搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自由流体层与多孔介质层界面的盐指现象的统一域法模拟

张先飞 王玲玲 朱海 曾诚

引用本文:
Citation:

自由流体层与多孔介质层界面的盐指现象的统一域法模拟

张先飞, 王玲玲, 朱海, 曾诚

Numerical study on salt finger at interface between fluid layer and porous layer by single-domain approach

Zhang Xian-Fei, Wang Ling-Ling, Zhu Hai, Zeng Cheng
PDF
HTML
导出引用
  • 自由流体层和多孔介质层交界处同时存在温度梯度和盐度梯度会导致盐指型双扩散对流的发生, 改变流体的运动状态, 进而影响物质输移规律. 本文建立了流体层与多孔介质层界面双扩散耦合模型, 模型采用统一域法, 在上下层分别计算水动力-温度-浓度输运方程, 用快速傅里叶变换求解统一域内流函数方程. 计算分析了$ \phi = 0.3{{5}},\;0.4{{0}},\;1 $的三个典型工况, 研究在多孔介质层不同孔隙率下盐指的对流结构和演变过程, 讨论了稳定密度分层下物质输移现象及其输运特性. 结果表明, 与分层水体中的盐指不同, 流体层和多孔介质层界面的盐指具有非对称结构, 多孔介质层的下沉盐指较于上升盐指更宽, 生长速度慢, 在混合区域内具有更好的输运能力. 研究发现多孔介质中固体的存在极大地阻碍了盐指对流的生长, 同时影响了垂向的物质通量; 在孔隙率高的工况中, 由盐度的不稳定分层储存的潜在势能更多地转化为动能, 从而增加了垂直方向上的物质输运, 使盐指具有更强的混合能力.
    Simultaneous occurrence of temperature gradient and solute gradient at the fluid-sediment interface is conducive to the onset of salt-finger convection, which may in turn cause adverse effects on fluid mechanism. Ignoring the existence of salt finger would lead to numerical errors or sometimes even qualitative error in calculation of vertical mass fluxes. In this paper, a single-domain approach is adopted for the two-dimensional numerical model of flow coupled temperature and solute in a composite region made up of an upper fluid layer and an underlying saturated porous layer to investigate the evolution of the double diffusion convection of salt-finger form at the fluid-saturated porous interface. Darcian model describing the porous medium and incompressible Navier-Stokes equations in the fluid layer are solved at the same time, where different heat capacities, thermal conductivities and solute diffusion coefficients are considered. Three cases for $ \phi = 0.3{{5}},\;0.4{{0}},\;1 $ are considerded to study the evolution process and structure of salt fingers. The evolution process of salt finger is divided into three stages: diffusion stage, linear growth stage and slow growth stage. For all cases, the kinetic energy is transformed rapidly at linear growth stage, which promotes the mixture of momentum, temperature and salinity at the interface. Then at the slow growth stage, the kinetic energy conversion rate becomes slower before finally the kinetic energy is dissipated by the viscosity and friction. The results show that unlike the salt finger structure in stratified fluid, an asymmetric structure of salt finger is discovered where finger in the porous medium is shorter and wider. The existence of solid skeleton in porous medium hinders the growth of salt finger and reduces the vertical mass flux. Compared with the temperature, the salinity fluctuates more greatly at the interface, which also means that the effect of salt finger on salinity is greater than that of temperature. It is found that the higher the porosity, the faster the growth of thickness of salt finger interface is. Under the condition of high porosity, the potential energy stored by the unstable stratification of salinity is converted much more into kinetic energy, which increases the transport of heat and mass in the vertical direction and thus enhances the mixture capability of salt finger in the vertical direction.
      通信作者: 王玲玲, 706584934@qq.com
    • 基金项目: 国家重点研发计划(批准号: 2017YFC0405605)、中央高校基本科研业务费专项资金(批准号: 2018B615X14)、国家自然科学基金(批准号: 51879086, 51479058, 51709126)、国家重点实验室基本科研业务费自主研究项目(批准号: 20185044412)、高等学校学科创新引智计划(批准号: B17015)和江苏省研究生科研与实践创新计划项目(批准号: KYCX18_0600)资助的课题
      Corresponding author: Wang Ling-Ling, 706584934@qq.com
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFC0405605), the Fundamental Research Fund for the Central Universities, China (Grant No. 2018B615X14), the National Natural Science Foundation of China (Grant Nos. 51879086, 51479058, 51709126), the Independent Research Project for the Fundamental Research Funds of the State Key Laboratories, China (Grant No. 20185044412), the 111Project (Grant No. B17015), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX18_0600)
    [1]

    Schmitt R W 1983 Phys. Fluids 26 2373Google Scholar

    [2]

    Slim A C, Bandi M M, Miller J C, Mahadevan L 2013 Phys. Fluids 25 024101Google Scholar

    [3]

    Hage E, Tilgner A 2010 Phys. Fluids 22 11Google Scholar

    [4]

    Rehman F, Singh O P 2017 Geophys. Astrophys. Fluid Dyn. 111 1Google Scholar

    [5]

    Chen F, Chen C F 1993 Int. J. Heat Mass Transfer 36 793Google Scholar

    [6]

    Piacsek S A, Toomre J 1980 Elsevier Oceanogr. Ser. 28 193Google Scholar

    [7]

    Özgökmen T M, Esenkov O E, Olson D B 1998 J. Mar. Res. 56 463Google Scholar

    [8]

    Kluikov Y Y, Karlin L N 1995 GMS 94 287Google Scholar

    [9]

    Schmitt R W, Ledwell J R, Montgomery E T, Polzin K, Toole J 2005 Science 308 685Google Scholar

    [10]

    罗莹莹, 詹杰民, 李毓湘 2008 物理学报 57 2306Google Scholar

    Luo Y, Zhan J, Li S 2008 Acta Phys. Sin. 57 2306Google Scholar

    [11]

    郑来运, 赵秉新, 杨建青 2020 物理学报 69 074701Google Scholar

    Zheng L Y, Zhao B X, Yang J Q 2020 Acta Phys. Sin. 69 074701Google Scholar

    [12]

    Chen F, Chen C F 1988 J. Heat Transfer 110 403Google Scholar

    [13]

    Cooper C A, Glass R J, Tyler S W 2001 Water Resour. Res. 37 2323Google Scholar

    [14]

    Werner C L 2007 Ph. D. Dissertation (Tallahassee: Florida State University)

    [15]

    Singh O P, Srinivasan J 2014 Phys. Fluids 26 2373Google Scholar

    [16]

    Shen C Y 1993 Phys. Fluids 5 2633Google Scholar

    [17]

    Fernandes A M, Krishnamurti R 2010 J. Fluid Mech. 658 148Google Scholar

    [18]

    Copley S M, Giamei A F, Johnson S M, Hornbecker M F 1970 Metall. Trans. 1 2193Google Scholar

    [19]

    Basu A J, Khalili A 1999 Phys. Fluids 11 1395Google Scholar

    [20]

    Shen C J, Jin G Q, Xin P, Kong J, Li L 2015 Water Resour. Res. 51 4301Google Scholar

    [21]

    Beavers G S, Joseph D D 1967 J. Fluid Mech. 30 11Google Scholar

    [22]

    Kuznetsov A V 1997 Int. Commun. Heat Mass Transfer 24 401Google Scholar

    [23]

    娄钦, 黄一帆, 李凌 2019 物理学报 68 214702Google Scholar

    Lou Q, Huang Y, Li L 2019 Acta Phys. Sin. 68 214702Google Scholar

    [24]

    Caltagirone J P 1975 J. Fluid Mech. 72 269Google Scholar

    [25]

    Zhan J M, Luo Y Y, Li Y S 2008 Appl. Math. Modell. 32 873Google Scholar

    [26]

    Zhang X F, Wang L L, Lin C, Zhu H, Zeng C 2018 Phys. Fluids 30 022110Google Scholar

    [27]

    Garaud P 2018 Annu. Rev. Fluid Mech. 50 275Google Scholar

    [28]

    Kunze E 1987 J. Mar. Res. 45 533Google Scholar

  • 图 1  水沙交界面盐指计算模型及初始条件

    Fig. 1.  Computational model and initial condition of salt finger at fluid-sediment interface.

    图 2  盐度场的三个演变过程 (a) 扩散阶段; (b) 线性增长期; (c) 缓慢增长期

    Fig. 2.  Three evolution phases of the salinity field: (a) Early formation; (b) linear growth of fingers; (c) the slow growth period.

    图 3  上下层界面位置随时间变化, 其中实线和虚线分别表示上层和下层

    Fig. 3.  Positions of the upper and lower mixed-finger interface versus time for all experiments. The solid line and dashed line represent the upper and lower layers, respectively.

    图 4  温度与盐度的分布图 (a) $\phi = 0.40$工况, $t = 0.15$$\left\langle T \right\rangle $, $\left\langle S \right\rangle $剖面; (b) S云图; (c) T云图

    Fig. 4.  Horizontally averaged T and S profiles (a) for $\phi = 0.40$ at $t = 0.15$ with salinity field in (b) and temperature field in (c).

    图 5  $\phi = 0.40$工况界面盐指的传热传质效应

    Fig. 5.  Heat and salinity transfer at the interface for $\phi = 0.40$.

    图 6  $\phi = 0.35$工况界面盐指的传热传质效应

    Fig. 6.  Heat and salinity transfer at the interface for $\phi = 0.35$.

    图 7  瞬时速度场分布图 (a) $\phi = {1}$工况, $t = 0.075$时; (b)$\phi = 0.40$工况, $t = 0.18$

    Fig. 7.  Velocity field for (a)$\phi = {1}$ at $t = 0.075$ and (b) $\phi = 0.40$ at $t = 0.18$.

    图 8  全域总动能演变

    Fig. 8.  Evolution of basin-integrated kinetic energy.

    图 9  $\phi = {1}$工况, $t = 0.05$时界面$z = 0$处温度、盐度和垂向速度(缩小100倍)分布图

    Fig. 9.  $T',\; S'$ and w along $z = 0$ for $\phi = 0.35$ at $t = 0.10$(w is scaled by 100).

    图 10  $\phi = 0.40$工况, $t = 0.10$时界面$z = 0$处温度、盐度和垂向速度(缩小100倍)分布图

    Fig. 10.  $T',\; S'$ and w along $z = 0$ for $\phi = 0.35$ at $t = 0.10$(w is scaled by 100).

    图 11  三个工况界面处$z = 0$通量比${R_{\rm{f}}}$随时间变化

    Fig. 11.  Flux ratio ${R_{\rm{f}}}$ along $z = 0$ versus time for all cases

    表 1  无量纲参数取值

    Table 1.  Values of dimensionless parameters.

    无量纲参数PrLeRaNΦ
    取值71005000020.35, 0.4, 1
    下载: 导出CSV
  • [1]

    Schmitt R W 1983 Phys. Fluids 26 2373Google Scholar

    [2]

    Slim A C, Bandi M M, Miller J C, Mahadevan L 2013 Phys. Fluids 25 024101Google Scholar

    [3]

    Hage E, Tilgner A 2010 Phys. Fluids 22 11Google Scholar

    [4]

    Rehman F, Singh O P 2017 Geophys. Astrophys. Fluid Dyn. 111 1Google Scholar

    [5]

    Chen F, Chen C F 1993 Int. J. Heat Mass Transfer 36 793Google Scholar

    [6]

    Piacsek S A, Toomre J 1980 Elsevier Oceanogr. Ser. 28 193Google Scholar

    [7]

    Özgökmen T M, Esenkov O E, Olson D B 1998 J. Mar. Res. 56 463Google Scholar

    [8]

    Kluikov Y Y, Karlin L N 1995 GMS 94 287Google Scholar

    [9]

    Schmitt R W, Ledwell J R, Montgomery E T, Polzin K, Toole J 2005 Science 308 685Google Scholar

    [10]

    罗莹莹, 詹杰民, 李毓湘 2008 物理学报 57 2306Google Scholar

    Luo Y, Zhan J, Li S 2008 Acta Phys. Sin. 57 2306Google Scholar

    [11]

    郑来运, 赵秉新, 杨建青 2020 物理学报 69 074701Google Scholar

    Zheng L Y, Zhao B X, Yang J Q 2020 Acta Phys. Sin. 69 074701Google Scholar

    [12]

    Chen F, Chen C F 1988 J. Heat Transfer 110 403Google Scholar

    [13]

    Cooper C A, Glass R J, Tyler S W 2001 Water Resour. Res. 37 2323Google Scholar

    [14]

    Werner C L 2007 Ph. D. Dissertation (Tallahassee: Florida State University)

    [15]

    Singh O P, Srinivasan J 2014 Phys. Fluids 26 2373Google Scholar

    [16]

    Shen C Y 1993 Phys. Fluids 5 2633Google Scholar

    [17]

    Fernandes A M, Krishnamurti R 2010 J. Fluid Mech. 658 148Google Scholar

    [18]

    Copley S M, Giamei A F, Johnson S M, Hornbecker M F 1970 Metall. Trans. 1 2193Google Scholar

    [19]

    Basu A J, Khalili A 1999 Phys. Fluids 11 1395Google Scholar

    [20]

    Shen C J, Jin G Q, Xin P, Kong J, Li L 2015 Water Resour. Res. 51 4301Google Scholar

    [21]

    Beavers G S, Joseph D D 1967 J. Fluid Mech. 30 11Google Scholar

    [22]

    Kuznetsov A V 1997 Int. Commun. Heat Mass Transfer 24 401Google Scholar

    [23]

    娄钦, 黄一帆, 李凌 2019 物理学报 68 214702Google Scholar

    Lou Q, Huang Y, Li L 2019 Acta Phys. Sin. 68 214702Google Scholar

    [24]

    Caltagirone J P 1975 J. Fluid Mech. 72 269Google Scholar

    [25]

    Zhan J M, Luo Y Y, Li Y S 2008 Appl. Math. Modell. 32 873Google Scholar

    [26]

    Zhang X F, Wang L L, Lin C, Zhu H, Zeng C 2018 Phys. Fluids 30 022110Google Scholar

    [27]

    Garaud P 2018 Annu. Rev. Fluid Mech. 50 275Google Scholar

    [28]

    Kunze E 1987 J. Mar. Res. 45 533Google Scholar

  • [1] 金燕, 石子璇, 金奕扬, 田文得, 张天辉, 陈康. 有限多孔介质诱导活性哑铃的聚集行为. 物理学报, 2024, 73(16): 160502. doi: 10.7498/aps.73.20240784
    [2] 张沐安, 王进卿, 吴睿, 冯致, 詹明秀, 徐旭, 池作和. 多孔介质内气泡Ostwald熟化特性三维孔网数值模拟. 物理学报, 2023, 72(16): 164701. doi: 10.7498/aps.72.20230695
    [3] 孟菁饴, 卢红伟, 马世乐, 张嘉奇, 何富民, 苏伟涛, 赵晓东, 田婷, 王翼, 邢誉. 功能化原子力显微镜在纳米电介质材料性能研究中的应用进展. 物理学报, 2022, 71(24): 240701. doi: 10.7498/aps.71.20221462
    [4] 刘高洁, 邵子宇, 娄钦. 多孔介质中含溶解反应的互溶驱替过程格子Boltzmann研究. 物理学报, 2022, 71(5): 054702. doi: 10.7498/aps.71.20211851
    [5] 刘高洁, 邵子宇, 娄钦. 多孔介质中含有溶解反应的互溶驱替过程格子Boltzmann研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211851
    [6] 唐国智, 汪垒, 李顶根. 使用条件生成对抗网络生成预定导热率多孔介质. 物理学报, 2021, 70(5): 054401. doi: 10.7498/aps.70.20201061
    [7] 乔厚, 何锃, 张恒堃, 彭伟才, 江雯. 二维含多孔介质周期复合结构声传播分析. 物理学报, 2019, 68(12): 128101. doi: 10.7498/aps.68.20190164
    [8] 娄钦, 黄一帆, 李凌. 不可压幂律流体气-液两相流格子Boltzmann 模型及其在多孔介质内驱替问题中的应用. 物理学报, 2019, 68(21): 214702. doi: 10.7498/aps.68.20190873
    [9] 仇浩淼, 夏唐代, 何绍衡, 陈炜昀. 流体/准饱和多孔介质中伪Scholte波的传播特性. 物理学报, 2018, 67(20): 204302. doi: 10.7498/aps.67.20180853
    [10] 何宗旭, 严微微, 张凯, 杨向龙, 魏义坤. 底部局部加热多孔介质自然对流传热的格子Boltzmann模拟. 物理学报, 2017, 66(20): 204402. doi: 10.7498/aps.66.204402
    [11] 贾宇鹏, 王景甫, 郑坤灿, 张兵, 潘刚, 龚志军, 武文斐. 应用粒子图像测试技术测量球床多孔介质单相流动的流场. 物理学报, 2016, 65(10): 106701. doi: 10.7498/aps.65.106701
    [12] 刘高洁, 郭照立, 施保昌. 多孔介质中流体流动及扩散的耦合格子Boltzmann模型. 物理学报, 2016, 65(1): 014702. doi: 10.7498/aps.65.014702
    [13] 张婷, 施保昌, 柴振华. 多孔介质内溶解与沉淀过程的格子Boltzmann方法模拟. 物理学报, 2015, 64(15): 154701. doi: 10.7498/aps.64.154701
    [14] 王平, 尹玉真, 沈胜强. 三维有序排列多孔介质对流换热的数值研究. 物理学报, 2014, 63(21): 214401. doi: 10.7498/aps.63.214401
    [15] 韩庆邦, 徐杉, 谢祖峰, 葛蕤, 王茜, 赵胜永, 朱昌平. Scholte波与含泥沙两相流介质属性关系的分析及仿真验证. 物理学报, 2013, 62(19): 194301. doi: 10.7498/aps.62.194301
    [16] 郑坤灿, 温治, 王占胜, 楼国锋, 刘训良, 武文斐. 前沿领域综述多孔介质强制对流换热研究进展. 物理学报, 2012, 61(1): 014401. doi: 10.7498/aps.61.014401
    [17] 员美娟, 郁伯铭, 郑伟, 袁洁. 多孔介质中卡森流体的分形分析. 物理学报, 2011, 60(2): 024703. doi: 10.7498/aps.60.024703
    [18] 赵明, 郁伯铭. 基于分形多孔介质三维网络模型的非混溶两相流驱替数值模拟. 物理学报, 2011, 60(9): 098103. doi: 10.7498/aps.60.098103
    [19] 罗莹莹, 詹杰民, 李毓湘. 多孔介质中盐指现象的数值模拟. 物理学报, 2008, 57(4): 2306-2313. doi: 10.7498/aps.57.2306
    [20] 崔志文, 王克协, 曹正良, 胡恒山. 多孔介质BISQ模型中的慢纵波. 物理学报, 2004, 53(9): 3083-3089. doi: 10.7498/aps.53.3083
计量
  • 文章访问数:  6538
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-09
  • 修回日期:  2020-06-24
  • 上网日期:  2020-10-28
  • 刊出日期:  2020-11-05

/

返回文章
返回