搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非晶聚苯乙烯和Pd40Ni10Cu30P20玻璃化转变中比热变化的机理和定量研究

姜文龙

引用本文:
Citation:

非晶聚苯乙烯和Pd40Ni10Cu30P20玻璃化转变中比热变化的机理和定量研究

姜文龙

Mechanism and quantitative study of specific heat change during glass transition of amorphous polystyrene and Pd40Ni10Cu30P20

Jiang Wen-Long
PDF
HTML
导出引用
  • 玻璃化转变的本质是现代凝聚态物理中最有趣的问题之一. 有理论认为高分子玻璃化转变的本质是: 当主链原子的扩散运动概率P小于$ {{\rm{e}}^{ - 2{{\rm{e}}^3}}}$时, 必有比例不小于1 + 2e3/lnP的主链原子扩散运动被冻结. 以该理论的模量温度公式拟合文献的聚苯乙烯模量温度曲线, 得到聚苯乙烯的自由体积膨胀系数值在(0.00045, 0.00052)之间. 以此理论为基础推导得到了玻璃化转变中的比热温度公式: 玻璃化转变中的材料是橡胶和玻璃的混合物, 其中橡胶的比例是自由体积分数的链段中主链原子数次方, 总比热等于两组分各自的比热和比例之积的和. 用聚苯乙烯检验了该比热温度公式, 将计算得到的聚苯乙烯自由体积膨胀系数代入比热温度公式, 不需拟合任何参数公式就能够精准地定量描述聚苯乙烯玻璃化转变中的比热温度关系. 据分析, 聚苯乙烯的玻璃化转变过程是主链原子的扩散运动被激活或者被冻结的过程, 这和非晶合金相关研究结论一致. 以主链原子为摩尔计量单元时, 聚苯乙烯转变中的比热变化为1.61R (R为气体常数), 这和非晶合金玻璃化转变中比热变化约为1.5R的规律一致. 这些一致的结论预示非晶合金的玻璃化转变和聚苯乙烯的玻璃化转变具有相同的本质, 以此出发, 提出并证明了非晶合金Pd40Ni10Cu30P20和聚苯乙烯的比热温度公式是一致的.
    The nature of glass transition is one of the most interesting problems in modern condensed matter physics. There is a theory that shows that when the particle's diffusion motion probability P is less than $ {{\rm{e}}^{ - 2{{\rm{e}}^3}}}$, the proportion of particles whose diffusion motion is frozen is not less than 1 + 2e3/lnP. Based on the modulus temperature formula of this theory and the experimental modulus-temperature curve of polystyrene in the literature, the free volume expansion coefficient of polystyrene is determined to be in a range of 0.00045-0.00052. In this paper, we first quantitatively study the specific heat temperature relationship in the glass transition of polystyrene. Based on this theory, the specific heat-temperature formula in the glass transition region is derived. The material in the glass transition region is a mixture of rubber and glass, and this two-component (rubber and glass) system’s total specific heat is the product of the specific heat of the rubber and the percentage of rubber in the two-component system plus the product of the specific heat of the glass and the percentage of glass in the two-component system. Let b be the number of atoms in the main chain of the segment, then the proportion of rubber will be the b-th power of free volume fraction. This specific heat-temperature formula with polystyrene is tested. By substituting the obtained free volume expansion coefficient of the polystyrene into the specific heat-temperature formula, the resulting formula can accurately and quantitatively describe the specific heat-temperature relationship in the glass transition of polystyrene without fitting any parameters. In this paper, we also study the change of motion in the glass transition of polystyrene. According to the analysis, the glass transition process of polystyrene is a process in which the diffusion movement of the main chain atoms is activated or frozen, which is consistent with the conclusions of relevant research on amorphous alloys. When the main chain atom is used as the molar unit of measurement, the specific heat change in the glass transition of polystyrene is 1.61R (R is the gas constant), which is consistent with the law, i.e. “the specific heat change in the glass transition of the amorphous alloy is about 1.5R”. These consistent conclusions predict that the glass transitions of amorphous alloys and glass transitions of polystyrene have the same essence. Based on this idea, the specific heat temperature formulas of the amorphous alloy Pd40Ni10Cu30P20 and polystyrene are verified and prove to be consistent.
      通信作者: 姜文龙, guihuashu@126.com
      Corresponding author: Jiang Wen-Long, guihuashu@126.com
    [1]

    金肖, 王利民 2017 物理学报 66 176406Google Scholar

    Jin X, Wang L M 2017 Acta Phys. Sin. 66 176406Google Scholar

    [2]

    Angell C A 1995 Science 267 1924Google Scholar

    [3]

    汪卫华 2013 物理学进展 33 177

    Wang W H 2013 Progress in Physics 33 177

    [4]

    Ke H B, Wen P, Zhao D Q, Wang W H 2010 Appl. Phys. Lett. 96 251902Google Scholar

    [5]

    Ke H B, Wen P, Zhao Z F, Wang W H 2012 Chin. Phys. Lett. 29 046402Google Scholar

    [6]

    Ke H B, Wen P, Wang W H 2012 AIP Adv. 2 041404Google Scholar

    [7]

    李健, 张烨, 张声春 1996 物理学报 45 1359Google Scholar

    Li J, Zhang Y, Zhang C S 1996 Acta Phys. Sin. 45 1359Google Scholar

    [8]

    闻平 2017 物理学报 66 176407Google Scholar

    Wen P 2017 Acta Phys. Sin. 66 176407Google Scholar

    [9]

    任景莉, 于利萍, 张李盈 2017 物理学报 66 176401Google Scholar

    Ren J L, Yu L P, Zhang L Y 2017 Acta Phys. Sin. 66 176401Google Scholar

    [10]

    Angell C A, Ngai K L, McKenna G B, McMillan P F, Martin S W 2000 J. Appl. Phys. 88 3113Google Scholar

    [11]

    刘国栋, 张福强, 张丽娇, 王艳丽, 范留彬 2010 高分子学报 54 1065Google Scholar

    Liu G D, Zhang F Q, Zhang L J, Wang Y L, Fan L B 2010 Acta Polym. Sin. 54 1065Google Scholar

    [12]

    卢新亚, 姜炳政 1990 高分子学报 34 434

    Lu X Y, Jiang B Z 1990 Acta Polym. Sin. 34 434

    [13]

    何曼君, 陈维孝, 董西侠 1990 高分子物理(修订版)(上海: 复旦大学出版社) 第224−237页

    He M J, Chen W X, Dong X X 1990 Polymer Physics (Rev. ed.) (Shanghai: Fudan University Press) pp224−237 (in Chinese)

    [14]

    卓启疆 1987 聚合物自由体积 (成都: 成都科技大学出版社) 第138−144页

    Zhuo Q J 1987 Free Volume of Polymer (Chengdu: Chengdu University of Science And Technology Press) pp138−144 (in Chinese)

    [15]

    姜文龙 2019 玻璃化转变中高弹模量的定量研究 (北京: 中国科技论文在线) [2019-07-05]

    Jiang W L 2019 Numerical Study of Plateau Modulus in Glass Transition (Beijing: Sciencepaper Online) [2019-07-05] (in Chinese)

    [16]

    傅献彩, 沈文霞, 姚天扬, 侯文华 2005 物理化学(上册, 第五版) (北京: 高等教育出版社) 第396−397页

    Fu X C, Shen W X, Yao T Y, Hou W H 2005 Physical Chemistry (Vol. 1, 5th Ed.) (Beijing: Higher Education Press) pp396−397 (in Chinese)

    [17]

    于同隐, 何曼君, 卜海山, 胡家璁, 张炜 1986 高聚物的粘弹性 (上海: 上海科学技术出版社) 第38−44页

    Yu T Y, He M J, Bo H S, He J C, Zhang W 1986 Viscoelasticity of Polymers (Shanghai: Shanghai Science & Technology Publishers) pp38−44 (in Chinese)

    [18]

    Mark J E 1999 Polymer Data Handbook (Oxford: Oxford University Press) pp830−836

    [19]

    林晶晶, 左阳, 刘国栋 2014 河北工业大学学报 43 33

    Lin J J, Zuo Y, Liu G D 2014 Journal of Hebei University of Technology 43 33

    [20]

    李丽霞, 赵冬梅, 范留彬, 刘国栋 2011 河北大学学报(自然科学版) 31 617

    Li L X, Zhao D M, Fan L B, Liu G D 2011 Journal of Hebei University (Natural Science Edition) 31 617

  • 图 1  以不同${a_{\rm{f}}}$值拟合的不同分子量的聚苯乙烯的模量-温度曲线(文献值的原数据取自文献[17]) (a) ${a_{\rm{f}}}=0.00045$; (b) ${a_{\rm{f}}}=0.00048$; (c) ${a_{\rm{f}}}=0.00052$

    Fig. 1.  Modulus-temperature curves of polystyrene at different molecular weight under different ${a_{\rm{f}}}$ (The source data of the reference values marked in panel are extracted from Ref. [17]): (a) ${a_{\rm{f}}}=0.00045$; (b) ${a_{\rm{f}}}=0.00048$; (c) ${a_{\rm{f}}}=$ 0.00052

    图 2  不同降温速度后升温的聚苯乙烯的DSC测试结果[19,20] (a) 0.1, 1, 10, 100 K/min; (b) 10, 20, 100 K/min

    Fig. 2.  DSC experimental results of polystyrene recorded after cooling at different cooling rates[19,20]: (a) 0.1, 1, 10, 100 K/min; (b) 10, 20, 100 K/min.

    图 3  不同${a_{\rm{f}}}$值的聚苯乙烯的$C_{\rm{p}}^{\rm{N}}$的实验值和计算值(实验值的原数据取自文献[20]) (a) ${a_{\rm{f}}}$ = 0.00045; (b) ${a_{\rm{f}}}$ = 0.00052

    Fig. 3.  Experimental and predicted $C_{\rm{p}}^{\rm{N}}$ of PS at different ${a_{\rm{f}}}$ (The source data of the experimental values marked in panel are extracted from Ref. [20]): (a) ${a_{\rm{f}}}$ = 0.00045; (b) af = 0.00052.

    图 4  Pd40Ni10Cu30P20的比热温度曲线(文献值的原数据取自文献[4]) (a) af = 0.00027, b = 11.57; (b) af = 0.00043, b = 7.20

    Fig. 4.  Specific heat-temperature curves of Pd40Ni10Cu30P20 (The source data of the reference values marked in panel are extracted from Ref. [4]): (a) af = 0.00027, b = 11.57; (b) af = 0.00043, b = 7.20.

  • [1]

    金肖, 王利民 2017 物理学报 66 176406Google Scholar

    Jin X, Wang L M 2017 Acta Phys. Sin. 66 176406Google Scholar

    [2]

    Angell C A 1995 Science 267 1924Google Scholar

    [3]

    汪卫华 2013 物理学进展 33 177

    Wang W H 2013 Progress in Physics 33 177

    [4]

    Ke H B, Wen P, Zhao D Q, Wang W H 2010 Appl. Phys. Lett. 96 251902Google Scholar

    [5]

    Ke H B, Wen P, Zhao Z F, Wang W H 2012 Chin. Phys. Lett. 29 046402Google Scholar

    [6]

    Ke H B, Wen P, Wang W H 2012 AIP Adv. 2 041404Google Scholar

    [7]

    李健, 张烨, 张声春 1996 物理学报 45 1359Google Scholar

    Li J, Zhang Y, Zhang C S 1996 Acta Phys. Sin. 45 1359Google Scholar

    [8]

    闻平 2017 物理学报 66 176407Google Scholar

    Wen P 2017 Acta Phys. Sin. 66 176407Google Scholar

    [9]

    任景莉, 于利萍, 张李盈 2017 物理学报 66 176401Google Scholar

    Ren J L, Yu L P, Zhang L Y 2017 Acta Phys. Sin. 66 176401Google Scholar

    [10]

    Angell C A, Ngai K L, McKenna G B, McMillan P F, Martin S W 2000 J. Appl. Phys. 88 3113Google Scholar

    [11]

    刘国栋, 张福强, 张丽娇, 王艳丽, 范留彬 2010 高分子学报 54 1065Google Scholar

    Liu G D, Zhang F Q, Zhang L J, Wang Y L, Fan L B 2010 Acta Polym. Sin. 54 1065Google Scholar

    [12]

    卢新亚, 姜炳政 1990 高分子学报 34 434

    Lu X Y, Jiang B Z 1990 Acta Polym. Sin. 34 434

    [13]

    何曼君, 陈维孝, 董西侠 1990 高分子物理(修订版)(上海: 复旦大学出版社) 第224−237页

    He M J, Chen W X, Dong X X 1990 Polymer Physics (Rev. ed.) (Shanghai: Fudan University Press) pp224−237 (in Chinese)

    [14]

    卓启疆 1987 聚合物自由体积 (成都: 成都科技大学出版社) 第138−144页

    Zhuo Q J 1987 Free Volume of Polymer (Chengdu: Chengdu University of Science And Technology Press) pp138−144 (in Chinese)

    [15]

    姜文龙 2019 玻璃化转变中高弹模量的定量研究 (北京: 中国科技论文在线) [2019-07-05]

    Jiang W L 2019 Numerical Study of Plateau Modulus in Glass Transition (Beijing: Sciencepaper Online) [2019-07-05] (in Chinese)

    [16]

    傅献彩, 沈文霞, 姚天扬, 侯文华 2005 物理化学(上册, 第五版) (北京: 高等教育出版社) 第396−397页

    Fu X C, Shen W X, Yao T Y, Hou W H 2005 Physical Chemistry (Vol. 1, 5th Ed.) (Beijing: Higher Education Press) pp396−397 (in Chinese)

    [17]

    于同隐, 何曼君, 卜海山, 胡家璁, 张炜 1986 高聚物的粘弹性 (上海: 上海科学技术出版社) 第38−44页

    Yu T Y, He M J, Bo H S, He J C, Zhang W 1986 Viscoelasticity of Polymers (Shanghai: Shanghai Science & Technology Publishers) pp38−44 (in Chinese)

    [18]

    Mark J E 1999 Polymer Data Handbook (Oxford: Oxford University Press) pp830−836

    [19]

    林晶晶, 左阳, 刘国栋 2014 河北工业大学学报 43 33

    Lin J J, Zuo Y, Liu G D 2014 Journal of Hebei University of Technology 43 33

    [20]

    李丽霞, 赵冬梅, 范留彬, 刘国栋 2011 河北大学学报(自然科学版) 31 617

    Li L X, Zhao D M, Fan L B, Liu G D 2011 Journal of Hebei University (Natural Science Edition) 31 617

  • [1] 张剑, 郝奇, 张浪渟, 乔吉超. 不同力学激励形式探索La基非晶合金微观结构非均匀性. 物理学报, 2024, 73(4): 046101. doi: 10.7498/aps.73.20231421
    [2] 张婧祺, 郝奇, 吕国建, 熊必金, 乔吉超. 基于微观结构非均匀性理解非晶态聚苯乙烯的应力松弛行为. 物理学报, 2024, 73(3): 037601. doi: 10.7498/aps.73.20231240
    [3] 孙星, 默广, 赵林志, 戴兰宏, 吴忠华, 蒋敏强. 小角X射线散射表征非晶合金纳米尺度结构非均匀. 物理学报, 2017, 66(17): 176109. doi: 10.7498/aps.66.176109
    [4] 陈娜, 张盈祺, 姚可夫. 源于非晶合金的透明磁性半导体. 物理学报, 2017, 66(17): 176113. doi: 10.7498/aps.66.176113
    [5] 柳延辉. 非晶合金的高通量制备与表征. 物理学报, 2017, 66(17): 176106. doi: 10.7498/aps.66.176106
    [6] 管鹏飞, 王兵, 吴义成, 张珊, 尚宝双, 胡远超, 苏锐, 刘琪. 不均匀性:非晶合金的灵魂. 物理学报, 2017, 66(17): 176112. doi: 10.7498/aps.66.176112
    [7] 平志海, 钟鸣, 龙志林. 基于逾渗理论的非晶合金屈服行为研究. 物理学报, 2017, 66(18): 186101. doi: 10.7498/aps.66.186101
    [8] 冯涛, Horst Hahn, Herbert Gleiter. 纳米结构非晶合金材料研究进展. 物理学报, 2017, 66(17): 176110. doi: 10.7498/aps.66.176110
    [9] 柯海波, 蒲朕, 张培, 张鹏国, 徐宏扬, 黄火根, 刘天伟, 王英敏. 铀基非晶合金的发展现状. 物理学报, 2017, 66(17): 176104. doi: 10.7498/aps.66.176104
    [10] 王峥, 汪卫华. 非晶合金中的流变单元. 物理学报, 2017, 66(17): 176103. doi: 10.7498/aps.66.176103
    [11] 卞西磊, 王刚. 非晶合金的离子辐照效应. 物理学报, 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [12] 林生军, 黄印, 谢东日, 闵道敏, 王威望, 杨柳青, 李盛涛. 环氧树脂高温分子链松弛与玻璃化转变特性. 物理学报, 2016, 65(7): 077701. doi: 10.7498/aps.65.077701
    [13] 徐春龙, 侯兆阳, 刘让苏. Ca70Mg30金属玻璃形成过程热力学、 动力学和结构特性转变机理的模拟研究. 物理学报, 2012, 61(13): 136401. doi: 10.7498/aps.61.136401
    [14] 张丽丽, 张晋鲁, 蒋建国, 周恒为, 黄以能. 取向玻璃体系中分子之间取向关联的模型化及其模拟与分析. 物理学报, 2008, 57(9): 5817-5822. doi: 10.7498/aps.57.5817
    [15] 王海龙, 王秀喜, 王 宇, 梁海弋. 非晶Ti3Al合金的变形晶化机理的原子模拟. 物理学报, 2007, 56(3): 1489-1493. doi: 10.7498/aps.56.1489
    [16] 闫志杰, 李金富, 周尧和, 仵彦卿. 压痕塑性变形诱导非晶合金的晶化. 物理学报, 2007, 56(2): 999-1003. doi: 10.7498/aps.56.999
    [17] 程伟东, 孙民华, 李佳云, 王爱屏, 孙永丽, 刘 芳, 刘雄军. Cu60Zr30Ti10非晶合金弛豫和晶化过程的小角X射线散射研究. 物理学报, 2006, 55(12): 6673-6676. doi: 10.7498/aps.55.6673
    [18] 仪桂云, 董 鹏, 王晓冬, 刘丽霞, 陈胜利. 三维有序大孔聚苯乙烯的制备及表征. 物理学报, 2004, 53(10): 3311-3315. doi: 10.7498/aps.53.3311
    [19] 周效锋, 陶淑芬, 刘佐权, 阚家德, 李德修. Fe73.5Cu1Nb3Si13.5B9非晶合金的激波纳米晶化速率和晶化度的对比研究. 物理学报, 2002, 51(2): 322-325. doi: 10.7498/aps.51.322
    [20] 王晓强, 谢二庆, 钱秉中, 贺德衍, 朱智勇, 金运范. 离子辐照对聚苯乙烯低温导电特性的影响. 物理学报, 2002, 51(5): 1094-1097. doi: 10.7498/aps.51.1094
计量
  • 文章访问数:  7120
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-04
  • 修回日期:  2020-04-01
  • 刊出日期:  2020-06-20

/

返回文章
返回