搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维纳米材料及其衍生物在激光防护领域中的应用

刘志伟 张斌 陈彧

引用本文:
Citation:

二维纳米材料及其衍生物在激光防护领域中的应用

刘志伟, 张斌, 陈彧

Two-dimensional nanomaterials and their derivatives for laser protection

Liu Zhi-Wei, Zhang Bin, Chen Yu
PDF
HTML
导出引用
  • 为了实现同步防护脉冲激光和连续波或准连续波激光的攻击, 人们在过去几十年间已经投入了大量的人力和物力来研发高性能光限幅材料. 石墨烯、过渡金属硫化物、黑磷等二维纳米材料拥有许多优异独特的性质, 激发了全世界的广泛研究兴趣. 本文简要回顾了基于石墨烯、黑磷、过渡金属硫化物和钙钛矿等最具代表性的二维材料及其有机/高分子衍生物在激光防护领域中的研究进展、存在的亟待解决的关键科学问题和未来的发展趋势. 为了充分利用这些二维纳米材料的优点, 人们可以使用功能小分子或聚合物与它们进行共混掺杂, 制备复杂的多相材料体系, 也可以将可溶性的有机/高分子共价功能化的二维纳米材料掺杂于高分子基质中形成主客体复合材料, 这些制备方法有助于促进或提高整个体系的光限幅能力. 总而言之, 一个优化的复杂的多组份纳米材料体系能极大地增强光限幅器件的性能和适应性. 此外, 开展二维纳米材料和它们的衍生物在不同固体基质中展现出来的光物理和光子性质研究, 将有助于在分子水平上实现对这些纳米材料的改性.
    To achieve simultaneous protection against both pulsed and continuous wave (CW) or quasi-CW lasers, significant research effort has been devoted to the state-of-the-art optical limiting (OL) materials and processes in an attempt to achieve some measures of protection against such laser beams in the past decades. Two-dimensional (2D) nanomaterials with a lot of unique properties, including graphene, transition metal dichalcogenides, black phosphorus and others, have aroused the extensive research interest of many researchers. In this review paper, we describe systematically the OL mechanisms and the recent achievements in the 2D nanomaterials and their organic/polymeric derivatives for laser protection. In an effort to sustain the advantage of 2D nanomaterials, one can not only introduce the functional molecules or polymers to blend with them to form a complex multi-phase material system, but also embed the soluble 2D nanosheets covalently functionalized with organic/polymeric materials in a polymer host to form host-guest composite materials that are expected to improve the OL performance of the whole system. All in all, an optimized complex multi-component nanomaterial system enormously enhances the performance and applicability of OL devices. In addition, the fundamental studies of the photophysical and photonic properties of 2D nanomaterials and their derivatives in various solid hosts are of significance for modifying the nanomaterials at a molecular level.
      通信作者: 陈彧, chentangyu@yahoo.com
    • 基金项目: 国家自然科学基金(批准号: 61378072)资助的课题
      Corresponding author: Chen Yu, chentangyu@yahoo.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61378072)
    [1]

    The Nobel Prize in Physics 2018. Nobel Media AB 2020. https://www.nobelprize.org/prizes/physics/2018/summary/ [2020-02-20]

    [2]

    Maiman T H 1960 Nature 187 493Google Scholar

    [3]

    Ashkin A 1970 Phys. Rev. Lett. 24 156Google Scholar

    [4]

    Ashkin A 1997 Proc. Natl. Acad. Sci. USA 94 4853Google Scholar

    [5]

    Ashkin A, Schütze K, Dziedzic J M, Euteneuer U, Schliwa M 1990 Nature 348 346Google Scholar

    [6]

    Block S M, Blair D F, Berg H C 1989 Nature 338 514Google Scholar

    [7]

    Abbondanzieri E A, Greenleaf W J, Shaevitz J W, Landick R, Block S M 2005 Nature 438 460Google Scholar

    [8]

    Perkins T T, Quake S R, Smith D E, Chu S 1994 Science 264 822Google Scholar

    [9]

    Smith S B, Cui Y, Bustamante C 1996 Science 271 795Google Scholar

    [10]

    Dini D, Calvete M J F, Hanack M 2016 Chem. Rev. 116 13043Google Scholar

    [11]

    Chen Y, Bai T, Dong N, Fan F, Zhang S, Zhuang X, Sun J, Zhang B, Zhang X, Wang J, Blau W J 2016 Prog. Mater. Sci. 84 118Google Scholar

    [12]

    Chen Y, Hanack M, Araki Y, Ito O 2005 Chem. Soc. Rev. 34 517Google Scholar

    [13]

    Chen Y, Wang J, He N, Blau W J, Feng M, Zhan H, Zhang B, Zhu J, Niu L, Li P 2011 Encyclopedia of Nanoscience and Nanotechnology (Vol. 18) (California: American Scientific Publishers) pp45–74

    [14]

    Wang J, Chen Y, Blau W J 2009 J. Mater. Chem. 19 7425Google Scholar

    [15]

    Chen Y, EI-Khouly M E, Doyle J J, Lin Y, Liu Y, Notaras E, Blau W J, O’Flaherty S M 2008 Handbook of Organic Electronics and Photonics 2 151

    [16]

    Spangler C W 1999 J. Mater. Chem. 9 2013Google Scholar

    [17]

    Leite R C C, Porto S P S, Damen T C 1967 Appl. Phys. Lett. 10 100Google Scholar

    [18]

    Fan F, Zhang B, Cao Y M, Chen Y 2017 Nanoscale 9 2449Google Scholar

    [19]

    Fan F, Zhang B, Cao Y M, Yang X T, Gu J W, Chen Y 2017 Nanoscale 9 10610Google Scholar

    [20]

    Cao Y M, Tian X Y, Gu J W, Liu B, Zhang B, Song S N, Fan F, Chen Y 2018 Angew. Chem. Int. Ed. 57 4543Google Scholar

    [21]

    Puzzo D P, Helander M G, O’Brien P G, Wang Z B, Soheilnia N, Kherani N, Lu Z H, Ozin G A 2011 Nano Lett. 11 1457Google Scholar

    [22]

    Wu T L, Yeh C H, Hsiao W T, Huang P Y, Huang M J, Chiang Y H, Cheng C H, Liu R S, Chiu P W 2017 ACS Appl. Mater. Interfaces 9 14998Google Scholar

    [23]

    Kim J S, Jeon P J, Lee J, Choi K, Lee H S, Cho Y, Lee Y T, Hwang D K, Im S 2015 Nano Lett. 15 5778Google Scholar

    [24]

    Zhang M, Zhu Y M, Wang X S, Feng Q L, Qiao S L, Wen W, Chen Y F, Cui M H, Zhang J, Cai C Z, Xie L M 2015 J. Am. Chem. Soc. 137 7051Google Scholar

    [25]

    Roy-Mayhew J D, Aksay I A 2014 Chem. Rev. 114 6323Google Scholar

    [26]

    Liu Z K, Lau S P, Yan F 2015 Chem. Soc. Rev. 44 5638Google Scholar

    [27]

    Liu R, Hu J Y, Zhu S Q, Lu J P, Zhu H J 2017 ACS Appl. Mater. Interfaces 9 33029Google Scholar

    [28]

    Zhu J H, Li Y X, Chen Y, Wang J, Zhang B, Zhang J J, Blau W J 2011 Carbon 49 1900Google Scholar

    [29]

    Ferrari A C, Bonaccorso F, Fal’ko V, et al. 2015 Nanoscale 7 4598Google Scholar

    [30]

    Wang J, Hernandez Y, Lotya M, Coleman J N, Blau W J 2009 Adv. Mater. 21 2430Google Scholar

    [31]

    Belousova I M, Mironova N G, Yur'ev M S 2003 Opt. Spectrosc. 94 86Google Scholar

    [32]

    Belousova I M, Mironova N G, Scobelev A G, Yur'ev M S 2004 Opt. Commun. 235 445Google Scholar

    [33]

    Blau W J, Byrne H, Dennis W M, Kelly J M 1985 Opt. Commun. 56 25Google Scholar

    [34]

    Boggess T F, Bohnert K M, Mansour K, Moss S C, Boyd I W, Smirl A L 1986 IEEE J. Quant. Electron. 22 360Google Scholar

    [35]

    Girisun S, Saravanan M, Soma R 2018 ACS Appl. Nano Mater. 1 6337Google Scholar

    [36]

    Du Y L, Dong N N, Zhang M H, Zhu K, Na R Q, Zhang S L, Sun N W, Wang G B, Wang J 2017 Phys. Chem. Chem. Phys. 19 2252Google Scholar

    [37]

    Liu Z W, Dong N N, Jiang P, Wang K X, Wang J, Chen Y 2018 Chem. Eur. J. 24 19317Google Scholar

    [38]

    Bridgman P 1914 J. Am. Chem. Soc. 36 1344Google Scholar

    [39]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nature Nanotechn. 9 372Google Scholar

    [40]

    Chen X L, Wu Y Y, Wu Z F, Han Y, Xu S G, Wang L, Ye W G, Han T Y, He Y H, Cai Y, Wang N 2015 Nature Commun. 6 7315Google Scholar

    [41]

    Eswaraiah V, Zeng Q S, Long Y, Liu Z 2016 Small 12 3480Google Scholar

    [42]

    Hirsch A, Hauke F 2018 Angew. Chem. Int. Ed. 57 4338Google Scholar

    [43]

    Tran V, Soklaski R, Liang Y F, Yang L 2014 Phys. Rev. B 89 235319Google Scholar

    [44]

    Wang X M, Jones A M, Seyler K L, Tran V, Jia Y C, Zhao H, Wang H, Yang L, Xu X D, Xia F N 2015 Nat. Nanotechn. 10 517Google Scholar

    [45]

    Zhang S F, Li Y X, Zhang X Y, Dong N N, Wang K P, Hanlon D M, Coleman J N, Zhang L, Wang J 2016 Nanoscale 8 17374Google Scholar

    [46]

    Mu H R, Lin S H, Wang Z C, Xiao S, Li P F, Chen Y, Zhang H, Bao H F, Lau S P, Pan C X, Fan D Y, Bao Q L 2015 Adv. Opt. Mater. 3 1447Google Scholar

    [47]

    Zhang S Q, Mao N N, Wu J X, Tong L M, Zhang J, Liu Z R 2017 Small 13 1700466Google Scholar

    [48]

    Koenig S P, Doganov R A, Schmidt H, Neto A H C, Ozyilmaz B 2014 Appl. Phys. Lett. 104 103106Google Scholar

    [49]

    Wood J D, Wells S A, Jariwala D, Chen K S, Cho E, Sangwan V K, Liu X, Lauhon L J, Marks T J, Hersam M C 2014 Nano Lett. 14 6964Google Scholar

    [50]

    Favron A, Gaufres E, Fossard F, Phaneuf-L'heureux A L, Tang N Y W 2015 Nat. Mater. 14 826Google Scholar

    [51]

    Lu S B, Miao L L, Guo Z N, Qi X, Zhao C J, Zhang H, Wen S C, Tang D Y, Fan D Y 2015 Opt. Express. 23 11183Google Scholar

    [52]

    Guo Z N, Zhang H, Lu S B, Wang Z T, Tang S Y, Shao J D, Sun Z B, Xie H H, Wang H Y, Yu X F, Chu P K 2015 Adv. Funct. Mater. 25 6996Google Scholar

    [53]

    Shi M K, Huang S T, Dong N N, Liu Z W, Gan F, Wang J, Chen Y 2018 Chem. Commun. 54 366Google Scholar

    [54]

    Szydłowska M B, Tywoniuk B, Blau W J 2018 ACS Photonics 5 3608Google Scholar

    [55]

    Huang J W, Dong N N, Zhang S F, Sun Z Y, Zhang W H, Wang J 2017 ACS Photonics 4 3063Google Scholar

    [56]

    Liu Z W, Gan F, Dong N N, Zhang B, Wang J, Chen Y 2019 J. Mater. Chem. C 7 10789Google Scholar

    [57]

    Tan C L, Cao X H, Wu X J, He Q Y, Yang J, Zhang X, Chen J Z, Zhao W, Han S K, Nam G H, Sindoro M, Zhang H 2017 Chem. Rev. 117 6225Google Scholar

    [58]

    Tan S J, Abdelwahab I, Ding Z J, Zhao X X, Yang T S, Loke G Z, Lin H, Verzhbitskiy I, Poh S M, Xu H, Nai C T, Zhou W, Eda G, Jia B H, Loh K P 2017 J. Am. Chem. Soc. 139 2504Google Scholar

    [59]

    Loh K P, Zhang H, Chen W, Ji W 2006 J. Phys. Chem. B 110 1235Google Scholar

    [60]

    Zhou K G, Zhao M, Chang M J, Wang Q, Wu X Z, Song Y L, Zhang H L 2015 Small 11 694Google Scholar

    [61]

    Dong N N, Li Y X, Feng Y Y, Zhang S F, Zhang X Y, Chang C X, Fan J T, Zhang L, Wang J 2015 Sci. Rep. 5 14646Google Scholar

    [62]

    Liang G W, Tao L L, Tsang Y H, Zeng L H, Liu X, Li J, Qu J L, Wen Q 2019 J. Mater. Chem. C 7 495Google Scholar

    [63]

    Varma S, Kumar J, Liu Y, Layne K, Wu J J, Liang C L, Nakanishi Y, Aliyan A, Yang W, Ajayan P, Thomas J 2017 Adv. Optical Mater. 5 1700713Google Scholar

    [64]

    Cheng H X, Dong N N, Bai T, Song Y, Wang J, Qin T H, Zhang B, Chen Y 2016 Chem. Eur. J. 22 4500Google Scholar

    [65]

    Shi M K, Dong N N, He N, Wan Y, Cheng H X, Han M R, Wang J, Chen Y 2017 J. Mater. Chem. C 5 11920Google Scholar

    [66]

    Fan F, Zhang B, Song S, Liu B, Cao Y, Chen Y 2018 Adv. Electron. Mater. 4 1700397Google Scholar

    [67]

    Jiang P, Zhang B, Liu Z W, Chen Y 2019 Nanoscale 11 20449Google Scholar

    [68]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [69]

    Angelis F D 2014 Acc. Chem. Res. 47 3349Google Scholar

    [70]

    Wang W, Tadé M O, Shao Z 2015 Chem. Soc. Rev. 44 5371Google Scholar

    [71]

    Hao F, Stoumpos C C, Chang R P H, Kanatzidis M G 2014 J. Am. Chem. Soc. 136 8094Google Scholar

    [72]

    Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, Sum T C 2013 Science 342 344Google Scholar

    [73]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [74]

    Chen K, Schunemann S, Song S, Tuysuz H 2018 Chem. Soc. Rev. 47 7045Google Scholar

    [75]

    Shi E Z, Gao Y, Finkenauer B P, Akriti, Coffey A H, Dou L T 2018 Chem. Soc. Rev. 47 6046Google Scholar

    [76]

    Ju M G, Dai J, Ma L, Zeng X C 2017 J. Am. Chem. Soc. 139 8038Google Scholar

    [77]

    Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S 2017 Science 356 1376Google Scholar

    [78]

    Sutherland B R, Sargent E H 2016 Nat. Photon. 10 295Google Scholar

    [79]

    Li J, Zhang S, Dong H, Yuan X, Jiang X, Wang J, Zhang L 2016 Cryst. Eng. Commun. 18 7945Google Scholar

    [80]

    Kalanoor B S, Gouda L, Gottesman R, Tirosh S, Haltzi E, Zaban A, Tischler Y R 2016 ACS Photon. 3 361Google Scholar

    [81]

    Lu W G, Chen C, Han D, Yao L, Han J, Zhong H, Wang Y 2016 Adv. Opt. Mater. 4 1732Google Scholar

    [82]

    Johnson J C, Li Z, Ndione P F, Zhu K 2016 J. Mater. Chem. C 4 4847Google Scholar

    [83]

    Zhang R, Fan J D, Zhang X, Yu H H, Zhang H J, Mai Y H, Xu T X, Wang J Y, Snaith H J 2016 ACS Photon. 3 371Google Scholar

    [84]

    Bai T, Dong N, Cheng H, Cheng Q, Wang J, Chen Y 2017 RSC Adv. 7 1809Google Scholar

  • 图 1  几种典型的二维材料及其应用示意图[29]

    Fig. 1.  Schematic illustration of different kinds of typical ultrathin 2D nanomaterials[29].

    图 2  光限幅机理 (a) 非线性散射; (b) 多光子吸收; (c) 反饱和吸收; (d) 自由载流子吸收[11]

    Fig. 2.  Optical limiting mechanisms: (a) Nonlinear scattering; (b) multi-photon absorption; (c) reverse saturable absorption; (d) free-carrier absorption[11].

    图 3  (a) Au-Fe2O3-RGO的合成路线; (b) 700, (c) 800和(d) 900 nm脉冲激光辐照时获得的开孔Z-扫描曲线[35]

    Fig. 3.  (a) Synthesis of Au-Fe2O3-RGO composites; open aperture patterns of the samples at (b) 700, (c) 800, and (d) 900 nm[35].

    图 4  (a) GO-Pt-1和GO-Pt-2的合成路线; (b), (c) 532 nm脉冲激光下开孔Z-扫描性能图[27]; (d) PF-GO和ZnP-GO结构示意图(插图为DMF分散液照片 (I) ZnTNP-PAES; (II) GO; (III) ZnP-GO; (IV) PF-GO; (V) PF-RGO; (VI) ZnP–RGO); (e) 532 nm和(f) 1064 nm脉冲激光下开孔Z-扫描曲线[36]

    Fig. 4.  (a) Synthesis of GO-Pt-1 and GO-Pt-2; (b) typical open-aperture Z-scan data and (c) optical limiting performance of the samples at 532 nm[27]; (d) schematic illustration of the structure of PF-GO and ZnP-GO (insert shows the photographs of dispersions in DMF: (I) ZnTNP-PAES; (II) GO; (III) ZnP-GO; (IV) PF-GO; (V) PF-RGO; (VI) ZnP-RGO.); open-aperture Z-scan curves with normalized transmittance (open symbols) and scattering signal (solid symbols) for the samples at (e) 532 and (f) 1064 nm[36].

    图 5  (a) PFTP-GRO的合成路线; (b)光限幅性能曲线, 其中(b1), (b3) 在532和1064 nm处薄膜归一化透射率随入射激光强度的变化; (b2), (b4) 相应的βeff系数随激发脉冲能量的变化[37]

    Fig. 5.  (a) Synthesis of PFTP-RGO. (b) Variation of the normalized transmittance as a function of input laser intensity for the films: (b1) at 532 nm; (b3) at 1064 nm; the corresponding βeff coefficients as a function of the excitation pulse energy (b2), (b4)[37].

    图 6  (a) BP晶格结构俯视图; (b) BP椅式结构侧视图; 插图: 红色突出显示BP椅式六元环结构; BP晶体的扫描隧道电子显微镜图[42]

    Fig. 6.  (a) Top view of the puckered honeycomb lattice of black phosphorus; (b) lateral view on the lattice in armchair direction. Insets: BP lattice with a six-membered ring in chair configuration highlighted in red; scanning tunneling electron microscopyimage of the BP lattice [42].

    图 7  (a)—(e) 532 nm, 6 ns脉冲激光照射下基于PMMA的样品薄膜的开孔Z-扫描曲线; (f) BP:C60共混物示意图[53]

    Fig. 7.  (a)−(e) Typical open-aperture Z-scan data with normalized transmittance as a function of the sample position Z for the samples embedded in PMMA matrix under the excitation of 6 ns pulses at λ = 532 with different energies. The solid lines are the theoretical fitting results. (f) Structure of BP:C60 blends[53].

    图 8  (a) BP-Big和(b) BP-Small的开孔Z-扫描曲线; (c) BP-Big和BP-Small的非线性光学响应对比图[54]; (d), (e), (g), (h) BP分散液在不同波长和脉冲时间激光激发下的开孔Z-扫描曲线; 532 nm脉冲激光条件下, (f) BP分散液在不同激发能量下的开孔Z-扫描曲线和(i)散射信号曲线[55]

    Fig. 8.  Open-aperture Z-scan fitted data of (a) BP-Big and (b) BP-Small; (c) NLO response of BP nanosheets with variable sizes BP-Big and BP-Small as a function of pulse fluence[54]; open-aperture Z-scan results of the BP dispersion for nanosecond pulse excitation at (d) 532 nm and (e) 1064 nm and femtosecond pulse excitation at (g) 515 nm and (h) 1030 nm; (f) open-aperture Z-scan result and (i) corresponding scattering signal of BP dispersions at a 532 nm ns laser[55].

    图 9  (a) F12PcZn-BP的合成路线; (b) 532 nm, 6 ns脉冲激光照射下基于PMMA的样品薄膜的(I)−(III)开孔Z-扫描曲线和(IV)归一化透过率与激光能量关系图[56]

    Fig. 9.  (a) Schematic illustration of the fabrication F12PcZn-BP; (b) (I)−(III) typical open-aperture Z-scan data of the samples and (IV) variation in the normalized transmittance as a function of input laser intensity for the PMMA-based films at 532 nm[56].

    图 10  1 T'相构型的h-LiMoS2 和2 H相构型的MoS2材料在不同入射激光能量下的(a)开孔Z-扫描曲线和(b)闭孔Z-扫描曲线[58]

    Fig. 10.  Open (a) and closed (b) aperture Z-scan measurements of h-LiMoS2 and MoS2 at different input laser power, indicated at the top left of each curve, showing saturable absorption and self-focusing behavior of h-LiMoS2 at a lower pumping power[58].

    图 11  MoS2-PVK的(a)合成路线和(b), (c)非线性光学(光限幅)性能[18,64]

    Fig. 11.  (a) Synthesis and (b), (c) NLO (OL) performance of MoS2-PVK[18,64]

    图 12  (a) MoS2-PAN 和 pyro-MoS2-PAN的合成; (b) PAN 的裂解过程; (c) 退火前MoS2-PAN 的Mo 3d XPS 谱; (d) 退火后pyro-MoS2-PAN的Mo 3 d XPS 谱; 2H相和1T相分别用红色线和绿色线表示[65,66]

    Fig. 12.  (a) Synthesis of MoS2-PAN and pyro-MoS2-PAN; (b) pyrolytic process of PAN; the Mo 3 d core level XPS spectra of (c) the non-annealed MoS2-PAN and (d) the pyro-MoS2-PAN. The 2 H and 1 T contributions are represented by red and green plots, respectively[65,66].

    图 13  (a) 能影响钙钛矿性能的重要结构特征[74]; (b)不同尺寸维度的钙钛矿(I)结构示意图, (II)形态示意图和(III)晶体构型示意图[75]

    Fig. 13.  (a) Key structural factors that influence the properties of halide perovskites[74]; (b) (I) representative crystal structures of halide perovskites in different dimensions; (II) nanoscale morphologies of halide perovskites; (III) schematic representation of the 2D organic-inorganic perovskites from different cuts of the 3D halide perovskite structure[75].

    图 14  (a) 钙钛矿非线性光学材料示意图; (b) 1064 nm激光照射下CH3NH3PbI3和CH3NH3PbI3–xClx的开孔Z-扫描曲线; (c) 532 nm波长激光照射下CH3NH3PbI3和CH3NH3PbI3–xClx的开孔Z-扫描曲线[83]

    Fig. 14.  (a) Illustration of halide perovskites based NLO materials; (b) typical open-aperture Z-scan curves of CH3NH3PbI3 and CH3NH3PbI3–xClx at 1064 nm; (c) typical open-aperture Z-scan curves of CH3NH3PbI3 and CH3NH3PbI3–xClx at 532 nm[83].

    图 15  具有不同的CH3NH3PbI3:PVK浓度比的CH3NH3PbI3:PVK/PMMA薄膜在退火前后的开孔Z-扫描曲线(退火条件: 在氮气中200 ℃, 30 min)[84]

    Fig. 15.  Typical open-aperture Z-scan data of the CH3NH3PbI3:PVK/PMMA films with different CH3NH3PbI3:PVK concentrations. The annealing condition: 200 ℃ for 30 min in N2[84].

  • [1]

    The Nobel Prize in Physics 2018. Nobel Media AB 2020. https://www.nobelprize.org/prizes/physics/2018/summary/ [2020-02-20]

    [2]

    Maiman T H 1960 Nature 187 493Google Scholar

    [3]

    Ashkin A 1970 Phys. Rev. Lett. 24 156Google Scholar

    [4]

    Ashkin A 1997 Proc. Natl. Acad. Sci. USA 94 4853Google Scholar

    [5]

    Ashkin A, Schütze K, Dziedzic J M, Euteneuer U, Schliwa M 1990 Nature 348 346Google Scholar

    [6]

    Block S M, Blair D F, Berg H C 1989 Nature 338 514Google Scholar

    [7]

    Abbondanzieri E A, Greenleaf W J, Shaevitz J W, Landick R, Block S M 2005 Nature 438 460Google Scholar

    [8]

    Perkins T T, Quake S R, Smith D E, Chu S 1994 Science 264 822Google Scholar

    [9]

    Smith S B, Cui Y, Bustamante C 1996 Science 271 795Google Scholar

    [10]

    Dini D, Calvete M J F, Hanack M 2016 Chem. Rev. 116 13043Google Scholar

    [11]

    Chen Y, Bai T, Dong N, Fan F, Zhang S, Zhuang X, Sun J, Zhang B, Zhang X, Wang J, Blau W J 2016 Prog. Mater. Sci. 84 118Google Scholar

    [12]

    Chen Y, Hanack M, Araki Y, Ito O 2005 Chem. Soc. Rev. 34 517Google Scholar

    [13]

    Chen Y, Wang J, He N, Blau W J, Feng M, Zhan H, Zhang B, Zhu J, Niu L, Li P 2011 Encyclopedia of Nanoscience and Nanotechnology (Vol. 18) (California: American Scientific Publishers) pp45–74

    [14]

    Wang J, Chen Y, Blau W J 2009 J. Mater. Chem. 19 7425Google Scholar

    [15]

    Chen Y, EI-Khouly M E, Doyle J J, Lin Y, Liu Y, Notaras E, Blau W J, O’Flaherty S M 2008 Handbook of Organic Electronics and Photonics 2 151

    [16]

    Spangler C W 1999 J. Mater. Chem. 9 2013Google Scholar

    [17]

    Leite R C C, Porto S P S, Damen T C 1967 Appl. Phys. Lett. 10 100Google Scholar

    [18]

    Fan F, Zhang B, Cao Y M, Chen Y 2017 Nanoscale 9 2449Google Scholar

    [19]

    Fan F, Zhang B, Cao Y M, Yang X T, Gu J W, Chen Y 2017 Nanoscale 9 10610Google Scholar

    [20]

    Cao Y M, Tian X Y, Gu J W, Liu B, Zhang B, Song S N, Fan F, Chen Y 2018 Angew. Chem. Int. Ed. 57 4543Google Scholar

    [21]

    Puzzo D P, Helander M G, O’Brien P G, Wang Z B, Soheilnia N, Kherani N, Lu Z H, Ozin G A 2011 Nano Lett. 11 1457Google Scholar

    [22]

    Wu T L, Yeh C H, Hsiao W T, Huang P Y, Huang M J, Chiang Y H, Cheng C H, Liu R S, Chiu P W 2017 ACS Appl. Mater. Interfaces 9 14998Google Scholar

    [23]

    Kim J S, Jeon P J, Lee J, Choi K, Lee H S, Cho Y, Lee Y T, Hwang D K, Im S 2015 Nano Lett. 15 5778Google Scholar

    [24]

    Zhang M, Zhu Y M, Wang X S, Feng Q L, Qiao S L, Wen W, Chen Y F, Cui M H, Zhang J, Cai C Z, Xie L M 2015 J. Am. Chem. Soc. 137 7051Google Scholar

    [25]

    Roy-Mayhew J D, Aksay I A 2014 Chem. Rev. 114 6323Google Scholar

    [26]

    Liu Z K, Lau S P, Yan F 2015 Chem. Soc. Rev. 44 5638Google Scholar

    [27]

    Liu R, Hu J Y, Zhu S Q, Lu J P, Zhu H J 2017 ACS Appl. Mater. Interfaces 9 33029Google Scholar

    [28]

    Zhu J H, Li Y X, Chen Y, Wang J, Zhang B, Zhang J J, Blau W J 2011 Carbon 49 1900Google Scholar

    [29]

    Ferrari A C, Bonaccorso F, Fal’ko V, et al. 2015 Nanoscale 7 4598Google Scholar

    [30]

    Wang J, Hernandez Y, Lotya M, Coleman J N, Blau W J 2009 Adv. Mater. 21 2430Google Scholar

    [31]

    Belousova I M, Mironova N G, Yur'ev M S 2003 Opt. Spectrosc. 94 86Google Scholar

    [32]

    Belousova I M, Mironova N G, Scobelev A G, Yur'ev M S 2004 Opt. Commun. 235 445Google Scholar

    [33]

    Blau W J, Byrne H, Dennis W M, Kelly J M 1985 Opt. Commun. 56 25Google Scholar

    [34]

    Boggess T F, Bohnert K M, Mansour K, Moss S C, Boyd I W, Smirl A L 1986 IEEE J. Quant. Electron. 22 360Google Scholar

    [35]

    Girisun S, Saravanan M, Soma R 2018 ACS Appl. Nano Mater. 1 6337Google Scholar

    [36]

    Du Y L, Dong N N, Zhang M H, Zhu K, Na R Q, Zhang S L, Sun N W, Wang G B, Wang J 2017 Phys. Chem. Chem. Phys. 19 2252Google Scholar

    [37]

    Liu Z W, Dong N N, Jiang P, Wang K X, Wang J, Chen Y 2018 Chem. Eur. J. 24 19317Google Scholar

    [38]

    Bridgman P 1914 J. Am. Chem. Soc. 36 1344Google Scholar

    [39]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nature Nanotechn. 9 372Google Scholar

    [40]

    Chen X L, Wu Y Y, Wu Z F, Han Y, Xu S G, Wang L, Ye W G, Han T Y, He Y H, Cai Y, Wang N 2015 Nature Commun. 6 7315Google Scholar

    [41]

    Eswaraiah V, Zeng Q S, Long Y, Liu Z 2016 Small 12 3480Google Scholar

    [42]

    Hirsch A, Hauke F 2018 Angew. Chem. Int. Ed. 57 4338Google Scholar

    [43]

    Tran V, Soklaski R, Liang Y F, Yang L 2014 Phys. Rev. B 89 235319Google Scholar

    [44]

    Wang X M, Jones A M, Seyler K L, Tran V, Jia Y C, Zhao H, Wang H, Yang L, Xu X D, Xia F N 2015 Nat. Nanotechn. 10 517Google Scholar

    [45]

    Zhang S F, Li Y X, Zhang X Y, Dong N N, Wang K P, Hanlon D M, Coleman J N, Zhang L, Wang J 2016 Nanoscale 8 17374Google Scholar

    [46]

    Mu H R, Lin S H, Wang Z C, Xiao S, Li P F, Chen Y, Zhang H, Bao H F, Lau S P, Pan C X, Fan D Y, Bao Q L 2015 Adv. Opt. Mater. 3 1447Google Scholar

    [47]

    Zhang S Q, Mao N N, Wu J X, Tong L M, Zhang J, Liu Z R 2017 Small 13 1700466Google Scholar

    [48]

    Koenig S P, Doganov R A, Schmidt H, Neto A H C, Ozyilmaz B 2014 Appl. Phys. Lett. 104 103106Google Scholar

    [49]

    Wood J D, Wells S A, Jariwala D, Chen K S, Cho E, Sangwan V K, Liu X, Lauhon L J, Marks T J, Hersam M C 2014 Nano Lett. 14 6964Google Scholar

    [50]

    Favron A, Gaufres E, Fossard F, Phaneuf-L'heureux A L, Tang N Y W 2015 Nat. Mater. 14 826Google Scholar

    [51]

    Lu S B, Miao L L, Guo Z N, Qi X, Zhao C J, Zhang H, Wen S C, Tang D Y, Fan D Y 2015 Opt. Express. 23 11183Google Scholar

    [52]

    Guo Z N, Zhang H, Lu S B, Wang Z T, Tang S Y, Shao J D, Sun Z B, Xie H H, Wang H Y, Yu X F, Chu P K 2015 Adv. Funct. Mater. 25 6996Google Scholar

    [53]

    Shi M K, Huang S T, Dong N N, Liu Z W, Gan F, Wang J, Chen Y 2018 Chem. Commun. 54 366Google Scholar

    [54]

    Szydłowska M B, Tywoniuk B, Blau W J 2018 ACS Photonics 5 3608Google Scholar

    [55]

    Huang J W, Dong N N, Zhang S F, Sun Z Y, Zhang W H, Wang J 2017 ACS Photonics 4 3063Google Scholar

    [56]

    Liu Z W, Gan F, Dong N N, Zhang B, Wang J, Chen Y 2019 J. Mater. Chem. C 7 10789Google Scholar

    [57]

    Tan C L, Cao X H, Wu X J, He Q Y, Yang J, Zhang X, Chen J Z, Zhao W, Han S K, Nam G H, Sindoro M, Zhang H 2017 Chem. Rev. 117 6225Google Scholar

    [58]

    Tan S J, Abdelwahab I, Ding Z J, Zhao X X, Yang T S, Loke G Z, Lin H, Verzhbitskiy I, Poh S M, Xu H, Nai C T, Zhou W, Eda G, Jia B H, Loh K P 2017 J. Am. Chem. Soc. 139 2504Google Scholar

    [59]

    Loh K P, Zhang H, Chen W, Ji W 2006 J. Phys. Chem. B 110 1235Google Scholar

    [60]

    Zhou K G, Zhao M, Chang M J, Wang Q, Wu X Z, Song Y L, Zhang H L 2015 Small 11 694Google Scholar

    [61]

    Dong N N, Li Y X, Feng Y Y, Zhang S F, Zhang X Y, Chang C X, Fan J T, Zhang L, Wang J 2015 Sci. Rep. 5 14646Google Scholar

    [62]

    Liang G W, Tao L L, Tsang Y H, Zeng L H, Liu X, Li J, Qu J L, Wen Q 2019 J. Mater. Chem. C 7 495Google Scholar

    [63]

    Varma S, Kumar J, Liu Y, Layne K, Wu J J, Liang C L, Nakanishi Y, Aliyan A, Yang W, Ajayan P, Thomas J 2017 Adv. Optical Mater. 5 1700713Google Scholar

    [64]

    Cheng H X, Dong N N, Bai T, Song Y, Wang J, Qin T H, Zhang B, Chen Y 2016 Chem. Eur. J. 22 4500Google Scholar

    [65]

    Shi M K, Dong N N, He N, Wan Y, Cheng H X, Han M R, Wang J, Chen Y 2017 J. Mater. Chem. C 5 11920Google Scholar

    [66]

    Fan F, Zhang B, Song S, Liu B, Cao Y, Chen Y 2018 Adv. Electron. Mater. 4 1700397Google Scholar

    [67]

    Jiang P, Zhang B, Liu Z W, Chen Y 2019 Nanoscale 11 20449Google Scholar

    [68]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [69]

    Angelis F D 2014 Acc. Chem. Res. 47 3349Google Scholar

    [70]

    Wang W, Tadé M O, Shao Z 2015 Chem. Soc. Rev. 44 5371Google Scholar

    [71]

    Hao F, Stoumpos C C, Chang R P H, Kanatzidis M G 2014 J. Am. Chem. Soc. 136 8094Google Scholar

    [72]

    Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, Sum T C 2013 Science 342 344Google Scholar

    [73]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [74]

    Chen K, Schunemann S, Song S, Tuysuz H 2018 Chem. Soc. Rev. 47 7045Google Scholar

    [75]

    Shi E Z, Gao Y, Finkenauer B P, Akriti, Coffey A H, Dou L T 2018 Chem. Soc. Rev. 47 6046Google Scholar

    [76]

    Ju M G, Dai J, Ma L, Zeng X C 2017 J. Am. Chem. Soc. 139 8038Google Scholar

    [77]

    Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S 2017 Science 356 1376Google Scholar

    [78]

    Sutherland B R, Sargent E H 2016 Nat. Photon. 10 295Google Scholar

    [79]

    Li J, Zhang S, Dong H, Yuan X, Jiang X, Wang J, Zhang L 2016 Cryst. Eng. Commun. 18 7945Google Scholar

    [80]

    Kalanoor B S, Gouda L, Gottesman R, Tirosh S, Haltzi E, Zaban A, Tischler Y R 2016 ACS Photon. 3 361Google Scholar

    [81]

    Lu W G, Chen C, Han D, Yao L, Han J, Zhong H, Wang Y 2016 Adv. Opt. Mater. 4 1732Google Scholar

    [82]

    Johnson J C, Li Z, Ndione P F, Zhu K 2016 J. Mater. Chem. C 4 4847Google Scholar

    [83]

    Zhang R, Fan J D, Zhang X, Yu H H, Zhang H J, Mai Y H, Xu T X, Wang J Y, Snaith H J 2016 ACS Photon. 3 371Google Scholar

    [84]

    Bai T, Dong N, Cheng H, Cheng Q, Wang J, Chen Y 2017 RSC Adv. 7 1809Google Scholar

  • [1] 许凡, 赵妍, 吴宇航, 王文驰, 金雪莹. 高阶色散下双耦合微腔中克尔光频梳的稳定性和非线性动力学分析. 物理学报, 2022, 71(18): 184204. doi: 10.7498/aps.71.20220691
    [2] 徐昕, 金雪莹, 胡晓鸿, 黄新宁. 光学微腔中倍频光场演化和光谱特性. 物理学报, 2020, 69(2): 024203. doi: 10.7498/aps.69.20191294
    [3] 张倩, 金鑫鑫, 张梦, 郑铮. 基于二维纳米材料可饱和吸收体的中红外超快光纤激光器. 物理学报, 2020, 69(18): 188101. doi: 10.7498/aps.69.20200472
    [4] 白瑞雪, 杨珏晗, 魏大海, 魏钟鸣. 低维半导体材料在非线性光学领域的研究进展. 物理学报, 2020, 69(18): 184211. doi: 10.7498/aps.69.20200206
    [5] 张多多, 刘小峰, 邱建荣. 基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器. 物理学报, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [6] 王沅倩, 林才纺, 张景迪, 何军, 肖思. MoS2纳微薄膜激光非线性透射的调控研究. 物理学报, 2015, 64(3): 034214. doi: 10.7498/aps.64.034214
    [7] 王沅倩, 何军, 肖思, 杨能安, 陈火章. MoS2溶液的波长选择性光限幅效应研究. 物理学报, 2014, 63(14): 144204. doi: 10.7498/aps.63.144204
    [8] 冯天闰, 卢克清, 陈卫军, 刘书芹, 牛萍娟, 于莉媛. 线性电介质和中心对称光折变晶体界面表面波的研究. 物理学报, 2013, 62(23): 234205. doi: 10.7498/aps.62.234205
    [9] 陆晶晶, 冯苗, 詹红兵. 氧化石墨烯/壳聚糖复合薄膜材料的制备及其非线性光限幅效应的研究. 物理学报, 2013, 62(1): 014204. doi: 10.7498/aps.62.014204
    [10] 庄晓波, 夏海平. 用Z-扫描技术研究卟啉铜偶合TiO2/SiO2有机-无机材料的非线性吸收特性. 物理学报, 2012, 61(18): 184213. doi: 10.7498/aps.61.184213
    [11] 沈学举, 王龙, 韩玉东, 李征. 甲基红掺杂碳纳米管悬浮液的光限幅特性研究. 物理学报, 2010, 59(4): 2532-2536. doi: 10.7498/aps.59.2532
    [12] 袁艳红, 苗润才. 多壁碳纳米管光限幅特性的研究. 物理学报, 2009, 58(2): 1276-1279. doi: 10.7498/aps.58.1276
    [13] 杨 光, 陈正豪. 掺Ag纳米颗粒的BaTiO3复合薄膜的非线性光学特性. 物理学报, 2007, 56(2): 1182-1187. doi: 10.7498/aps.56.1182
    [14] 龚华平, 吕志伟, 林殿阳, 刘松江. 非聚焦条件下CS2介质中受激布里渊散射光限幅特性的研究. 物理学报, 2007, 56(9): 5263-5268. doi: 10.7498/aps.56.5263
    [15] 梁小蕊, 赵 波, 周志华. 几种香豆素衍生物分子的二阶非线性光学性质的从头算研究. 物理学报, 2006, 55(2): 723-728. doi: 10.7498/aps.55.723
    [16] 刘军辉, 毛艳丽, 马文波, 吴谊群, 韩俊鹤, 翟凤潇. 一种新的芴类衍生物的三光子吸收诱导荧光和光限幅效应研究. 物理学报, 2005, 54(11): 5173-5177. doi: 10.7498/aps.54.5173
    [17] 何国华, 张俊祥, 叶莉华, 崔一平, 李振华, 来建成, 贺安之. 一种新型有机染料的宽带双光子吸收和光限幅特性的研究. 物理学报, 2003, 52(8): 1929-1933. doi: 10.7498/aps.52.1929
    [18] 周文远, 田建国, 臧维平, 张春平, 张光寅, 王肇圻. 厚非线性介质瞬态热光非线性效应的研究. 物理学报, 2002, 51(11): 2623-2628. doi: 10.7498/aps.51.2623
    [19] 陈煜, 李云静, 聂玉昕, 王夺元. 8-辛烷氧基金属酞菁的皮秒三阶光学非线性与光限幅特性. 物理学报, 2002, 51(3): 578-583. doi: 10.7498/aps.51.578
    [20] 曲士良, 宋瑛林, 杜池敏, 王玉晓, 高亚臣, 刘树田, 李玉良, 朱道本. 基于富勒烯C60结构体系的金纳米粒子合成物光学非线性研究. 物理学报, 2001, 50(9): 1703-1708. doi: 10.7498/aps.50.1703
计量
  • 文章访问数:  10409
  • PDF下载量:  359
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-29
  • 修回日期:  2020-05-02
  • 上网日期:  2020-05-09
  • 刊出日期:  2020-09-20

/

返回文章
返回