搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

层裂损伤孔洞增长模型参数的确定方法及其应用

张凤国 刘军 何安民 王裴 王昆 周洪强 赵福祺

引用本文:
Citation:

层裂损伤孔洞增长模型参数的确定方法及其应用

张凤国, 刘军, 何安民, 王裴, 王昆, 周洪强, 赵福祺

Method of determining parameters of void growth damage model and its application to simulation of spall test

Zhang Feng-Guo, Liu Jun, He An-Min, Wang Pei, Wang Kun, Zhou Hong-Qiang, Zhao Fu-Qi
PDF
HTML
导出引用
  • 基于自由面速度曲线及其与层裂面处物理量变化之间的关联, 考虑层裂损伤演化过程中波的传播与相互作用, 进一步探讨了损伤演化过程中的临界状态, 分析了孔洞增长层裂损伤模型参数所包含的物理涵义, 并给出基于物理的模型参数确定方法. 通过对两种典型延性金属OFHC铜和钽层裂实验结果的模拟, 验证了该方法的合理性. 本文给出的参数确定方法不仅可以扩展模型的适用范围, 有效提高计算结果的可信度, 同时, 也为其他层裂损伤模型参数的确定提供了很好的借鉴作用.
    Spallation of ductile metal is of great importance in many scientific and engineering fields, which is due to the interaction between the incident shock waves and the reflected waves. Physically, the spallation is caused by nucleation, growth and coalescence of microvoids for ductile material. Therefore, numerical simulation of spall process usually involves theoretical model of void growth. However, due to the limited knowledge of microvoid properties, many empirical parameters are included in the void growth model, which are usually determined by comparing numerical results with experimental data. Therefore, a key problem arises in the numerical modeling of damage and spall fracture, that how the parameters of the void growth damage model can be determined. In this work, we present a theoretical method to determine the parameters based on the free surface velocity (FSV) profile. Firstly, the critical state of damage is discussed based on the relationship between characteristics of FSV and change of physical quantity in spall plane. Then, the propagation and interaction of shock waves during the evolution of spall damage are considered. Lastly, the physical meanings of the parameters of the void growth damage model are further discussed. So, based on the relation among spall strength, damage and pull-back of FSV, a physics-based method to determine the parameters of the model is given. The applicability of this method is verified by the simulation of the spall experimental data on typical ductile metals OFHC copper and tantalum. The parameter-determining method given in this paper can not only expand the scope of application of the damage model and effectively improve the reliability of the calculation results, but also provide a good reference for the determination of parameters of other spall damage model.
      通信作者: 张凤国, zhang_fengguo@iapcm.ac.cn
    • 基金项目: 科学挑战专题(批准号: TZ2018001)和国家自然科学基金(批准号: U1530261)资助的课题
      Corresponding author: Zhang Feng-Guo, zhang_fengguo@iapcm.ac.cn
    • Funds: Project supported by the Science Challenge Project, China (Grant No. TZ2018001) and the National Natural Science Foundation of China (Grant No. U1530261)
    [1]

    Meyers M A, Aimone C T 1983 Prog. Mater. Sci. 28 1Google Scholar

    [2]

    Antoun T, Seaman L, Curran D R, Kanel G I, Razorenov S V, Utkin A V 2003 Spall Fracture (New York: Springer-Verlag

    [3]

    Kanel G I 2010 Int. J. Fract. 163 173Google Scholar

    [4]

    Tuler FR, Butcher B M 1968 Int. J. Fract. 44 431

    [5]

    Johnson J N 1981 J. Appl. Phys. 52 2812Google Scholar

    [6]

    Tonks D L, Thissell W R, Schwartz D S 2003 Shock Compression of Condensed Matter (New York: Melville)p507

    [7]

    Czarnota C, Jacques N, Mercier S, Molinari A 2008 J. Mech. Phys. Solids 56 1624Google Scholar

    [8]

    Wilkerson J W, Ramesh K T 2016 Phys. Rev. Lett. 117 215503Google Scholar

    [9]

    Zhang F G, Zhou H Q, Hu J, Shao J L, Zhang G C, Hong T, He B 2012 Chin. Phys. B 21 094601Google Scholar

    [10]

    Bai Y L, Ke F J, Xia M F 1991 Acta Mech. Sin. 7 59Google Scholar

    [11]

    裴晓阳, 彭辉, 贺红亮, 李平 2015 物理学报 64 054601Google Scholar

    Pei X Y, Peng H, He H L, Li P 2015 Acta Phys. Sin. 64 054601Google Scholar

    [12]

    张凤国, 周洪强 2013 物理学报 62 164601Google Scholar

    Zhang F G, Zhou H Q 2013 Acta Phys. Sin. 62 164601Google Scholar

    [13]

    Wilkerson J W 2017 Int. J. Plast. 95 1Google Scholar

    [14]

    Jacques N, Mercier S, Molinari A 2012 J. Mech. Phys. Solids 60 665Google Scholar

    [15]

    Johnson J N, Gray III G T, Bourne N K 1999 J. Appl. Phys. 86 4892Google Scholar

    [16]

    Escobedo J P, Dennis-Koller D, Cerreta E K, et al. 2011 J. Appl. Phys. 110 033513Google Scholar

    [17]

    Roy G 2003 Ph. D. Dissertation (ENSMA: University of Poitiers) (In French)

    [18]

    谢普初, 汪小松, 胡昌明, 胡建波, 张凤国, 王永刚 2020 物理学报 69 034601Google Scholar

    Xie P C, Wang X S, Hu C M, Hu J B, Zhang F G, Wang Y G 2020 Acta Phys. Sin. 69 034601Google Scholar

    [19]

    Versino D, Bronkhorst C A 2018 Comput. Meth. Appl. Mech. Eng. 333 395Google Scholar

    [20]

    Turley W D, Fensin S J, Hixson R S, Jones D R, La Lone B M, Stevens G D, Thomas S A, Veeser L R 2018 J. Appl. Phys. 123 055102Google Scholar

    [21]

    Rajendran A M, Dietenberger M A, Grove D J 1989 J. Appl. Phys. 65 1521Google Scholar

    [22]

    张凤国, 周洪强, 张广财, 洪涛 2011 物理学报 60 074601Google Scholar

    Zhang F G, Zhou H Q, Zhang G C, Hong T 2011 Acta Phys. Sin. 60 074601Google Scholar

    [23]

    Romanchenko V I, Stepanov G V 1980 J. Appl. Mech. Tech. Phys. 21 141Google Scholar

    [24]

    Ikkurthi V R, Chaturvedi S 2012 Int. J. Plast. Conf. Ser. 377 012099

    [25]

    Zerilli F J, Armstrong R W 1987 J. Appl. Phys. 61 1816Google Scholar

    [26]

    彭建祥, 李英雷, 李大红 2003 爆炸与冲击 23 183Google Scholar

    Peng J X, Li Y L, Li D H 2003 Explosion and Shock Waves 23 183Google Scholar

  • 图 1  损伤模型参数对自由面速度的影响 (a) 初始孔隙度的影响; (b) 剪切黏性系数的影响; (c) 材料硬化参数的影响

    Fig. 1.  Influences of spall model parameters on free surface velocities: (a) Effects of initial porosity; (b) effects of shear viscosity; (c) effects of work hardening.

    图 2  自由面速度曲线典型特征

    Fig. 2.  Characters of free surface velocity profile.

    图 3  OFHC铜层裂的自由面速度曲线

    Fig. 3.  Simulated free surface velocity profile for OFHC copper.

    图 4  不同飞片撞击速度的自由面速度曲线

    Fig. 4.  Simulated free surface velocity profiles with varied impact velocities.

    图 5  不同飞片厚度的自由面速度曲线

    Fig. 5.  Simulated free surface velocity profiles with varied flyer thickness.

    表 1  OFHC铜和钽的基本力学参数

    Table 1.  Material parameters of OFHC copper and tantalum.

    密度/kg·m–3剪切模量/GPa屈服强度/GPa体积声速/m·s–1纵波声速/m·s–1格林内森系数
    OFHC铜892448.40.15391047702.00
    1666069.00.70338641871.67
    下载: 导出CSV

    表 2  OFHC铜和钽的ZA本构模型参数

    Table 2.  Material parameters of OFHC copper and tantalum for Zerilli-Armstrong constitutive relations.

    A0/GPaA1/GPaA2A3A4/GPan
    OFHC铜0.04650.8900.002800.000150.0185
    0.29501.5190.009530.000320.40700.582
    下载: 导出CSV

    表 3  实验列表

    Table 3.  Parameters of shock experiments.

    实验1实验2实验3实验4实验5
    冲击速度/m·s–1412306212303307
    飞片厚度/mm33342
    靶板厚度/mm4.954.954.954.954.95
    下载: 导出CSV
  • [1]

    Meyers M A, Aimone C T 1983 Prog. Mater. Sci. 28 1Google Scholar

    [2]

    Antoun T, Seaman L, Curran D R, Kanel G I, Razorenov S V, Utkin A V 2003 Spall Fracture (New York: Springer-Verlag

    [3]

    Kanel G I 2010 Int. J. Fract. 163 173Google Scholar

    [4]

    Tuler FR, Butcher B M 1968 Int. J. Fract. 44 431

    [5]

    Johnson J N 1981 J. Appl. Phys. 52 2812Google Scholar

    [6]

    Tonks D L, Thissell W R, Schwartz D S 2003 Shock Compression of Condensed Matter (New York: Melville)p507

    [7]

    Czarnota C, Jacques N, Mercier S, Molinari A 2008 J. Mech. Phys. Solids 56 1624Google Scholar

    [8]

    Wilkerson J W, Ramesh K T 2016 Phys. Rev. Lett. 117 215503Google Scholar

    [9]

    Zhang F G, Zhou H Q, Hu J, Shao J L, Zhang G C, Hong T, He B 2012 Chin. Phys. B 21 094601Google Scholar

    [10]

    Bai Y L, Ke F J, Xia M F 1991 Acta Mech. Sin. 7 59Google Scholar

    [11]

    裴晓阳, 彭辉, 贺红亮, 李平 2015 物理学报 64 054601Google Scholar

    Pei X Y, Peng H, He H L, Li P 2015 Acta Phys. Sin. 64 054601Google Scholar

    [12]

    张凤国, 周洪强 2013 物理学报 62 164601Google Scholar

    Zhang F G, Zhou H Q 2013 Acta Phys. Sin. 62 164601Google Scholar

    [13]

    Wilkerson J W 2017 Int. J. Plast. 95 1Google Scholar

    [14]

    Jacques N, Mercier S, Molinari A 2012 J. Mech. Phys. Solids 60 665Google Scholar

    [15]

    Johnson J N, Gray III G T, Bourne N K 1999 J. Appl. Phys. 86 4892Google Scholar

    [16]

    Escobedo J P, Dennis-Koller D, Cerreta E K, et al. 2011 J. Appl. Phys. 110 033513Google Scholar

    [17]

    Roy G 2003 Ph. D. Dissertation (ENSMA: University of Poitiers) (In French)

    [18]

    谢普初, 汪小松, 胡昌明, 胡建波, 张凤国, 王永刚 2020 物理学报 69 034601Google Scholar

    Xie P C, Wang X S, Hu C M, Hu J B, Zhang F G, Wang Y G 2020 Acta Phys. Sin. 69 034601Google Scholar

    [19]

    Versino D, Bronkhorst C A 2018 Comput. Meth. Appl. Mech. Eng. 333 395Google Scholar

    [20]

    Turley W D, Fensin S J, Hixson R S, Jones D R, La Lone B M, Stevens G D, Thomas S A, Veeser L R 2018 J. Appl. Phys. 123 055102Google Scholar

    [21]

    Rajendran A M, Dietenberger M A, Grove D J 1989 J. Appl. Phys. 65 1521Google Scholar

    [22]

    张凤国, 周洪强, 张广财, 洪涛 2011 物理学报 60 074601Google Scholar

    Zhang F G, Zhou H Q, Zhang G C, Hong T 2011 Acta Phys. Sin. 60 074601Google Scholar

    [23]

    Romanchenko V I, Stepanov G V 1980 J. Appl. Mech. Tech. Phys. 21 141Google Scholar

    [24]

    Ikkurthi V R, Chaturvedi S 2012 Int. J. Plast. Conf. Ser. 377 012099

    [25]

    Zerilli F J, Armstrong R W 1987 J. Appl. Phys. 61 1816Google Scholar

    [26]

    彭建祥, 李英雷, 李大红 2003 爆炸与冲击 23 183Google Scholar

    Peng J X, Li Y L, Li D H 2003 Explosion and Shock Waves 23 183Google Scholar

计量
  • 文章访问数:  5154
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-10
  • 修回日期:  2020-06-01
  • 上网日期:  2020-10-10
  • 刊出日期:  2020-10-20

/

返回文章
返回