搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可实现宽频带光波非对称传输的自准直效应光子晶体异质结构

费宏明 严帅 徐瑜成 林瀚 武敏 杨毅彪 陈智辉 田媛 张娅敏

引用本文:
Citation:

可实现宽频带光波非对称传输的自准直效应光子晶体异质结构

费宏明, 严帅, 徐瑜成, 林瀚, 武敏, 杨毅彪, 陈智辉, 田媛, 张娅敏

Photonic crystal heterostructure with self-collimation effect for broad-band asymmetric optical transmission

Fei Hong-Ming, Yan Shuai, Xu Yu-Cheng, Lin Han, Wu Min, Yang Yi-Biao, Chen Zhi-Hui, Tian Yuan, Zhang Ya-Min
PDF
HTML
导出引用
  • 利用光子晶体的自准直效应和能带特性, 设计了一种能实现宽频带光波非对称传输的二维光子晶体异质结构. 该结构实现宽频带、高正向透射、非偏振选择的非对称传输. 横电(transverse electric, TE)偏振光非对称传输波长带宽可达532 nm, 在光通信波长1550 nm处正向透射率和透射对比度分别可达0.693和0.946; 横磁(transverse magnetic, TM)偏振光非对称传输波长带宽为128 nm, 在光通信波长1550 nm处正向透射率和透射对比度分别可达0.513和0.972; 通过进一步优化异质结界面, 在TE偏振光下非对称传输波长带宽可达562 nm.
    Recently, quantum computing and information processing based on photons has become one research frontier, attracting significant attentions. The optical asymmetric transmission devices (OATD), having similar function to the diode in electric circuitry, will find important applications. In particular, the OATDs based on nanophotonic structures are preferred due to their potential applications in the on-chip integration with other photonic devices. Therefore, there have been numerous applications of OATDs based on different nanostructures, including composite grating structures, metasurfaces, surface plasmon polaritons, metamaterials, photonic crystals (PhCs). However, in general, those designs show relatively low forward transmittance (< 0.5) and narrow working bandwidth (< 100 nm), and they are able to work with only one polarization state. This makes the current OATDs unsuitable for many applications. To solve this challenge, here we design a two-dimensional (2D) PhC heterostructure based on the self-collimating effect and bandgap properties. The PhC heterostructure is composed of two square lattice 2D PhCs (PhC 1 and PhC 2) on a silicon substrate with different lattice shapes and lattice constants. The PhC 1 is composed of periodically arranged silicon cylinders in air. Meanwhile, the PhC 2 is an square air hole array embedding in silicon. The two PhCs are integrated with an inclined interface with an angle of 45° with respect to the direction of incident light. The plane wave expansion method is used to calculate the band diagrams and equal frequency contours (EFCs) of the two PhCs. As the propagation directions of light waves in PhCs are determined by the gradient direction of the EFCs, we are able to control the light propagation by controlling the EFCs of PhCs. By engineering the EFCs, the PhC 2 shows strong self-collimation effect in a broad wavelength range with a central wavelength of 1550 nm for both TE and TM polarization. By self-collimating the forward incident light from different incident angles to couple to the output waveguide, we are able to significantly increase the forward transmittance to > 0.5 for both TE and TM polarized light. Meanwhile, the backward transmittance can be effectively cut off by the unique dispersion properties of the PhC heterostructures. In this way, the heterostructure is able to achieve polarization independent asymmetric transmission of light waves in a broad wavelength range. To visualize the light propagation in the PhC heterostructure, we use the finite-difference-time-domain method to calculate the electric intensity distributions of the forward and backward propagation light of both TE and TM polarization at a wavelength of 1550 nm. Strong self-collimation effect of forward propagation light and the nearly complete blockage of backward propagation light can be identified unambiguously in the intensity plots, confirming the theoretical analysis. The calculation of transmittance and contrast ratio spectra show that the asymmetric transmission wavelength bandwidth can reach 532 nm with the forward transmittance and contrast ratio being 0.693 and 0.946 at an optical communication wavelength of 1550 nm for TE polarized light. On the other hand, for the TM polarized light, the asymmetric transmission wavelength bandwidth is 128 nm, the forward transmittance and contrast ratio are 0.513 and 0.972, respectively, at 1550 nm wavelength. Thus, it is confirmed that the PhC heterostructure achieves highly efficient, broadband and polarization independent asymmetric transmission. Finally, to further improve the forward transmittance of the TE polarized light, we modulate the radius of the front row of photonic lattice of PhC 1 at the interface. It shows that the forward transmittance can be further improved to a record high value of 0.832 with a bandwidth of 562 nm for TE polarized light. Our design opens up new possibilities for designing OATDs based on PhCs, and will find broad applications, for the design can be realized by current nanofabrication techniques.
      通信作者: 费宏明, feihongming@tyut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11904255, 51702226)资助的课题
      Corresponding author: Fei Hong-Ming, feihongming@tyut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11904255, 51702226)
    [1]

    Espinola R L, Izuhara T, Tsai M C, Osgoode R M 2004 Opt. Lett. 29 941Google Scholar

    [2]

    Zhou X, Wang Y, Leykam D, Chong Y D 2017 New J. Phys. 19 095002Google Scholar

    [3]

    Fan L, Wang J, Varghese L T, Shen H, Niu B, Xuan Y, Weiner A M, Qi M 2012 Science 335 447Google Scholar

    [4]

    Kuzmiak V, Maradudin A A 2015 Phys. Rev. A 92 013615Google Scholar

    [5]

    Stolarek M, Yavorskiy D, Kotyński R, Zapata R, Carlos J, Łusakowski J, Szoplik T 2013 Opt. Lett. 38 839Google Scholar

    [6]

    Xiao Z Y, Zou H L, Xu K K, Tang J Y 2018 J. Magn. Magn. Mater. 449 278Google Scholar

    [7]

    Ozer A, Kocer H, Kurt H 2018 J. Opt. Soc. Am. B 35 2111Google Scholar

    [8]

    Zhang L, Mei S, Huang K, Qiu C W 2016 Adv. Opt. Mater. 4 818Google Scholar

    [9]

    Ling Y H, Lirong H, Wei H, Tongjun L, Yali S, Jing L, Gang Y 2017 Opt. Express 25 13648Google Scholar

    [10]

    Peng Y X, Wang K J, He M D, Luo J H, Zhang X M, Li J B, Tan S H, Liu J Q, Hu W D, Chen X S 2018 Opt. Commun. 412 1Google Scholar

    [11]

    Li X F, Rui F, Ding W 2018 J. Phys. D: Appl. Phys. 51 145304Google Scholar

    [12]

    Bai Y, Chen Y, Zhang Y, Wang Y, Aba T, Li H, Wang L, Zhang Z 2018 J. Phys. Condens. Matter 30 114001Google Scholar

    [13]

    Stephen L, Yogesh N, Subramanian V 2018 J. Appl. Phys. 123 033103Google Scholar

    [14]

    Xu T, Lezec H J 2014 Nat. Commun. 5 4141Google Scholar

    [15]

    Soltani A, Ouerghi F, AbdelMalek F, Haxha S, Ademgil H, Akowuah E K 2017 Opt. Commun. 392 147Google Scholar

    [16]

    Wu Z, Chen J, Ji M, Huang Q, Xia J, Wu Y, Wang Y 2015 Appl. Phys. Lett. 107 221102Google Scholar

    [17]

    Zhang Y, Li D, Zeng C, Huang Z, Wang Y, Huang Q, Wu Y, Yu J, Xia J 2014 Opt. Lett. 39 1370Google Scholar

    [18]

    Zhang Y, Kan Q, Wang G P 2014 Opt. Lett. 39 4934Google Scholar

    [19]

    Serebryannikov A E, Alici K B, Magath T, Cakmak A O, Ozbay E 2012 Phys. Rev. A 86 053835Google Scholar

    [20]

    Wang C, Zhou C Z, Li Z Y 2011 Opt. Express 19 26948Google Scholar

    [21]

    刘丹, 胡森, 肖明 2017 物理学报 66 054209Google Scholar

    Liu D, Hu S, Xiao M 2017 Acta Phys. Sin. 66 054209Google Scholar

    [22]

    费宏明, 徐婷, 刘欣, 林瀚, 陈智辉, 杨毅彪, 张明达, 曹斌照, 梁九卿 2017 物理学报 66 204103Google Scholar

    Fei H M, Xu T, Liu X, Lin H, Chen Z H, Yang Y B, Zhang M D, Cao B Z, Liang J Q 2017 Acta Phys. Sin. 66 204103Google Scholar

    [23]

    Fei H M, Wu M, Xu T, Lin H, Yang Y B, Liu X, Zhang M D, Cao B Z 2018 J. Opt. 20 095004Google Scholar

    [24]

    Bourzac K 2012 Nature 483 388Google Scholar

  • 图 1  硅基光子晶体异质结构示意图

    Fig. 1.  Schematic of photonic crystal heterostructure based on silicon.

    图 2  (a) PhC 1能带图; (b) PhC 2能带图, 插图为PhC 2在ΓX方向的能带; (c) PhC 1在TE偏振模式第一条能带EFC; (d) PhC 2在TE偏振光下第四条能带EFC (蓝线表示TE偏振光1550 nm处的频带); (e) PhC 1在TM偏振光第一条能带EFC; (f) PhC 2在TM偏振光第三条能带EFC (红线表示TM模式1550 nm处的频带)

    Fig. 2.  (a) Photonic band diagrams of PhC 1; (b) the photonic band diagrams of PhC 2, where the insert shows the energy band of PhC 2 in ΓX direction; (c) the first band EFC of PhC 1 under TE polarized light; (d) the fourth band EFC of PhC 2 under TE polarized light (blue lines represent TE mode at the wavelength of 1550 nm); (e) the first band EFC of PhC 1 under TM polarized light; (f) the third band EFC of PhC 2 under TM polarized light (red lines represent TM mode at 1550 nm).

    图 3  1550 nm波长处正向入射场强图和反向入射场强图 (a) TE偏振光正向; (b) TE偏振光反向; (c) TM偏振光正向; (d) TM偏振光反向

    Fig. 3.  Electric field intensity distribution of forward transmission and backward transmission at the wavelength of 1550 nm: (a) Forward transmission of TE polarized light; (b) backward transmission of TE polarized light; (c) forward transmission of TM polarized light; (d) backward transmission of TM polarized light.

    图 4  异质结构透射谱 (a) TE偏振光; (b) TM偏振光; 其中灰色区域表示结构工作带宽

    Fig. 4.  Transmittance spectra of heterostructure: (a) TE polarized light, (b) TM polarized light. The grey region represents the asymmetric transmission working wavelength range, where forward transmission is higher than 0.5.

    图 5  光子晶体异质结优化示意图, 其中被优化的光子晶体结构通过红色长方形标注

    Fig. 5.  Schematic of optimization of photonic crystal heterostructure, where the row of photonic lattice is highlighted by the red square is optimized.

    图 6  异质结构界面处PhC 1不同半径硅圆柱TE偏振光透射谱 (a) R = 55 nm; (b) R = 65 nm; (c) R = 70 nm; (d) R = 75 nm

    Fig. 6.  Transmittance spectra of the TE polarized light with different radii of PhC 1 photonic lattice at heterostructure interface: (a) R = 55 nm; (b) R = 65 nm; (c) R = 70 nm; (d) R = 75 nm.

    表 1  异质界面处PhC 1硅圆柱不同半径的非对称传输性能

    Table 1.  Asymmetric transmission performance with different radii of PhC 1 at heterostructure interface.

    R/nm1550 nm正向
    透射率
    透射对比度非对称传输
    带宽/nm
    550.5790.941448
    600.6930.946532
    650.7890.947556
    700.8320.944562
    750.8030.942568
    下载: 导出CSV
  • [1]

    Espinola R L, Izuhara T, Tsai M C, Osgoode R M 2004 Opt. Lett. 29 941Google Scholar

    [2]

    Zhou X, Wang Y, Leykam D, Chong Y D 2017 New J. Phys. 19 095002Google Scholar

    [3]

    Fan L, Wang J, Varghese L T, Shen H, Niu B, Xuan Y, Weiner A M, Qi M 2012 Science 335 447Google Scholar

    [4]

    Kuzmiak V, Maradudin A A 2015 Phys. Rev. A 92 013615Google Scholar

    [5]

    Stolarek M, Yavorskiy D, Kotyński R, Zapata R, Carlos J, Łusakowski J, Szoplik T 2013 Opt. Lett. 38 839Google Scholar

    [6]

    Xiao Z Y, Zou H L, Xu K K, Tang J Y 2018 J. Magn. Magn. Mater. 449 278Google Scholar

    [7]

    Ozer A, Kocer H, Kurt H 2018 J. Opt. Soc. Am. B 35 2111Google Scholar

    [8]

    Zhang L, Mei S, Huang K, Qiu C W 2016 Adv. Opt. Mater. 4 818Google Scholar

    [9]

    Ling Y H, Lirong H, Wei H, Tongjun L, Yali S, Jing L, Gang Y 2017 Opt. Express 25 13648Google Scholar

    [10]

    Peng Y X, Wang K J, He M D, Luo J H, Zhang X M, Li J B, Tan S H, Liu J Q, Hu W D, Chen X S 2018 Opt. Commun. 412 1Google Scholar

    [11]

    Li X F, Rui F, Ding W 2018 J. Phys. D: Appl. Phys. 51 145304Google Scholar

    [12]

    Bai Y, Chen Y, Zhang Y, Wang Y, Aba T, Li H, Wang L, Zhang Z 2018 J. Phys. Condens. Matter 30 114001Google Scholar

    [13]

    Stephen L, Yogesh N, Subramanian V 2018 J. Appl. Phys. 123 033103Google Scholar

    [14]

    Xu T, Lezec H J 2014 Nat. Commun. 5 4141Google Scholar

    [15]

    Soltani A, Ouerghi F, AbdelMalek F, Haxha S, Ademgil H, Akowuah E K 2017 Opt. Commun. 392 147Google Scholar

    [16]

    Wu Z, Chen J, Ji M, Huang Q, Xia J, Wu Y, Wang Y 2015 Appl. Phys. Lett. 107 221102Google Scholar

    [17]

    Zhang Y, Li D, Zeng C, Huang Z, Wang Y, Huang Q, Wu Y, Yu J, Xia J 2014 Opt. Lett. 39 1370Google Scholar

    [18]

    Zhang Y, Kan Q, Wang G P 2014 Opt. Lett. 39 4934Google Scholar

    [19]

    Serebryannikov A E, Alici K B, Magath T, Cakmak A O, Ozbay E 2012 Phys. Rev. A 86 053835Google Scholar

    [20]

    Wang C, Zhou C Z, Li Z Y 2011 Opt. Express 19 26948Google Scholar

    [21]

    刘丹, 胡森, 肖明 2017 物理学报 66 054209Google Scholar

    Liu D, Hu S, Xiao M 2017 Acta Phys. Sin. 66 054209Google Scholar

    [22]

    费宏明, 徐婷, 刘欣, 林瀚, 陈智辉, 杨毅彪, 张明达, 曹斌照, 梁九卿 2017 物理学报 66 204103Google Scholar

    Fei H M, Xu T, Liu X, Lin H, Chen Z H, Yang Y B, Zhang M D, Cao B Z, Liang J Q 2017 Acta Phys. Sin. 66 204103Google Scholar

    [23]

    Fei H M, Wu M, Xu T, Lin H, Yang Y B, Liu X, Zhang M D, Cao B Z 2018 J. Opt. 20 095004Google Scholar

    [24]

    Bourzac K 2012 Nature 483 388Google Scholar

  • [1] 吕宇曦, 王晨, 段添期, 赵彤, 常朋发, 王安帮. 级联声光器件与回音壁模式微腔实现非对称传输. 物理学报, 2024, 73(1): 014101. doi: 10.7498/aps.73.20230653
    [2] 武敏, 费宏明, 林瀚, 赵晓丹, 杨毅彪, 陈智辉. 基于二维六方氮化硼材料的光子晶体非对称传输异质结构设计. 物理学报, 2021, 70(2): 028501. doi: 10.7498/aps.70.20200741
    [3] 邱克鹏, 骆越, 张卫红. 新型手性电磁超材料非对称传输性能设计分析. 物理学报, 2020, 69(21): 214101. doi: 10.7498/aps.69.20200728
    [4] 刘艳玲, 刘文静, 包佳美, 曹永军. 二维复式晶格磁振子晶体的带隙结构. 物理学报, 2016, 65(15): 157501. doi: 10.7498/aps.65.157501
    [5] 邹俊辉, 张娟. 混合准周期异质结构的带隙补偿与展宽. 物理学报, 2016, 65(1): 014214. doi: 10.7498/aps.65.014214
    [6] 宋宗根, 邓科, 何兆剑, 赵鹤平. 高对称型声子晶体自准直弯曲及分束. 物理学报, 2016, 65(9): 094301. doi: 10.7498/aps.65.094301
    [7] 胡晓颖, 郭晓霞, 胡文弢, 呼和满都拉, 郑晓霞, 荆丽丽. 旋转方形散射体对三角晶格磁振子晶体带结构的优化. 物理学报, 2015, 64(10): 107501. doi: 10.7498/aps.64.107501
    [8] 胡晓颖, 呼和满都拉, 曹永军. 三角晶格磁振子晶体带结构的优化研究. 物理学报, 2014, 63(14): 147501. doi: 10.7498/aps.63.147501
    [9] 韩奎, 王娟娟, 周菲, 沈晓鹏, 沈义峰, 吴玉喜, 唐刚. 基于光子晶体的Kretschmann结构中自准直光束的Goos-Hänchen位移研究. 物理学报, 2013, 62(4): 044221. doi: 10.7498/aps.62.044221
    [10] 胡家光, 徐文, 肖宜明, 张丫丫. 晶格中心插入体的对称性及取向对二维声子晶体带隙的影响. 物理学报, 2012, 61(23): 234302. doi: 10.7498/aps.61.234302
    [11] 曹永军, 云国宏, 那日苏. 平面波展开法计算二维磁振子晶体带结构. 物理学报, 2011, 60(7): 077502. doi: 10.7498/aps.60.077502
    [12] 王立勇, 曹永军. 散射体排列方式对二维磁振子晶体带隙结构的影响. 物理学报, 2011, 60(9): 097501. doi: 10.7498/aps.60.097501
    [13] 韩奎, 王子煜, 沈晓鹏, 吴琼华, 童星, 唐刚, 吴玉喜. 基于光子晶体自准直和带隙效应的马赫-曾德尔干涉仪设计. 物理学报, 2011, 60(4): 044212. doi: 10.7498/aps.60.044212
    [14] 钟琪, 韩奎, 沈晓鹏, 童星, 吴琼华, 李明雪, 吴玉喜. Archimedes 32,4,3,4结构光子晶体中与偏振无关的自准直分束器. 物理学报, 2010, 59(10): 7060-7065. doi: 10.7498/aps.59.7060
    [15] 牟中飞, 吴福根, 张 欣, 钟会林. 超元胞方法研究平移群对称性对声子带隙的影响. 物理学报, 2007, 56(8): 4694-4699. doi: 10.7498/aps.56.4694
    [16] 张锦龙, 刘 旭, 厉以宇, 李明宇, 顾培夫. 一维金属-介质周期结构的自准直特性和亚波长成像. 物理学报, 2007, 56(10): 6075-6079. doi: 10.7498/aps.56.6075
    [17] 厉以宇, 顾培夫, 李明宇, 张锦龙, 刘 旭. 波状结构二维光子晶体的自准直特性及亚波长成像的研究. 物理学报, 2006, 55(5): 2596-2600. doi: 10.7498/aps.55.2596
    [18] 赵 芳, 苑立波. 二维复式格子声子晶体带隙结构特性. 物理学报, 2005, 54(10): 4511-4516. doi: 10.7498/aps.54.4511
    [19] 吴福根, 刘有延. 二维周期性复合介质中声波带隙结构及其缺陷态. 物理学报, 2002, 51(7): 1434-1434. doi: 10.7498/aps.51.1434
    [20] 庄飞, 吴良, 何赛灵. 用线性变换方法计算二维正方晶胞正n边形直柱光子晶体的带隙结构. 物理学报, 2002, 51(12): 2865-2870. doi: 10.7498/aps.51.2865
计量
  • 文章访问数:  7156
  • PDF下载量:  151
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-11
  • 修回日期:  2020-04-28
  • 上网日期:  2020-06-07
  • 刊出日期:  2020-09-20

/

返回文章
返回