搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有强安全性的指定验证者量子签名方案

荣民希 辛向军 李发根

引用本文:
Citation:

具有强安全性的指定验证者量子签名方案

荣民希, 辛向军, 李发根

Quantum signature for designated verifier with strong security

Rong Min-Xi, Xin Xiang-Jun, Li Fa-Gen
PDF
HTML
导出引用
  • 多数传统的指定验证者签名方案无法抵抗量子计算机的攻击. 本文给出一种具有强安全性的指定验证者量子签名方案. 在方案中, 参与方利用量子密钥分配协议和量子直接通信协议共享密钥. 密钥生成中心制备Bell态序列并将其分配给签名者和指定验证者. 签名者利用其密钥和受控量子态对消息进行签名. 同时, 指定的验证者可以利用对称的签名步骤对量子签名进行仿真. 而验证者仿真的量子签名与签名者产生的量子签名完全一样. 这使得量子签名具有不可传递的属性. 本文所给出的签名方案可以抵抗伪造攻击, 截获重放攻击和木马攻击. 并且, 其理论上的信息安全属性可以得到证明. 同时, 密钥生成中心无需完全可信. 方案无需使用量子单向函数. 当产生量子签名时, 签名者无需制备纠缠态序列. 当验证签名时, 验证者无需执行量子态比较算法. 方案的量子比特效率达到100%. 因此, 与类似方案相比, 本文所给的方案具有较好的安全性和效率.
    Most of the classical designated verifier signature schemes are insecure against quantum adversary. In this paper, a quantum signature scheme for the designated verifier is proposed. In our scheme, during the initialization phase, the partners share secret keys by performing the quantum key distribution protocol. On the other hand, by performing the quantum direct communication protocol, the key generator center shares secret keys with the signer and the designated verifier, respectively. The key generator center generates a particle sequence of Bell state and distributes the particles between the signer and the designated verifier. During the signature generation phase, the signer encrypts the particle sequence by the secret keys and Hardmard operators. After that, the signer performs the controlled unitary operations on the encrypted particle sequence so as to generate the quantum signature. The designated verifier can simulate the quantum signature by performing the same symmetric signing steps as that performed by the original signer. Hence, the quantum signature signed by the true signer is the same as the one simulated by the receiver, which makes our scheme possess the designated properties. During the signature verification phase, the designated verifier performs the controlled unitary operations on the quantum signature and obtains the quantum ciphertexts. After that, the designated verifier decrypts the quantum ciphertexts by the symmetric secret keys and Hardmard operators so that the quantum signature can be verified. Our signature is secure against forgery attack, inter-resending attacks and Trojan horse attack. Because the trace distance between the density operators of different quantum signatures is zero, the information-theoretical security of our quantum signature scheme can be proved. The unconditionally secure quantum key distribution protocol and the one-time pad encryption algorithm can guarantee the security of the secret keys shared by the partners. What is more, the security assumption about the key generation center is weak. That is, it is not necessary to assume that the key generation center should be fully trusted. On the other hand, in our scheme, the quantum one-way function is not used. To generate a quantum signature, the signer need not prepare for entangled particle sequence. To verify a quantum signature, the verifier need not apply any state comparison to the received particles. The qubit efficiency is 100%. Therefore, our scheme has the advantages in the security and efficiency over the other quantum signature schemes for the designated verifier.
      通信作者: 辛向军, xin_xiang_jun@126.com
      Corresponding author: Xin Xiang-Jun, xin_xiang_jun@126.com
    [1]

    Diffie W, Hellmann M 1976 IEEE IT 22 644Google Scholar

    [2]

    Saeednia S, Kremer S, Markowitch O 2003 Information Security and Cryptology-ICISC Seoul, Korea, November 27–28, 2003 p40

    [3]

    Ray I, Narasimhamurthi N 2001 Proceedings of the 3rd international workshop on advanced issues of E-commerce and web-based information systems San Juan, CA, USA, June 21–22, 2001 p188

    [4]

    Schoenmakers B 1999 Advances in CRYPTO’99 Santa Barbara, California, USA, August 15–19, 1999 p148

    [5]

    Huang X, Mu Y, Susilo W, Wu W 2007 Proceedings of 1st International Conference on Pairing-Based Cryptography, Pairing 2007 Tokyo, Japan, July 2–4, 2007 p367

    [6]

    Wang B, Song Z 2009 Inf. Sci. 179 858Google Scholar

    [7]

    Jakobsson M, Sako K, Impagliazzo R 1996 Advances in Cryptology-Eurocrypt 1996 Santa Barbara, California, USA, August 18–22, 1996 p142

    [8]

    Kang B, Boyd C, Dawson E 2009 J. Syst. Software 82 270Google Scholar

    [9]

    Lee J, Chang J, Lee D 2010 Comput. Electr. Eng. 36 948Google Scholar

    [10]

    Hafizul I S, Biswas G P 2015 Arab. J. Sci. Eng. 40 1069Google Scholar

    [11]

    Rastegari P, Susilo W, Dakhilalian M 2019 Int. J. Theor. Phys. 18 619Google Scholar

    [12]

    Shor P W 1997 SIAM J. Comput. 26 1484Google Scholar

    [13]

    Gottesman D, Chuang I 2001 arxiv: quant-ph/0105032 v2

    [14]

    Zeng G H, Keitel C H 2002 Phys. Rev. A. 65 042312Google Scholar

    [15]

    Yang Y G, Lei H, Liu Z C, Zhou Y H, Shi W M 2016 Quantum Inf. Process. 15 2487Google Scholar

    [16]

    Yang Y G, Zhou Z, Teng Y W, Wen Q Y 2010 Eur. Phys. J. D 61 773Google Scholar

    [17]

    Xin X, He Q, Wang Z, Yang Q, Li F 2019 Optik 189 23Google Scholar

    [18]

    Wang M Q, Wang X, Zhan T 2018 Quantum Inf. Process. 17 275Google Scholar

    [19]

    Xin X, Wang Z, Yang Q 2019 Appl. Opt. 58 7346Google Scholar

    [20]

    Jiang D H, Xu Y L, Xu G B 2019 Int. J. Theor. Phys. 58 1036Google Scholar

    [21]

    Ma H, Li F, Mao N, Guo Y 2017 Int. J. Theor. Phys. 56 2551Google Scholar

    [22]

    Zhang J L, Zhang J Z, Xie S C 2018 Int. J. Theor. Phys. 57 1612Google Scholar

    [23]

    Zeng G, Lee M, Guo Y, He G 2007 Int. J. Quantum Inf. 5 553Google Scholar

    [24]

    Guo Y, Feng Y 2016 Int. J. Quantum Inf. 55 2290

    [25]

    Shi W M, Zhou Y H, Yang Y G 2015 Int. J. Theor. Phys. 54 3115Google Scholar

    [26]

    Shi W M, Wang Y M, Zhou Y H, Yang Y G, Zhang J B 2018 Optik 164 753Google Scholar

    [27]

    Menezes A J, Oorschot P V, Vanstone S A 1996 Handbook of Applied Cryptography (Boca Raton: CRC Press) p41

    [28]

    Yang L, Yang B, Pan J 2012 SPIE Photonics Europe Belgium, April 16–19, 2012 p8440E1

    [29]

    Yang L, Xiang C, Li B 2013 Chin. Commun. 10 19Google Scholar

    [30]

    Xin X, Wang Z, Yang Q, Li F 2020 Int. J. Theor. Phys. 59 918Google Scholar

    [31]

    Shannon C E 1949 Bell Syst. Tech. J. 28 656Google Scholar

    [32]

    Bennett C H, Brassard G 2014 Theor. Comput. Sci. 560 7Google Scholar

    [33]

    Long G L, Liu X S 2002 Phys. Rev. A 65 2302Google Scholar

    [34]

    Hu Y G 2018 Int. J. Theor. Phys. 57 2831Google Scholar

    [35]

    Yan L, Sun Y, Chang Y, Zhang S, Wan G, Sheng Z 2018 Quantum Inf. Process. 17 315Google Scholar

    [36]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317Google Scholar

    [37]

    Gottesman D, Lo H K, Lütkenhaus N, Preskill J 2004 Quantum Inf. Comput. 4 325Google Scholar

    [38]

    Hwang W Y 2003 Phys. Rev. Lett. 91 057901Google Scholar

    [39]

    Lo H K, Ma X, Chen K 2005 Phys. Rev. Lett. 94 230504Google Scholar

    [40]

    Wang X B 2005 Phys. Rev. Lett. 94 230503Google Scholar

    [41]

    Lu H, Fung C H F, Ma X, Cai Q 2011 Phys. Rev. A 84 042344Google Scholar

    [42]

    Fung C H F, Ma X, Chau H F, Cai Q 2012 Phys. Rev. A 85 032308Google Scholar

    [43]

    Beaudry N J, Lucamarini M, Mancini S, Renner R 2013 Phys. Rev. A 88 062302Google Scholar

    [44]

    Hwang T, Lee K C 2007 IET Inf. Secur. 1 43Google Scholar

    [45]

    Shi W M, Zhou Y H, Yang U G 2015 International Journal of Theoretical Physics volume 54 3115

    [46]

    宋云 2019 电子学报 47 1443Google Scholar

    Song Y 2019 Acta Electr. Sin. 47 1443Google Scholar

  • 图 1  初始化和QSDV的生成过程

    Fig. 1.  Initialization and QSDV generation.

    表 1  安全与效率比较

    Table 1.  Comparisons of security and efficiency.

    方案量子签名密文理论上的信息安全属性TC是否可信量子态比较纠缠态量子比特效率ηq
     [25] 可信50.0%
     [26] 可信33.3%
     [30] 可信33.3%
    新方案半可信100%
    下载: 导出CSV
  • [1]

    Diffie W, Hellmann M 1976 IEEE IT 22 644Google Scholar

    [2]

    Saeednia S, Kremer S, Markowitch O 2003 Information Security and Cryptology-ICISC Seoul, Korea, November 27–28, 2003 p40

    [3]

    Ray I, Narasimhamurthi N 2001 Proceedings of the 3rd international workshop on advanced issues of E-commerce and web-based information systems San Juan, CA, USA, June 21–22, 2001 p188

    [4]

    Schoenmakers B 1999 Advances in CRYPTO’99 Santa Barbara, California, USA, August 15–19, 1999 p148

    [5]

    Huang X, Mu Y, Susilo W, Wu W 2007 Proceedings of 1st International Conference on Pairing-Based Cryptography, Pairing 2007 Tokyo, Japan, July 2–4, 2007 p367

    [6]

    Wang B, Song Z 2009 Inf. Sci. 179 858Google Scholar

    [7]

    Jakobsson M, Sako K, Impagliazzo R 1996 Advances in Cryptology-Eurocrypt 1996 Santa Barbara, California, USA, August 18–22, 1996 p142

    [8]

    Kang B, Boyd C, Dawson E 2009 J. Syst. Software 82 270Google Scholar

    [9]

    Lee J, Chang J, Lee D 2010 Comput. Electr. Eng. 36 948Google Scholar

    [10]

    Hafizul I S, Biswas G P 2015 Arab. J. Sci. Eng. 40 1069Google Scholar

    [11]

    Rastegari P, Susilo W, Dakhilalian M 2019 Int. J. Theor. Phys. 18 619Google Scholar

    [12]

    Shor P W 1997 SIAM J. Comput. 26 1484Google Scholar

    [13]

    Gottesman D, Chuang I 2001 arxiv: quant-ph/0105032 v2

    [14]

    Zeng G H, Keitel C H 2002 Phys. Rev. A. 65 042312Google Scholar

    [15]

    Yang Y G, Lei H, Liu Z C, Zhou Y H, Shi W M 2016 Quantum Inf. Process. 15 2487Google Scholar

    [16]

    Yang Y G, Zhou Z, Teng Y W, Wen Q Y 2010 Eur. Phys. J. D 61 773Google Scholar

    [17]

    Xin X, He Q, Wang Z, Yang Q, Li F 2019 Optik 189 23Google Scholar

    [18]

    Wang M Q, Wang X, Zhan T 2018 Quantum Inf. Process. 17 275Google Scholar

    [19]

    Xin X, Wang Z, Yang Q 2019 Appl. Opt. 58 7346Google Scholar

    [20]

    Jiang D H, Xu Y L, Xu G B 2019 Int. J. Theor. Phys. 58 1036Google Scholar

    [21]

    Ma H, Li F, Mao N, Guo Y 2017 Int. J. Theor. Phys. 56 2551Google Scholar

    [22]

    Zhang J L, Zhang J Z, Xie S C 2018 Int. J. Theor. Phys. 57 1612Google Scholar

    [23]

    Zeng G, Lee M, Guo Y, He G 2007 Int. J. Quantum Inf. 5 553Google Scholar

    [24]

    Guo Y, Feng Y 2016 Int. J. Quantum Inf. 55 2290

    [25]

    Shi W M, Zhou Y H, Yang Y G 2015 Int. J. Theor. Phys. 54 3115Google Scholar

    [26]

    Shi W M, Wang Y M, Zhou Y H, Yang Y G, Zhang J B 2018 Optik 164 753Google Scholar

    [27]

    Menezes A J, Oorschot P V, Vanstone S A 1996 Handbook of Applied Cryptography (Boca Raton: CRC Press) p41

    [28]

    Yang L, Yang B, Pan J 2012 SPIE Photonics Europe Belgium, April 16–19, 2012 p8440E1

    [29]

    Yang L, Xiang C, Li B 2013 Chin. Commun. 10 19Google Scholar

    [30]

    Xin X, Wang Z, Yang Q, Li F 2020 Int. J. Theor. Phys. 59 918Google Scholar

    [31]

    Shannon C E 1949 Bell Syst. Tech. J. 28 656Google Scholar

    [32]

    Bennett C H, Brassard G 2014 Theor. Comput. Sci. 560 7Google Scholar

    [33]

    Long G L, Liu X S 2002 Phys. Rev. A 65 2302Google Scholar

    [34]

    Hu Y G 2018 Int. J. Theor. Phys. 57 2831Google Scholar

    [35]

    Yan L, Sun Y, Chang Y, Zhang S, Wan G, Sheng Z 2018 Quantum Inf. Process. 17 315Google Scholar

    [36]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317Google Scholar

    [37]

    Gottesman D, Lo H K, Lütkenhaus N, Preskill J 2004 Quantum Inf. Comput. 4 325Google Scholar

    [38]

    Hwang W Y 2003 Phys. Rev. Lett. 91 057901Google Scholar

    [39]

    Lo H K, Ma X, Chen K 2005 Phys. Rev. Lett. 94 230504Google Scholar

    [40]

    Wang X B 2005 Phys. Rev. Lett. 94 230503Google Scholar

    [41]

    Lu H, Fung C H F, Ma X, Cai Q 2011 Phys. Rev. A 84 042344Google Scholar

    [42]

    Fung C H F, Ma X, Chau H F, Cai Q 2012 Phys. Rev. A 85 032308Google Scholar

    [43]

    Beaudry N J, Lucamarini M, Mancini S, Renner R 2013 Phys. Rev. A 88 062302Google Scholar

    [44]

    Hwang T, Lee K C 2007 IET Inf. Secur. 1 43Google Scholar

    [45]

    Shi W M, Zhou Y H, Yang U G 2015 International Journal of Theoretical Physics volume 54 3115

    [46]

    宋云 2019 电子学报 47 1443Google Scholar

    Song Y 2019 Acta Electr. Sin. 47 1443Google Scholar

  • [1] 马洛嘉, 丁华建, 陈子骐, 张春辉, 王琴. 一种态制备误差容忍的量子数字签名协议. 物理学报, 2024, 73(2): 020301. doi: 10.7498/aps.73.20231190
    [2] 周贤韬, 江英华. 带身份认证的量子安全直接通信方案. 物理学报, 2023, 72(2): 020302. doi: 10.7498/aps.72.20221684
    [3] 周贤韬, 江英华, 郭晓军, 彭展. 带双向身份认证的基于单光子和Bell态混合的量子安全直接通信方案. 物理学报, 2023, 72(13): 130302. doi: 10.7498/aps.72.20221972
    [4] 赵宁, 江英华, 周贤韬. 基于单光子的高效量子安全直接通信方案. 物理学报, 2022, 71(15): 150304. doi: 10.7498/aps.71.20220202
    [5] 龚黎华, 陈振泳, 徐良超, 周南润. 基于高维单粒子态的双向半量子安全直接通信协议. 物理学报, 2022, 71(13): 130304. doi: 10.7498/aps.71.20211702
    [6] 危语嫣, 高子凯, 王思颖, 朱雅静, 李涛. 基于单光子双量子态的确定性安全量子通信. 物理学报, 2022, 71(5): 050302. doi: 10.7498/aps.71.20210907
    [7] 危语嫣, 高子凯, 王思颖, 朱雅静, 李涛. 基于单光子双量子态的确定性的安全量子通讯. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210907
    [8] 张维, 韩正甫. 一个基于三粒子部分纠缠态的量子广播多重盲签名协议. 物理学报, 2019, 68(7): 070301. doi: 10.7498/aps.68.20182044
    [9] 郑晓毅, 龙银香. 基于cluster态的信道容量可控的可控量子安全直接通信方案. 物理学报, 2017, 66(18): 180303. doi: 10.7498/aps.66.180303
    [10] 刘志昊, 陈汉武. 基于Bell态粒子和单光子混合的量子安全直接通信方案的信息泄露问题. 物理学报, 2017, 66(13): 130304. doi: 10.7498/aps.66.130304
    [11] 李剑, 陈彦桦, 潘泽世, 孙风琪, 李娜, 黎雷蕾. 量子BB84协议在联合旋转噪音信道上的安全性分析. 物理学报, 2016, 65(3): 030302. doi: 10.7498/aps.65.030302
    [12] 曹正文, 赵光, 张爽浩, 冯晓毅, 彭进业. 基于Bell态粒子和单光子混合的量子安全直接通信方案. 物理学报, 2016, 65(23): 230301. doi: 10.7498/aps.65.230301
    [13] 赵加强, 曹连振, 逯怀新, 王晓芹. 三比特类GHZ态的Bell型不等式和非定域性. 物理学报, 2013, 62(12): 120301. doi: 10.7498/aps.62.120301
    [14] 尹逊汝, 马文平, 申冬苏, 王丽丽. 基于Bell态的三方量子密钥协商. 物理学报, 2013, 62(17): 170304. doi: 10.7498/aps.62.170304
    [15] 李伟, 范明钰, 王光卫. 基于纠缠交换的仲裁量子签名方案. 物理学报, 2011, 60(8): 080302. doi: 10.7498/aps.60.080302
    [16] 权东晓, 裴昌幸, 刘丹, 赵楠. 基于单光子的单向量子安全通信协议. 物理学报, 2010, 59(4): 2493-2497. doi: 10.7498/aps.59.2493
    [17] 王 剑, 陈皇卿, 张 权, 唐朝京. 多方控制的量子安全直接通信协议. 物理学报, 2007, 56(2): 673-677. doi: 10.7498/aps.56.673
    [18] 林继成, 郑小虎, 曹卓良. Kerr介质中双模纠缠相干光与Bell态原子相互作用系统的原子偶极压缩. 物理学报, 2007, 56(2): 837-844. doi: 10.7498/aps.56.837
    [19] 张权, 唐朝京, 张森强. B92量子密钥分配协议的变形及其无条件安全性证明. 物理学报, 2002, 51(7): 1439-1447. doi: 10.7498/aps.51.1439
    [20] 杨理, 吴令安, 刘颂豪. 复合量子密钥分发系统双速协议及其安全性分析. 物理学报, 2002, 51(11): 2446-2451. doi: 10.7498/aps.51.2446
计量
  • 文章访问数:  6761
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-19
  • 修回日期:  2020-05-19
  • 上网日期:  2020-06-15
  • 刊出日期:  2020-10-05

/

返回文章
返回