搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耦合光学微腔的频率调谐过程分析

徐昕 金雪莹 高浩然 程杰 陆洋 陈东 于连栋

引用本文:
Citation:

耦合光学微腔的频率调谐过程分析

徐昕, 金雪莹, 高浩然, 程杰, 陆洋, 陈东, 于连栋

Analysis of frequency tuning process of dual coupled optical microcavities

Xu Xin, Jin Xue-Ying, Gao Hao-Ran, Cheng Jie, Lu Yang, Chen Dong, Yu Lian-Dong
PDF
HTML
导出引用
  • 不同的频率失谐会在耦合光学微腔激发出不同的工作模式. 以两个耦合光场的非线性薛定谔方程为理论模型, 分别研究了失谐参量正调谐和负调谐过程中微腔内光场的变化. 理论分析结果表明, 在正失谐区域中, 腔内光场可由多脉冲形式演变为亮孤子, 但亮孤子存在范围较小, 当失谐参量过大时, 腔内光场会演化为直流分布. 在负失谐区域, 腔内可以形成较高功率“图灵环”形式的光场. 当耦合微腔没有发生频率失谐, 或者失谐参量接近0时, 腔内只能形成混沌形式的光场分布. 当耦合微腔内激发出光孤子后, 通过选取合适的失谐参量和抽运功率, 可在腔内维持稳定的亮孤子. 此外还可通过继续调谐第一个微腔的失谐参量, 将亮孤子转变为低功率的“图灵环”. 理论分析结果对耦合微腔的实验研究具有重要意义.
    Different frequency detuning can excite different working mode in a dual coupled optical microcavities. Based on the nonlinear Schrödinger equations of dual coupled field, and by using the split-step Fourier method, the optical field evolution in the microcavities is analyzed under the condition of both positive and negative tuning, and various optical distributions are generated in the process of frequency tuning. Simulation results indicate that the field can develop into the bright soliton in the region of positive tuning. However, the region in which the bright soliton is maintained is small, and the field in the microcavities grows into direct current (DC) distribution because of the serious frequency detuning. In the region of negative tuning, the field of “turning pattern” with high power is generated. There is only chaos inside the microcavities without frequency detuning or the detuning parameters close to 0. In addition, under the condition of strong coupling, the bright soliton and the “turning pattern” cannot be excited. Even stronger coupling leads to optical field in the form of DC directly. After the bright soliton exciting in the microcavity, it can be preserved by selecting appropriate detuning parameters and pump power. Moreover, the bright soliton can be changed into “turning pattern” with low power by continuously changing the detuning parameter of the first microcavity. Theoretical analyses are significant for experimental research on the dual coupled microcavities.
      通信作者: 金雪莹, xyjin007@hfut.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金 (批准号: 51705121)和国家重点研发计划(批准号: SQ2019YFE010747)资助的课题
      Corresponding author: Jin Xue-Ying, xyjin007@hfut.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51705121) and the National Key Research and Development Program of China (Grant No. SQ2019YFE010747)
    [1]

    孟飞, 曹士英, 蔡岳, 王贵重, 曹建平, 李天初, 方占军 2011 物理学报 60 100601Google Scholar

    Meng F, Cao S Y, Cai Y, Wang G Z, Cao J P, Li T C, Fang Z J 2011 Acta Phys. Sin. 60 100601Google Scholar

    [2]

    Del’Haye P, Coillet A, Fortier T, Beha K, Cole D C, Yang K Y, Lee H, Vahala K J, Papp S B, Diddams S A 2016 Nat. Photonics 10 516Google Scholar

    [3]

    Lamb E S, Carlson D R, Hickstein D D, Stone J R, Diddams S A, Papp S B 2018 Phys. Rev. Appl. 9 024030Google Scholar

    [4]

    Newman Z L, Maurice V, Drake T, Stone J R, Briles T C, Spencer D T, Fredrick C, Li Q, Westly D, Ilic B R, Shen B, Suh M G, Yang K Y, Johnson C, Johnson D M S, Hollberg L, Vahala K J, Srinivasan K, Diddams S A, Kitching J, Papp S, Hummon M T 2019 Optica 6 680Google Scholar

    [5]

    Zhang X Y, Cao Q T, Wang Z, Liu Y X, Qiu C W, Yang L, Gong Q H, Xiao Y F 2019 Nat. Photonics 13 2Google Scholar

    [6]

    Wang W Q, Lu Z Z, Zhang W F, Chu S T, Little B E, Wang L R, Xie X P, Liu M L, Yang Q H, Wang L, Zhao J G, Wang G X, Sun Q B, Liu Y S, Wang Y S, Zhao W 2018 Opt. Lett. 43 2002Google Scholar

    [7]

    Xue X X, Xuan Y, Liu Y, Wang P H, Chen S, Wang J, Leaird D E, Qi M H, Weiner A M 2015 Nat. Photonics 9 594Google Scholar

    [8]

    Coillet A, Balakireva I, Henriet R, Saleh K, Larger L, Dudley J M, Menyuk C R, Chembo Y K 2013 IEEE Photonics J. 5 6100409Google Scholar

    [9]

    Matsko A B, Liang W, Savchenkov A A, Maleki L 2013 Opt. Lett. 38 525Google Scholar

    [10]

    Yi X, Yang Q F, Yang K Y, Suh M G, Vahala K 2015 Optica 2 1078Google Scholar

    [11]

    Pasquazi A, Caspani L, Peccianti M, Clerici M, Ferrera M, Razzari L, Duchesne D, Little B E, Chu S T, Moss D J, Morandotti R 2013 Opt. Express 21 13333Google Scholar

    [12]

    Ferrera M, Reimer C, Pasquazi A, Peccianti M, Clerici M, Caspani L, Chu S T, Little B E, Morandotti R, Moss D J 2014 Opt. Express 22 21488Google Scholar

    [13]

    Riemensberger J, Hartinger K, Herr T, Brasch V, Holzwarth R, Kippenberg T J 2012 Opt. Express 20 27661Google Scholar

    [14]

    Xue X X, Zheng X P, Zhou B K 2019 Nat. Photonics 13 616Google Scholar

    [15]

    Maes B, Fiers M, Bienstman P 2009 Phys. Rev. A 80 033805Google Scholar

    [16]

    Maes B, Soljacic M, Joannopoulos J D 2006 Opt. Express 14 10678Google Scholar

    [17]

    Dumeige Y, Ghisa L, Féron P 2006 Opt. Lett. 31 2187Google Scholar

    [18]

    Dumeige Y, Féron P 2015 Opt. Lett. 40 3237Google Scholar

    [19]

    Coen S, Haelterman M 2001 Opt. Lett. 26 39Google Scholar

    [20]

    Akhmediev N, Pelinovsky E 2010 Eur. Phys. J. Spec. Top. 185 1Google Scholar

    [21]

    Xue X X, Leo F, Xuan Y, Villegas J A J, Wang P H, Leaird D E, Erkintalo M, Qi M H, Weiner A M 2017 Light: Sci. Appl. 6 e16253Google Scholar

    [22]

    Peng B, Ozdemir S K, Zhu J G, Yang L 2013 Opt. Lett. 37 3435Google Scholar

    [23]

    Bo F, Oezdemir S K, Peng B, Wang J, Zhang G Q, Xu J J, Yang L 2015 Opt. Express 23 30793Google Scholar

    [24]

    Kippenberg T J, Holzwarth R, Diddams S A 2011 Science 332 555Google Scholar

  • 图 1  双微腔耦合结构示意图

    Fig. 1.  Structure of the dual coupled optical microcavities.

    图 2  (a)失谐参量在正方向调谐过程中, 第一个光学微腔内光场分布随时间的演化; (b) 失谐参量调谐过程中, 光功率随时间的变化曲线; (c)与图(b)中各个阶段对应的光场分布和光谱图

    Fig. 2.  (a) Evolution of the optical field inside the first microcavity in the region of positive frequency tuning; (b) curves of the optical power variation in the process of frequency tuning; (c) field distribution and spectra corresponding to each stage in Fig. (b).

    图 3  (a)失谐参量在负方向调谐过程中, 第一个光学微腔内光场分布随时间的演化; (b) 失谐参量调谐过程中, 光功率随时间的变化曲线; (c)与图(b)中各个阶段对应的光场分布和光谱图

    Fig. 3.  (a) Evolution of the optical field inside the first microcavity in the process of negative frequency tuning; (b) curves of the optical power variation in the process of frequency tuning; (c) field distribution and spectra corresponding to each stage in Fig. (b).

    图 4  (a)强耦合光学微腔在失谐频率正调谐过程中光场的演化; (b) 强耦合光学微腔在失谐频率负调谐过程中光场的演化

    Fig. 4.  (a) Evolution of the optical field inside the first microcavity with strong coupling in the region of positive frequency tuning; (b) evolution of the optical field inside the first microcavity with strong coupling in the region of negative frequency tuning.

    图 5  (a) 亮孤子在腔内稳定存在的演化过程(δ1 = 1.201 × 102 m–1, δ2 = 8.809 m–1, Pin = 1 W); (b) 亮孤子的光场分布; (c) 亮孤子的光谱图; (d) 两个微腔内的光功率随时间的变化曲线; (e) D端口和T端口输出功率随时间的变化曲线

    Fig. 5.  (a) Evolution of the stable existence of bright soliton in the microcavity (δ1 = 1.201 × 102 m–1, δ2 = 8.809 m–1, Pin = 1 W); (b) field distribution of the bright soliton; (c) spectrum of the bright soliton; (d) curves of the dual power inside the dual coupled microcavities vary with the slow time; (e) curves of the dual power of Port D and T vary with the slow time.

    图 6  (a) 亮孤子向多脉冲光场演化的过程(δ2 = 16.1411 m–1, Δf1初始值为770 GHz, 以2.73 GHz/μs的速度变化, Pin = 1 W); (b) 多脉冲光场的光谱图; (c) 两个微腔内的光功率随时间的变化曲线; (d) D端口和T端口输出功率随时间的变化曲线

    Fig. 6.  (a) Evolution of a bright soliton to a multi-pulse optical field (δ2 = 16.1411 m–1, the initial value of Δf1 is 770 GHz, and the change speed of Δf1 is 2.73 GHz/μs, Pin = 1 W); (b) spectrum of the multi-pulse; (c) curves of the dual power inside the dual coupled microcavities vary with the slow time; (d) curves of the dual power of Port D and T vary with the slow time.

  • [1]

    孟飞, 曹士英, 蔡岳, 王贵重, 曹建平, 李天初, 方占军 2011 物理学报 60 100601Google Scholar

    Meng F, Cao S Y, Cai Y, Wang G Z, Cao J P, Li T C, Fang Z J 2011 Acta Phys. Sin. 60 100601Google Scholar

    [2]

    Del’Haye P, Coillet A, Fortier T, Beha K, Cole D C, Yang K Y, Lee H, Vahala K J, Papp S B, Diddams S A 2016 Nat. Photonics 10 516Google Scholar

    [3]

    Lamb E S, Carlson D R, Hickstein D D, Stone J R, Diddams S A, Papp S B 2018 Phys. Rev. Appl. 9 024030Google Scholar

    [4]

    Newman Z L, Maurice V, Drake T, Stone J R, Briles T C, Spencer D T, Fredrick C, Li Q, Westly D, Ilic B R, Shen B, Suh M G, Yang K Y, Johnson C, Johnson D M S, Hollberg L, Vahala K J, Srinivasan K, Diddams S A, Kitching J, Papp S, Hummon M T 2019 Optica 6 680Google Scholar

    [5]

    Zhang X Y, Cao Q T, Wang Z, Liu Y X, Qiu C W, Yang L, Gong Q H, Xiao Y F 2019 Nat. Photonics 13 2Google Scholar

    [6]

    Wang W Q, Lu Z Z, Zhang W F, Chu S T, Little B E, Wang L R, Xie X P, Liu M L, Yang Q H, Wang L, Zhao J G, Wang G X, Sun Q B, Liu Y S, Wang Y S, Zhao W 2018 Opt. Lett. 43 2002Google Scholar

    [7]

    Xue X X, Xuan Y, Liu Y, Wang P H, Chen S, Wang J, Leaird D E, Qi M H, Weiner A M 2015 Nat. Photonics 9 594Google Scholar

    [8]

    Coillet A, Balakireva I, Henriet R, Saleh K, Larger L, Dudley J M, Menyuk C R, Chembo Y K 2013 IEEE Photonics J. 5 6100409Google Scholar

    [9]

    Matsko A B, Liang W, Savchenkov A A, Maleki L 2013 Opt. Lett. 38 525Google Scholar

    [10]

    Yi X, Yang Q F, Yang K Y, Suh M G, Vahala K 2015 Optica 2 1078Google Scholar

    [11]

    Pasquazi A, Caspani L, Peccianti M, Clerici M, Ferrera M, Razzari L, Duchesne D, Little B E, Chu S T, Moss D J, Morandotti R 2013 Opt. Express 21 13333Google Scholar

    [12]

    Ferrera M, Reimer C, Pasquazi A, Peccianti M, Clerici M, Caspani L, Chu S T, Little B E, Morandotti R, Moss D J 2014 Opt. Express 22 21488Google Scholar

    [13]

    Riemensberger J, Hartinger K, Herr T, Brasch V, Holzwarth R, Kippenberg T J 2012 Opt. Express 20 27661Google Scholar

    [14]

    Xue X X, Zheng X P, Zhou B K 2019 Nat. Photonics 13 616Google Scholar

    [15]

    Maes B, Fiers M, Bienstman P 2009 Phys. Rev. A 80 033805Google Scholar

    [16]

    Maes B, Soljacic M, Joannopoulos J D 2006 Opt. Express 14 10678Google Scholar

    [17]

    Dumeige Y, Ghisa L, Féron P 2006 Opt. Lett. 31 2187Google Scholar

    [18]

    Dumeige Y, Féron P 2015 Opt. Lett. 40 3237Google Scholar

    [19]

    Coen S, Haelterman M 2001 Opt. Lett. 26 39Google Scholar

    [20]

    Akhmediev N, Pelinovsky E 2010 Eur. Phys. J. Spec. Top. 185 1Google Scholar

    [21]

    Xue X X, Leo F, Xuan Y, Villegas J A J, Wang P H, Leaird D E, Erkintalo M, Qi M H, Weiner A M 2017 Light: Sci. Appl. 6 e16253Google Scholar

    [22]

    Peng B, Ozdemir S K, Zhu J G, Yang L 2013 Opt. Lett. 37 3435Google Scholar

    [23]

    Bo F, Oezdemir S K, Peng B, Wang J, Zhang G Q, Xu J J, Yang L 2015 Opt. Express 23 30793Google Scholar

    [24]

    Kippenberg T J, Holzwarth R, Diddams S A 2011 Science 332 555Google Scholar

  • [1] 郭状, 欧阳峰, 卢志舟, 王梦宇, 谭庆贵, 谢成峰, 魏斌, 何兴道. 氟化镁微瓶腔光频梳光谱分析及优化. 物理学报, 2024, 73(3): 034202. doi: 10.7498/aps.73.20231126
    [2] 金星, 肖莘宇, 龚旗煌, 杨起帆. 微腔光梳的产生、发展及应用. 物理学报, 2023, 72(23): 234203. doi: 10.7498/aps.72.20231816
    [3] 黄轶凡, 梁兆新. 激子极化激元凝聚体中的二维亮孤子. 物理学报, 2023, 72(10): 100505. doi: 10.7498/aps.72.20230425
    [4] 许凡, 赵妍, 吴宇航, 王文驰, 金雪莹. 高阶色散下双耦合微腔中克尔光频梳的稳定性和非线性动力学分析. 物理学报, 2022, 71(18): 184204. doi: 10.7498/aps.71.20220691
    [5] 孟令俊, 王梦宇, 沈远, 杨煜, 徐文斌, 张磊, 王克逸. 具有内参考热补偿功能的三层膜结构微球腔折射率传感器. 物理学报, 2020, 69(1): 014203. doi: 10.7498/aps.69.20191265
    [6] 徐昕, 金雪莹, 胡晓鸿, 黄新宁. 光学微腔中倍频光场演化和光谱特性. 物理学报, 2020, 69(2): 024203. doi: 10.7498/aps.69.20191294
    [7] 王梦宇, 孟令俊, 杨煜, 钟汇凯, 吴涛, 刘彬, 张磊, 伏燕军, 王克逸. 扁长型微瓶腔中的回音壁模式选择及Fano谐振. 物理学报, 2020, 69(23): 234203. doi: 10.7498/aps.69.20200817
    [8] 谷红明, 黄永清, 王欢欢, 武刚, 段晓峰, 刘凯, 任晓敏. 一种新型光学微腔的理论分析. 物理学报, 2018, 67(14): 144201. doi: 10.7498/aps.67.20180067
    [9] 王延娜, 赵迪, 方爱平, 蒋臣威, 高韶燕, 李福利. 利用高阶拉盖尔-高斯横模精确测量法布里-珀罗腔内原子的运动轨迹. 物理学报, 2015, 64(22): 224214. doi: 10.7498/aps.64.224214
    [10] 王梦, 白金海, 裴丽娅, 芦小刚, 高艳磊, 王如泉, 吴令安, 杨世平, 庞兆广, 傅盘铭, 左战春. 铷原子耦合光频率近共振时的电磁感应透明. 物理学报, 2015, 64(15): 154208. doi: 10.7498/aps.64.154208
    [11] 党婷婷, 王娟芬, 安亚东, 刘香莲, 张朝霞, 杨玲珍. 亮孤子在宇称时间对称波导中的传输和控制. 物理学报, 2015, 64(6): 064211. doi: 10.7498/aps.64.064211
    [12] 李文芳, 杜金锦, 文瑞娟, 杨鹏飞, 李刚, 张天才. 强耦合腔量子电动力学中单原子转移的实验及模拟. 物理学报, 2014, 63(24): 244205. doi: 10.7498/aps.63.244205
    [13] 邱康生, 赵彦辉, 刘相波, 冯宝华, 许秀来. 弯曲氧化锌微米线微腔中的回音壁模. 物理学报, 2014, 63(17): 177802. doi: 10.7498/aps.63.177802
    [14] 杜金锦, 李文芳, 文瑞娟, 李刚, 张天才. 超高精细度微光学腔共振频率及有效腔长的精密测量. 物理学报, 2013, 62(19): 194203. doi: 10.7498/aps.62.194203
    [15] 程正富, 龙晓霞, 郑瑞伦. 温度对光学微腔光子激子系统玻色凝聚的影响. 物理学报, 2010, 59(12): 8377-8384. doi: 10.7498/aps.59.8377
    [16] 邱 鑫, 夏光琼, 吴加贵, 吴正茂. 基于频率失谐的光混沌同步开关的特性研究. 物理学报, 2008, 57(3): 1725-1729. doi: 10.7498/aps.57.1725
    [17] 高 玮, 吕志伟, 何伟明, 朱成禹, 董永康. 水中微弱光散射布里渊频谱选择性光放大研究. 物理学报, 2007, 56(5): 2693-2698. doi: 10.7498/aps.56.2693
    [18] 李向正, 张金良, 王跃明, 王明亮. 非线性Schr?dinger方程的包络形式解. 物理学报, 2004, 53(12): 4045-4051. doi: 10.7498/aps.53.4045
    [19] 刘涛, 张天才, 王军民, 彭堃墀. 高精细度光学微腔中原子的偶极俘获. 物理学报, 2004, 53(5): 1346-1351. doi: 10.7498/aps.53.1346
    [20] 江德生, 欧阳世根, 佘卫龙. 暗-暗与亮-暗光伏孤子相互作用. 物理学报, 2004, 53(11): 3777-3785. doi: 10.7498/aps.53.3777
计量
  • 文章访问数:  7792
  • PDF下载量:  248
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-10
  • 修回日期:  2020-05-12
  • 上网日期:  2020-06-05
  • 刊出日期:  2020-09-20

/

返回文章
返回