搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁流变液构成的类梯度结构振动传递特性

赵丹 王帅虎 刘少刚 崔进 董立强

引用本文:
Citation:

磁流变液构成的类梯度结构振动传递特性

赵丹, 王帅虎, 刘少刚, 崔进, 董立强

Vibration transfer characteristic of gradient-like structure based on magnetorheological fluid

Zhao Dan, Wang Shuai-Hu, Liu Shao-Gang, Cui Jin, Dong Li-Qiang
PDF
HTML
导出引用
  • 提出了一种磁流变液构成的类梯度结构, 并通过理论建模、数值计算和实验研究了该结构的振动传递特性. 磁流变液在磁场作用下具有液固转换的特殊理化性质, 而液固转换过程就是磁流变液的振动传递阻抗变化过程. 因此, 基于磁流变液的这一特性, 通过控制磁场, 构建了类梯度结构. 基于弹性波传递的一维波动方程, 建立了垂直入射的弹性波在类梯度结构中传递的波动方程. 然后, 使用连续介质的离散化方法和传递矩阵法进行求解, 得到振级落差的表达式, 对其进行数值计算, 分析类梯度结构的振级落差随弹性波频率和磁场强度的变化趋势. 最后, 对类梯度结构的振动传递特性进行了实验研究, 分析了磁场强度对类梯度结构振动传递特性的影响. 研究结果表明, 与均匀场作用的磁流变液相比, 类梯度结构对弹性波的衰减效果更好, 且该结构具备良好的可调控特性.
    In this paper, a gradient-like structure composed of magnetorheological (MR) fluids is proposed, and its vibration transfer characteristic is studied through the modeling, numerical calculation and experimental test. Under the action of an externally applied magnetic field, the MR fluid exhibits the liquid-solid transformation property: the process of transformation between solid and liquid in fact is the change of vibration-transfer impedance. Therefore, based on this property, the gradient-like structure is constructed by controlling the external magnetic field. Based on the wave equation of one-dimensional elastic wave propagation, the wave equation of elastic wave transfer in the gradient-like structure is established. In order to describe the relationship between the complex shear modulus and Lame constant of MR fluid and magnetic field intensity in the wave equation, the equivalent parameter model of MR fluid is established based on the theory of elasticity and viscoelastic materials. Then, the experimental set-up is built to modify this model through experiments. Afterward, the discretization method of continuous medium and transfer matrix method are adopted to solve the wave equation, and the expression of vibration level drop is obtained. Through the numerical calculation, the trend of vibration level drop varying with the frequency of incident elastic wave and the intensity of magnetic field for the gradient-like structure is obtained. Finally, the vibration transfer characteristic of the gradient-like structure is studied experimentally, and the influence of magnetic field intensity on the vibration transfer characteristic of the gradient-like structure is analyzed. The results show that the numerical results are in good accordance with the experimental results, thereby verifying that the numerical model is accurate. And the gradient-like structure has a better attenuation effect on the elastic wave than the MR fluid under the action of a uniform magnetic field, and has an excellent tunable property as well.
      通信作者: 赵丹, heuzhaodan@outlook.com
    • 基金项目: 国家自然科学基金(批准号: 51675111, 51775123)资助的课题
      Corresponding author: Zhao Dan, heuzhaodan@outlook.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51675111, 51775123)
    [1]

    Ghaffari A, Hashemabadi S H, Ashtiani M 2015 J. Intell. Mater. Syst. Struct. 26 881Google Scholar

    [2]

    Ashour O, Rogers C, Kordonsky W 2016 J. Intell. Mater. Syst. Struct. 7 123Google Scholar

    [3]

    Esmaeilnezhad E, Hajiabadi S H, Choi H J 2019 J. Ind. Eng. Chem. 80 197Google Scholar

    [4]

    Rabinow J 1948 T-AIEE. 67 1308Google Scholar

    [5]

    Hui L X, Zhang H, Li G X, Yan Y X, Meng S 2016 Optoelectron. Adv. Mater. Rapid Commun. 10 74

    [6]

    Ding Y, Zhang L, Zhu H T, Li Z X 2013 Smart Mater. Struct. 22 115003Google Scholar

    [7]

    张雅娴, 沈景凤, 徐斌 2017 电子科技 30 170Google Scholar

    Zhang Y X, Shen J F, Xu B 2017 Elect. Sci. Technol. 30 170Google Scholar

    [8]

    Liu S G, Feng L F, Zhao D, Shi X X, Zhang Y P, Jiang J X, Zhao Y C, Zhang C J, Chen L 2019 Smart Mater. Struct. 28 085037Google Scholar

    [9]

    Jozefczak A 2003 J. Magn. Magn. Mater. 256 267Google Scholar

    [10]

    Jozefczak A, Skumiel A, Labowski M 2003 J. Magn. Magn. Mater. 258 474Google Scholar

    [11]

    Bramantya M A, Sawada T 2011 J. Magn. Magn. Mater. 323 1330Google Scholar

    [12]

    Bramantya M A, Motozawa M, Sawada T 2010 J. Phys. Condes. Matter 22 2283Google Scholar

    [13]

    Bramantya M A, Motozawa M, Takuma H, Faiz M, Sawada T 2009 11th Conference on Electrorheological Fluids and Magnetorheological Suspensions Dresden, Germany, August 25—29, 2008 p012040

    [14]

    Lee J H, Kim J, Kim H J 2001 J. Acoust. Soc. Am. 110 2282Google Scholar

    [15]

    Mahjoob M J, Mohammadi N, Malakooti S 2012 Appl. Acoust. 73 614Google Scholar

    [16]

    Rodríguez-López J, Elvira L, Resa P, de Espinosa F M 2013 J. Phys. D: Appl. Phys. 46 065001Google Scholar

    [17]

    文娟, 廖昌荣, 赵慧婷, 唐锐, 张登友 2014 功能材料 45 10148Google Scholar

    Wen J, Liao C R, Zhao H T, Tang R, Zhang D Y 2014 Funct. Mater. 45 10148Google Scholar

    [18]

    Liu S G, Shi X X, Zhao D, Chen L, Feng L F, Zhang Z Y 2018 Smart Mater. Struct. 27 115016Google Scholar

    [19]

    Zhao D, Shi X X, Liu S G, Wang F H 2020 J. Intell. Mater. Syst. Struct. 31 882Google Scholar

    [20]

    Hasheminejad S M, Maleki M 2006 Ultrasonics. 45 165Google Scholar

    [21]

    杨德森, 孙玉, 胡博, 韩闯, 靳仕源 2014 哈尔滨工程大学学报 35 1458Google Scholar

    Yang D S, Sun Y, Hu B, Han C, Jin S Y 2014 J. Harbin. Eng. Univ. 35 1458Google Scholar

    [22]

    Sun Q, Zhou J X, Zhang L 2003 J. Sound Vibr. 261 465Google Scholar

  • 图 1  阻抗分布示意图

    Fig. 1.  Impedance distribution diagram.

    图 2  磁流变液构成的类梯度结构示意图

    Fig. 2.  Schematic diagram of the experimental device for constructing gradient-like structure.

    图 3  匀质类固态磁流变液的振动传递特性

    Fig. 3.  Vibration transfer characteristic of the homogeneous quasi-solid magnetorheological fluid.

    图 4  实验台结构图

    Fig. 4.  Structure diagram of the experimental set-up.

    图 5  不同磁场强度下的类固态磁流变液的振动传递特性对比 (a) 30 mT; (b) 50 mT; (c) 70 mT; (d) 100 mT

    Fig. 5.  Comparison of vibration transfer characteristic of quasi-solid magnetorheological fluid under different magnetic field: (a) 30 mT; (b) 50 mT; (c) 70 mT; (d) 100 mT.

    图 6  理论结果和实验结果之间的误差

    Fig. 6.  Error between theoretical results and experimental results.

    图 7  类梯度结构的振动传递特性

    Fig. 7.  Vibration characteristic of gradient-like structure.

    图 8  不同磁场强度作用下类梯度结构的振动传递特性

    Fig. 8.  Vibration characteristic of the gradient-like structure under different magnetic field intensity.

    图 9  类梯度结构与均匀场作用磁流变液对比图 (a) 50 mT; (b) 70 mT; (c) 100 mT

    Fig. 9.  Comparison between gradient-like structure and homogeneous magnetorheological fluid: (a) 50 mT; (b) 70 mT; (c) 100 mT

    图 10  类梯度结构振动传递特性的实验与理论对比图 (a) 50 mT; (b) 70 mT; (c) 100 mT

    Fig. 10.  Comparison between experimental and numerical results of vibration transfer characteristic of gradient like structure: (a) 50 mT; (b) 70 mT; (c) 100 mT

    表 1  磁流变液性能参数

    Table 1.  Characteristic parameters of the magnetorheological fluid.

    性能名称平均粒径颗粒密度载液密度零场黏度颗粒体积分数
    d/μm${\rho _{\rm{f}}}$/kg·m–3${\rho _{\rm{r}}}$/kg·m–3$\eta $/Ns·m–2$\theta $
    参数值5.566989980.242527%
    下载: 导出CSV

    表 2  修正后的理论模型和实验结果对比

    Table 2.  Comparison of numerical results and experimental results.

    修正倍数振级落差
    理论值/dB实验值/dB误差
    2倍9.687615.441937.31%
    5倍14.47396.27%
    10倍18.299518.51%
    15倍19.827528.40%
    20倍20.779534.57%
    下载: 导出CSV

    表 3  修正后的理论模型和实验结果对比(5—10倍)

    Table 3.  Comparison of numerical results and experimental results (5–10 times).

    修正倍数振级落差
    理论值/dB实验值/dB误差
    5倍14.473915.44196.27%
    6倍15.53120.58%
    7倍16.41326.29%
    8倍17.152411.08%
    9倍17.774315.10%
    下载: 导出CSV

    表 4  修正后的理论模型和实验结果对比(30—100 Hz)

    Table 4.  Comparison of numerical results and experimental results (30–100 Hz).

    输入弹性波频率振级落差
    理论值/dB实验值/dB误差
    30 Hz5.14575.60428.18%
    40 Hz6.86106.79790.93%
    50 Hz8.57628.51990.66%
    60 Hz10.291510.28580.06%
    70 Hz12.006711.56794.3%
    80 Hz13.721912.87656.51%
    90 Hz14.437213.80864.55%
    100 Hz15.531215.44190.58%
    下载: 导出CSV

    表 5  实验与理论结果误差

    Table 5.  Error between experimental and theoretical results.

    编号实验参数/mT误差
    实验1502.856%
    实验2702.233%
    实验31003.585%
    下载: 导出CSV
  • [1]

    Ghaffari A, Hashemabadi S H, Ashtiani M 2015 J. Intell. Mater. Syst. Struct. 26 881Google Scholar

    [2]

    Ashour O, Rogers C, Kordonsky W 2016 J. Intell. Mater. Syst. Struct. 7 123Google Scholar

    [3]

    Esmaeilnezhad E, Hajiabadi S H, Choi H J 2019 J. Ind. Eng. Chem. 80 197Google Scholar

    [4]

    Rabinow J 1948 T-AIEE. 67 1308Google Scholar

    [5]

    Hui L X, Zhang H, Li G X, Yan Y X, Meng S 2016 Optoelectron. Adv. Mater. Rapid Commun. 10 74

    [6]

    Ding Y, Zhang L, Zhu H T, Li Z X 2013 Smart Mater. Struct. 22 115003Google Scholar

    [7]

    张雅娴, 沈景凤, 徐斌 2017 电子科技 30 170Google Scholar

    Zhang Y X, Shen J F, Xu B 2017 Elect. Sci. Technol. 30 170Google Scholar

    [8]

    Liu S G, Feng L F, Zhao D, Shi X X, Zhang Y P, Jiang J X, Zhao Y C, Zhang C J, Chen L 2019 Smart Mater. Struct. 28 085037Google Scholar

    [9]

    Jozefczak A 2003 J. Magn. Magn. Mater. 256 267Google Scholar

    [10]

    Jozefczak A, Skumiel A, Labowski M 2003 J. Magn. Magn. Mater. 258 474Google Scholar

    [11]

    Bramantya M A, Sawada T 2011 J. Magn. Magn. Mater. 323 1330Google Scholar

    [12]

    Bramantya M A, Motozawa M, Sawada T 2010 J. Phys. Condes. Matter 22 2283Google Scholar

    [13]

    Bramantya M A, Motozawa M, Takuma H, Faiz M, Sawada T 2009 11th Conference on Electrorheological Fluids and Magnetorheological Suspensions Dresden, Germany, August 25—29, 2008 p012040

    [14]

    Lee J H, Kim J, Kim H J 2001 J. Acoust. Soc. Am. 110 2282Google Scholar

    [15]

    Mahjoob M J, Mohammadi N, Malakooti S 2012 Appl. Acoust. 73 614Google Scholar

    [16]

    Rodríguez-López J, Elvira L, Resa P, de Espinosa F M 2013 J. Phys. D: Appl. Phys. 46 065001Google Scholar

    [17]

    文娟, 廖昌荣, 赵慧婷, 唐锐, 张登友 2014 功能材料 45 10148Google Scholar

    Wen J, Liao C R, Zhao H T, Tang R, Zhang D Y 2014 Funct. Mater. 45 10148Google Scholar

    [18]

    Liu S G, Shi X X, Zhao D, Chen L, Feng L F, Zhang Z Y 2018 Smart Mater. Struct. 27 115016Google Scholar

    [19]

    Zhao D, Shi X X, Liu S G, Wang F H 2020 J. Intell. Mater. Syst. Struct. 31 882Google Scholar

    [20]

    Hasheminejad S M, Maleki M 2006 Ultrasonics. 45 165Google Scholar

    [21]

    杨德森, 孙玉, 胡博, 韩闯, 靳仕源 2014 哈尔滨工程大学学报 35 1458Google Scholar

    Yang D S, Sun Y, Hu B, Han C, Jin S Y 2014 J. Harbin. Eng. Univ. 35 1458Google Scholar

    [22]

    Sun Q, Zhou J X, Zhang L 2003 J. Sound Vibr. 261 465Google Scholar

  • [1] 任航, 赵丹, 董立强, 刘少刚, 杨金水. 基于机器学习的磁流变弹性体磁致储能模量的快速准确表征. 物理学报, 2024, 73(16): 165101. doi: 10.7498/aps.73.20240482
    [2] 潘瑞琪, 李凡, 杜芷玮, 胡静, 莫润阳, 王成会. 平面波声场中内置偏心液滴的弹性球壳声辐射力. 物理学报, 2023, 72(5): 054302. doi: 10.7498/aps.72.20222155
    [3] 金江明, 谢添伟, 程昊, 肖岳鹏, D.Michael McFarland, 卢奂采. Duffing振子型结构声系统中声能量非互易传递的建模和实验研究. 物理学报, 2022, 71(10): 104301. doi: 10.7498/aps.71.20212181
    [4] 魏祥, 吴智政, 曹战, 王园园, DzikiMbemba. 基于磁液变形镜生成弯曲轨迹自加速类贝塞尔光束. 物理学报, 2019, 68(11): 114701. doi: 10.7498/aps.68.20190063
    [5] 陈鑫, 姚宏, 赵静波, 张帅, 贺子厚, 蒋娟娜. Helmholtz腔与弹性振子耦合结构带隙. 物理学报, 2019, 68(8): 084302. doi: 10.7498/aps.68.20182102
    [6] 刘少刚, 赵跃超, 赵丹. 基于磁流变弹性体多包覆层声学超材料带隙及传输谱特性. 物理学报, 2019, 68(23): 234301. doi: 10.7498/aps.68.20191334
    [7] 王军强, 欧阳酥. 金属玻璃流变的扩展弹性模型. 物理学报, 2017, 66(17): 176102. doi: 10.7498/aps.66.176102
    [8] 王观, 胡华, 伍康, 李刚, 王力军. 基于两级摆杆结构的超低频垂直隔振系统. 物理学报, 2016, 65(20): 200702. doi: 10.7498/aps.65.200702
    [9] 林林, 袁儒强, 张欣欣, 王晓东. 液滴在梯度微结构表面上的铺展动力学分析. 物理学报, 2015, 64(15): 154705. doi: 10.7498/aps.64.154705
    [10] 汤富领, 陈功宝, 谢勇, 路文江. Al表面的"类液"结构及其自扩散通道. 物理学报, 2011, 60(6): 066801. doi: 10.7498/aps.60.066801
    [11] 曹永军, 云国宏, 那日苏. 平面波展开法计算二维磁振子晶体带结构. 物理学报, 2011, 60(7): 077502. doi: 10.7498/aps.60.077502
    [12] 王学昭, 沈容, 路阳, 纪爱玲, 孙刚, 陆坤权, 崔平. 极性分子型电流变液导电机理研究. 物理学报, 2010, 59(10): 7144-7148. doi: 10.7498/aps.59.7144
    [13] 罗春荣, 王连胜, 郭继权, 黄勇, 赵晓鹏. 电流变液调控的连通树枝状结构左手材料. 物理学报, 2009, 58(5): 3214-3219. doi: 10.7498/aps.58.3214
    [14] 王连胜, 罗春荣, 黄 勇, 赵晓鹏. 基于电流变液的可调谐负磁导率材料. 物理学报, 2008, 57(6): 3571-3577. doi: 10.7498/aps.57.3571
    [15] 杨伟伟, 文玉梅, 李 平, 卞雷祥. GMM/弹性板/PZT层状复合结构的纵振磁电响应. 物理学报, 2008, 57(7): 4545-4551. doi: 10.7498/aps.57.4545
    [16] 欧阳成. 电流变液系统流动的渐近估计. 物理学报, 2004, 53(6): 1900-1902. doi: 10.7498/aps.53.1900
    [17] 赵晓鹏, 高秀敏, 郜丹军, 钟鸿飞. 颗粒质量导致的电流变液结构演化特征. 物理学报, 2002, 51(5): 1075-1080. doi: 10.7498/aps.51.1075
    [18] 赵晓鹏, 范吉军, 高秀敏, 曹昌年. 电流变液的微波透射调控行为. 物理学报, 2001, 50(7): 1302-1307. doi: 10.7498/aps.50.1302
    [19] 刘立伟, 王作维, 周鲁卫, 王治金, 高广君, 刘晓军. 微晶纤维素电流变液在挤压流中的粘弹性. 物理学报, 2000, 49(9): 1886-1891. doi: 10.7498/aps.49.1886
    [20] 邱志勇, 潘胜, 胡林, 刘湘, 周鲁卫. 电流变液的流变学响应与其非线性介电性质的关系. 物理学报, 1997, 46(2): 314-323. doi: 10.7498/aps.46.314
计量
  • 文章访问数:  8051
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-03
  • 修回日期:  2020-03-20
  • 刊出日期:  2020-05-05

/

返回文章
返回