\lambda } = 3.3, $ ${m_1} = - 1.6, $ ${m_2} = - 2.33, $ $E = 0.3, $ ${M_{\rm{k}}} = 0.01, $ ${k_{\rm{T}}} = 1.23, $ ${\lambda _{\rm{S}}} = 0.01, $ $\lambda _{\rm{D}}^1 = 0.01, $ $\lambda _{\rm{D}}^{\rm{2}} = 0.02, $ $\varepsilon = 0.05, $ $A = 0.9$

    Fig. 2.  The morphology evolution of columnar crystal in a straining flow at $t = 396, $ where $\varGamma = 0.25, $ $M_{\rm{C}}^{\rm{1}}=0.01, $ $M_{\rm{C}}^{\rm{2}}=0.02, $ $C_{{\rm{L}}, \infty }^1 = 1.0, $ $C_{{\rm{L}}, \infty }^2 = 3.0, $ ${A_\lambda } = 3.3, $ ${m_1} = - 1.6, $ ${m_2} = - 2.33, $ $E = 0.3, $ ${M_{\rm{k}}} = 0.01, $ ${k_{\rm{T}}} = 1.23, $ ${\lambda _{\rm{S}}} = 0.01, $ $\lambda _{\rm{D}}^1 = 0.01, $ $\lambda _{\rm{D}}^{\rm{2}} = 0.02, $ $\varepsilon = 0.05, $ $A = 0.9$

    图 3  不同强度的应变流对柱状晶体界面形态的影响, 其中$t \!=\! 256, $ $\varGamma \!=\! 0.25, $ $M_{\rm{C}}^1 \!=\! 0.01, $ $M_{\rm{C}}^2\! =\! 0.02, $ $C_{{\rm{L}}, \infty }^1 = 1.0, $ $C_{{\rm{L}}, \infty }^2 = 3.0, $ ${A_\lambda } = 3.3, $ ${m_1} = - 1.6, $ ${m_2} = - 2.33, $ $E = 0.3, $ ${M_{\rm{k}}} = 0.01, $ ${k_{\rm{T}}} = 1.23, $ ${\lambda _{\rm{S}}} = 0.01, $ $\lambda _{\rm{D}}^1 = 0.01, $ $\lambda _{\rm{D}}^{\rm{2}} = 0.02, $ $\varepsilon = 0.05.$ A由左向右分别为0.9, 0.6, 0.3, 0

    Fig. 3.  Interface morphology of columnar crystals affected by different sizes of straining flow, where $t = 256, $ $\varGamma = 0.25, $ $M_{\rm{C}}^1=0.01, $ $M_{\rm{C}}^2=0.02, $ $C_{{\rm{L}}, \infty }^1 = 1.0, $ $C_{{\rm{L}}, \infty }^2 = 3.0, $ ${A_\lambda } = 3.3, $ ${m_1} = - 1.6, $ ${m_2} = - 2.33, $ $E = 0.3, $ ${M_{\rm{k}}} = 0.01, $ ${k_{\rm{T}}} = 1.23, $ ${\lambda _{\rm{S}}} = 0.01, $ $\lambda _{\rm{D}}^1 = 0.01, $ $\lambda _{\rm{D}}^{\rm{2}} = 0.02, $ $\varepsilon = 0.05.$ A is 0.9, 0.6, 0.3, 0 from left to right, respectively.

    图 4  $Oxy$平面上柱状晶体界面随时间的演化, 其中$\varGamma \!=\! 0.25, $ $M_{\rm{C}}^1 \!=\! 0.01, $ $M_{\rm{C}}^{\rm{2}} \!=\! 0.02, $ $C_{{\rm{L}}, \infty }^1 \!=\! 1.0, $ $C_{{\rm{L}}, \infty }^2 \!=\! 3.0, $ ${A_\lambda } = 3.3, $ ${m_1} = - 1.6, $ ${m_2} = - 2.33, $ E = 0.3, Mk = 0.01, kT = 1.23, ${\lambda _{\rm{S}}} = 0.01, $ $\lambda _{\rm{D}}^{\rm{1}} = 0.01, $ $\lambda _{\rm{D}}^{\rm{2}} = 0.02, $ $\varepsilon = 0.05, $ $A = 0.9$

    Fig. 4.  Evolution of columnar crystal interface with time in the $Oxy$ plane, where $\varGamma = 0.25, $ $M_{\rm{C}}^1=0.01, $ $M_{\rm{C}}^{\rm{2}}=0.02, $ $C_{{\rm{L}}, \infty }^1 = 1.0, $ $C_{{\rm{L}}, \infty }^2 = 3.0, $ ${A_\lambda } = 3.3, $ ${m_1} = - 1.6, $ m2 = –2.33, E = 0.3, Mk = 0.01, kT = 1.23, ${\lambda _{\rm{S}}} = 0.01, $ $\lambda _{\rm{D}}^{\rm{1}} = 0.01, $ $\lambda _{\rm{D}}^{\rm{2}} = 0.02, $ $\varepsilon = 0.05, $ $A = 0.9$

    图 5  应变流对不同杂质含量柱状晶体界面形态的影响, 其中$t = 256, $ $\varGamma = 0.25, $ $C_{{\rm{L}}, \infty }^1 = 1.0, $ $C_{{\rm{L}}, \infty }^2 = 3.0, $ ${A_\lambda } = 3.3, $ ${m_1} = - 1.6, $ ${m_2} = - 2.33, $ $E = 0.3, $ ${M_{\rm{k}}} = 0.01, $ ${k_{\rm{T}}} = 1.23, $ ${\lambda _{\rm{S}}} = 0.01, $ $\lambda _{\rm{D}}^{\rm{1}} = 0.01, $ $\lambda _{\rm{D}}^{\rm{2}} = 0.02, $ $\varepsilon = 0.05$

    Fig. 5.  Effect of straining flow on the interface morphology of columnar crystals in different impurity content, where $t = 256, $ $\varGamma = 0.25, $ $C_{{\rm{L}}, \infty }^1 = 1.0, $ $C_{{\rm{L}}, \infty }^2 = 3.0, $ ${A_\lambda } = 3.3, $ ${m_1} = - 1.6, $ ${m_2} = - 2.33, $ $E = 0.3, $ ${M_{\rm{k}}} = 0.01, $ ${k_{\rm{T}}} = 1.23, $ ${\lambda _{\rm{S}}} = 0.01, $ $\lambda _{\rm{D}}^{\rm{1}} = 0.01, $ $\lambda _{\rm{D}}^{\rm{2}} = 0.02, $ $\varepsilon = 0.05$

    图 6  应变流对不同杂质含量柱状晶体界面形态的影响, 其中$t = 256, $ $\varGamma = 0.25, $ $C_{{\rm{L}}, \infty }^1 = 1.0, $ $C_{{\rm{L}}, \infty }^2 = 3.0, $ ${A_\lambda } = 3.3, $ ${m_1} = - 1.6, $ ${m_2} = - 2.33, $ $E = 0.3, $ ${M_{\rm{k}}} = 0.01, $ ${k_{\rm{T}}} = 1.23, $ ${\lambda _{\rm{S}}} = 0.01, $ $\lambda _{\rm{D}}^{\rm{1}} = 0.01, $ $\lambda _{\rm{D}}^{\rm{2}} = 0.02, $ $\varepsilon = 0.05$

    Fig. 6.  Effect of straining flow on the interface morphology of columnar crystals in different impurity content, where $t = 256, $ $\varGamma = 0.25, $ $C_{{\rm{L}}, \infty }^1 = 1.0, $ $C_{{\rm{L}}, \infty }^2 = 3.0, $ ${A_\lambda } = 3.3, $ ${m_1} = - 1.6, $ ${m_2} = - 2.33, $ $E = 0.3, $ ${M_{\rm{k}}} = 0.01, $ ${k_{\rm{T}}} = 1.23, $ ${\lambda _{\rm{S}}} = 0.01, $ $\lambda _{\rm{D}}^{\rm{1}} = 0.01, $ $\lambda _{\rm{D}}^{\rm{2}} = 0.02, $ $\varepsilon = 0.05$

    图 7  $R, \theta $平面上, 柱状晶体界面杂质浓度$C_{\rm{L}}^1$$\theta $的变化情况, 其中$t = 256, $ $\varGamma = 0.25, $ $M_{\rm{C}}^{\rm{1}}=0.01, $ $M_{\rm{C}}^{\rm{2}}=0.02, $ $C_{{\rm{L}}, \infty }^1 = 1.0, $ $C_{{\rm{L}}, \infty }^2 = 3.0, $ ${A_\lambda } = 3.3, $ ${m_1} = - 1.6, $ ${m_2} = - 2.33, $ $E = 0.3, $ ${M_{\rm{k}}} = 0.01, $ ${k_{\rm{T}}} = 1.23, $ ${\lambda _{\rm{S}}} = 0.01, $ $\lambda _{\rm{D}}^{\rm{1}} = 0.01, $ $\lambda _{\rm{D}}^{\rm{2}}=0.02, $ $\varepsilon = 0.05, $ $A = 0.9$

    Fig. 7.  The change of impurity concentration at the interface of columnar crystal in the $R, \theta $ plane, where $t = 256, $ $\varGamma = 0.25, $ $M_{\rm{C}}^{\rm{1}}=0.01, $ $M_{\rm{C}}^{\rm{2}}=0.02, $ $C_{{\rm{L}}, \infty }^2 = 3.0, $ ${A_\lambda } = 3.3, $ ${m_1} = - 1.6, $ ${m_2} = $ –2.33 $E = 0.3, $ ${M_{\rm{k}}} = 0.01, $ ${k_{\rm{T}}} = 1.23, $ ${\lambda _{\rm{S}}} = 0.01, $ $\lambda _{\rm{D}}^{\rm{1}} = 0.01, $ $\lambda _{\rm{D}}^{\rm{2}}=0.02, $ $\varepsilon = 0.05, $ $A = 0.9$

  • [1]

    Mullins W W, Sekerka R F 1963 J. Appl. Phys. 34 323Google Scholar

    [2]

    Flood S C, Hunt J D 1987 J. Cryst. Growth 82 543Google Scholar

    [3]

    Libbrecht K G, Yu H 2001 J. Cryst. Growth 222 822Google Scholar

    [4]

    Ares A E, Gueijman S F, Schvezov C E 2002 J. Cryst. Growth 241 235Google Scholar

    [5]

    Viardin A, Založnik M, Souhar Y, Apel M, Combeau H 2017 Acta Mater. 122 386Google Scholar

    [6]

    Wang L, Wang N, Provatas N 2017 Acta Mater. 126 302Google Scholar

    [7]

    Debroy P P, Sekerka R F 1996 Phys. Rev. E 53 6244Google Scholar

    [8]

    Ren S, Li P, Jiang D, Tan Y, Li J, Zhang L 2016 Appl. Therm. Eng. 106 875Google Scholar

    [9]

    Lü C, Ai Y, Yu Q, Chen W, He W, Zhang J, Min X 2019 J. Cryst. Growth 507 395Google Scholar

    [10]

    Battaglioli S, Robinson A J, McFadden S 2018 Int. J. Heat Mass Tran. 126 66Google Scholar

    [11]

    Buchholz A, Engler S 1996 Comput. Mater. Sci. 7 221Google Scholar

    [12]

    Lee S Y, Lee S M, Hong C P 2000 ISIJ Int. 40 48Google Scholar

    [13]

    Coriell S R, Parker R L 1965 J. Appl. Phys. 36 632Google Scholar

    [14]

    陈亚军, 陈琦, 王自东, 胡汉起, 刘玉敏, 连玉栋 2004 清华大学学报(自然科学版) 44 1464Google Scholar

    Chen Y J, Chen Q, Wang Z D, Hu H Q, Liu Y M, Lian Y D 2004 Tsinghua Sci. Technol. 44 1464Google Scholar

    [15]

    Du L, Zhang P, Yang S, Chen J, Du H 2018 Mod. Phys. Lett. B 32 1850078

    [16]

    Murakami K, Aihara H, Okamoto T 1984 Acta Metall. 32 933Google Scholar

    [17]

    Szajnar J 2004 J. Mater. Process. Technol. 157 761

    [18]

    Altieri A L, Davis S H 2017 J. Cryst. Growth 467 162Google Scholar

    [19]

    Colin J 2018 J. Cryst. Growth 493 76Google Scholar

    [20]

    Vogel A, Cantor B 1977 J. Cryst. Growth 37 309Google Scholar

    [21]

    Fan H L, Chen M W, Shan Y Y 2019 Surf. Rev. Lett. 11 1950170

  • [1] 蒋子寒, 柯硕, 祝影, 朱一新, 朱力, 万昌锦, 万青. 柔性神经形态晶体管及其仿生感知应用. 物理学报, 2022, 71(14): 147301. doi: 10.7498/aps.71.20220308
    [2] 王兰, 程思远, 曾航航, 谢聪伟, 龚元昊, 郑植, 范晓丽. CuBiI三元化合物晶体结构预测及光电性能第一性原理研究. 物理学报, 2021, 70(20): 207305. doi: 10.7498/aps.70.20210145
    [3] 王伟豪, 崔志文. 柱状双层声电效应测井界面电磁波. 物理学报, 2019, 68(20): 204301. doi: 10.7498/aps.68.20190891
    [4] 包锦, 闫翠玲, 闫祖威. 三元混晶四层系统的表面和界面声子极化激元. 物理学报, 2014, 63(10): 107105. doi: 10.7498/aps.63.107105
    [5] 张忠宇, 姚熊亮, 张阿漫. 小攻角下三维细长体定常空化形态研究. 物理学报, 2013, 62(20): 204701. doi: 10.7498/aps.62.204701
    [6] 张云鹏, 林鑫, 魏雷, 王猛, 彭东剑, 黄卫东. 用CA方法模拟界面能各向异性对胞晶生长形态的影响. 物理学报, 2012, 61(22): 228106. doi: 10.7498/aps.61.228106
    [7] 陈成, 陈铮, 张静, 杨涛. 晶体相场法模拟异质外延过程中界面形态演化与晶向倾侧. 物理学报, 2012, 61(10): 108103. doi: 10.7498/aps.61.108103
    [8] 陈明文, 倪锋, 王艳林, 王自东, 谢建新. 界面动力学对过冷熔体中球晶生长界面形态的影响. 物理学报, 2011, 60(6): 068103. doi: 10.7498/aps.60.068103
    [9] 庞 晶, 陈小刚, 宋金宝. 有流存在时三层流体界面波的二阶Stokes波解. 物理学报, 2007, 56(8): 4733-4741. doi: 10.7498/aps.56.4733
    [10] 王狂飞, 李邦盛, 任明星, 米国发, 郭景杰, 傅恒志. Ti-44at%Al合金小尺寸铸件柱状晶/等轴晶演化过程模拟. 物理学报, 2007, 56(6): 3337-3343. doi: 10.7498/aps.56.3337
    [11] 王新军, 王玲玲, 黄维清, 唐黎明, 邹炳锁, 陈克求. 三元合金缺陷层对有限超晶格中局域界面光学声子模的影响. 物理学报, 2007, 56(1): 429-436. doi: 10.7498/aps.56.429
    [12] 陈明文, 王自东, 孙仁济. 远场来流对过冷熔体中球状晶体生长的影响. 物理学报, 2007, 56(3): 1819-1824. doi: 10.7498/aps.56.1819
    [13] 张学华, 罗豪甦, 仲维卓. KABO晶体生长形态演化机理的分析. 物理学报, 2006, 55(10): 5413-5417. doi: 10.7498/aps.55.5413
    [14] 陆鹏, 王耀俊. 考虑界面状况时柱状弹性固体的声波散射. 物理学报, 2001, 50(4): 697-703. doi: 10.7498/aps.50.697
    [15] 黄卫东, 商宝禄, 周尧和. 凝固界面形态演化的实验研究. 物理学报, 1991, 40(2): 323-328. doi: 10.7498/aps.40.323
    [16] 邢峰, 何文望. Nd-Fe-C(或BC)三元化合物的晶体结构与磁性. 物理学报, 1990, 39(6): 169-174. doi: 10.7498/aps.39.169-2
    [17] 闵乃本, 周方桥. LiNbO3晶体-熔体界面的失稳及向胞状界面演化的实验研究. 物理学报, 1986, 35(12): 1603-1608. doi: 10.7498/aps.35.1603
    [18] 陆学善, 李方华. Al-Ni-Co三元系中(Ni,Co)3Al4的晶体结构——一种由空位控制的新合金相. 物理学报, 1980, 29(2): 182-198. doi: 10.7498/aps.29.182
    [19] 章元龙. 关于人工水晶生长形态与界面分子组波度之间的联系. 物理学报, 1979, 28(1): 40-53. doi: 10.7498/aps.28.40
    [20] 陆学善, 章综. 铝、铜、镍三元合金系中τ相的晶体结构变迁. 物理学报, 1957, 13(2): 150-176. doi: 10.7498/aps.13.150
计量
  • 文章访问数:  5513
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-18
  • 修回日期:  2020-04-02
  • 刊出日期:  2020-06-05

/

返回文章
返回