搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可拉伸导体的最新进展

何文倩 周湘 刘遵峰

引用本文:
Citation:

可拉伸导体的最新进展

何文倩, 周湘, 刘遵峰

Recent progress on stretchable conductors

He Wen-Qian, Zhou Xiang, Liu Zun-Feng
PDF
HTML
导出引用
  • 可拉伸导体因能够适应较大的变形以及与三维不规则表面实现无缝接触, 受到了广泛关注, 在信息、能源、医疗、国防等领域具有广阔的应用前景. 在过去的几十年中, 人们开发出了很多性能优异的导电纳米材料, 如金属纳米线、碳纳米管、石墨烯和导电聚合物等. 将导电纳米填料均匀分散到聚合物基质中是制备弹性导体的一种有效方法, 可以实现导电性和拉伸性; 另一种方法则是对导电复合物进行结构设计, 引入可拉伸结构(如褶皱, 网型, 蛇形等), 实现大形变下的性能稳定. 本文主要总结了近五年来在弹性导体领域的最新进展, 并指出了当前弹性导体领域存在的挑战. 另外还讨论了一些柔性电子器件, 如发光二极管、传感器、加热器等的研究现状, 指明了柔性电子器件的发展趋势.
    Flexible stretchable conductors have attracted wide attention due to their promising applications in information, energy, medical, national defense and other fields, where elastic conductors undergo large deformation and form intimate contact with three-dimensional irregular surfaces. Many conductive nanomaterials with excellent properties have been developed over the past decades, such as metal nanowires, carbon nanotubes, graphene and conductive polymers. One efficient method to prepare stretchable conductor is to disperse conductive materials into elastic matrix to form a conductive network, showing stretchability and conductivity. As an alternative way, elastic conductors show stable resistance change during stretch by use of buckled or serpentine structural design for rigid conductors. This review summarizes recent advances in flexible elastic conductors in the past five years. In addition, some flexible electronic devices such as light-emitting diodes, sensors, heaters, etc. are also discussed and the development direction in the field of flexible electronic devices is also suggested.
      通信作者: 周湘, zhouxiang@cpu.edu.cn ; 刘遵峰, liuzunfeng@nankai.edu.cn
      Corresponding author: Zhou Xiang, zhouxiang@cpu.edu.cn ; Liu Zun-Feng, liuzunfeng@nankai.edu.cn
    [1]

    Bao Z, Chen X 2016 Adv. Mater. 28 4177Google Scholar

    [2]

    Tok J B H, Bao Z 2012 Sci. China Chem. 55 718Google Scholar

    [3]

    Yan C, Lee P S 2014 Small 10 3443Google Scholar

    [4]

    Mannsfeld S C, Tee B C, Stoltenberg R M, Chen C V, Barman S, Muir B V, Sokolov A N, Reese C, Bao Z 2010 Nat. Mater. 9 859Google Scholar

    [5]

    Ramuz M, Tee B C, Tok J B, Bao Z 2012 Adv. Mater 24 3223Google Scholar

    [6]

    Ma R, Chou S Y, Xie Y, Pei Q 2019 Chem. Soc. Rev. 48 1741Google Scholar

    [7]

    Trung T Q, Lee N E 2017 Adv. Mater. 29 1603167Google Scholar

    [8]

    Chen Z H, Fang R, Li W, Guan J 2019 Adv. Mater. 31 e1900756Google Scholar

    [9]

    Yao S, Zhu Y 2015 Adv. Mater. 27 1480Google Scholar

    [10]

    Gao H L, Xu L, Long F, Pan Z, Du Y X, Lu Y, Ge J, Yu S H 2014 Angew. Chem. Int. Ed. 53 4561Google Scholar

    [11]

    Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng H M 2011 Nat. Mater. 10 424Google Scholar

    [12]

    Park J, Wang S, Li M, Ahn C, Hyun J K, Kim D S, Kim D K, Rogers J A, Huang Y, Jeon S 2012 Nat. Commun. 3 916Google Scholar

    [13]

    Chen M, Zhang L, Duan S, Jing S, Jiang H, Li C 2014 Adv. Funct. Mater. 24 7548Google Scholar

    [14]

    Kim D H, Yu K C, Kim Y, Kim J W 2015 ACS Appl. Mater. Interfaces 7 15214Google Scholar

    [15]

    Hu W, Wang R, Lu Y, Pei Q 2014 J. Mater. Chem. C 2 1298Google Scholar

    [16]

    Huang Y Y, Terentjev E M 2012 Polymers 4 275Google Scholar

    [17]

    Kim T A, Kim H S, Lee S S, Park M 2012 Carbon 50 444Google Scholar

    [18]

    Chun K Y, Oh Y, Rho J, Ahn J H, Kim Y J, Choi H R, Baik S 2010 Nat. Nanotechnol. 5 853Google Scholar

    [19]

    Sekitani T, Nakajima H, Maeda H, Fukushima T, Aida T, Hata K, Someya T 2009 Nat. Mater. 8 494Google Scholar

    [20]

    Sekitani T, Noguchi Y, Hata K, Fukushima T, Aida T, Someya T 2008 Science 321 1468Google Scholar

    [21]

    Huang Y Y, Terentjev E M 2010 Adv. Funct. Mater. 20 4062Google Scholar

    [22]

    Hong S, Lee H, Lee J, Kwon J, Han S, Suh Y D, Cho H, Shin J, Yeo J, Ko S H 2015 Adv. Mater. 27 4744Google Scholar

    [23]

    Jiang S, Zhang H, Song S, Ma Y, Li J, Lee G H, Han Q, Liu J 2015 ACS Nano 9 10252Google Scholar

    [24]

    Garnett E C, Cai W, Cha J J, Mahmood F, Connor S T, Greyson Christoforo M, Cui Y, McGehee M D, Brongersma M L 2012 Nat. Mater. 11 241

    [25]

    Liang J, Li L, Tong K, Ren Z, Hu W, Niu X C, Pei Q 2014 ACS Nano 8 1590Google Scholar

    [26]

    Lee M S, Lee K, Kim S Y, Lee H, Park J, Choi K H, Kim H K, Kim D G, Lee D Y, Nam S, Park J U 2013 Nano Lett. 13 2814Google Scholar

    [27]

    Woo J Y, Kim K K, Lee J, Kim J T, Han C S 2014 Nanotechnology 25 285203

    [28]

    Hecht D S, Hu L, Irvin G 2011 Adv. Mater. 23 1482Google Scholar

    [29]

    Sun Y, Gates B, Mayers B, Xia Y 2002 Nano Lett. 2 165Google Scholar

    [30]

    Hu L, Kim H S, Lee J Y, Peumans P, Cui Y 2010 ACS Nano 4 2955Google Scholar

    [31]

    De S, Higgins T M, Lyons P E, Doherty E M, Nirmalraj P N, Blau W J, Boland J J, Coleman J N 2009 ACS Nano 3 1767Google Scholar

    [32]

    Yang Y, Ding S, Araki T, Jiu J, Sugahara T, Wang J, Vanfleteren J, Sekitani T, Suganuma K 2016 Nano Res. 9 401Google Scholar

    [33]

    Yu Z, Zhang Q, Li L, Chen Q, Niu X, Liu J, Pei Q 2011 Adv. Mater. 23 664Google Scholar

    [34]

    Yun S, Niu X, Yu Z, Hu W, Brochu P, Pei Q 2012 Adv. Mater. 24 1321Google Scholar

    [35]

    Han S, Hong S, Ham J, Yeo J, Lee J, Kang B, Lee P, Kwon J, Lee S S, Yang M Y, Ko S H 2014 Adv. Mater. 26 5808Google Scholar

    [36]

    Matsuhisa N, Inoue D, Zalar P, Jin H, Matsuba Y, Itoh A, Yokota T, Hashizume D, Someya T 2017 Nat. Mater. 16 834

    [37]

    Li Z, Le T, Wu Z, Yao Y, Li L, Tentzeris M, Moon K S, Wong C P 2015 Adv. Funct. Mater. 25 464Google Scholar

    [38]

    Guo W, Zheng P, Huang X, Zhuo H, Wu Y, Yin Z, Li Z, Wu H 2019 ACS Appl. Mater. Interfaces 11 8567Google Scholar

    [39]

    Tang M, Zheng P, Wang K, Qin Y, Jiang Y, Cheng Y, Li Z, Wu L 2019 J. Mater. Chem. A 7 27278Google Scholar

    [40]

    Moon G D, Lim G H, Song J H, Shin M, Yu T, Lim B, Jeong U 2013 Adv. Mater. 25 2707Google Scholar

    [41]

    Shin M, Song J H, Lim G H, Lim B, Park J J, Jeong U 2014 Adv. Mater. 26 3706Google Scholar

    [42]

    Yue Y, Liu N, Liu W, Li M, Ma Y, Luo C, Wang S, Rao J, Hu X, Su J, Zhang Z, Huang Q, Gao Y 2018 Nano Energy 50 79Google Scholar

    [43]

    Shang T, Lin Z, Qi C, Liu X, Li P, Tao Y, Wu Z, Li D, Simon P, Yang Q H 2019 Adv. Funct. Mater. 29 1903960Google Scholar

    [44]

    Bartlett M D, Kazem N, Powell-Palm M J, Huang X, Sun W, Malen J A, Majidi C 2017 Proc. Natl. Acad. Sci. U.S.A. 114 2143Google Scholar

    [45]

    Kazem N, Bartlett M D, Majidi C 2018 Adv. Mater. 30 e1706594Google Scholar

    [46]

    Markvicka E J, Bartlett M D, Huang X, Majidi C 2018 Nat. Mater. 17 618Google Scholar

    [47]

    Yun G, Tang S Y, Sun S, Yuan D, Zhao Q, Deng L, Yan S, Du H, Dickey M D, Li W 2019 Nat. Commun. 10 1300Google Scholar

    [48]

    Pang S, Hernandez Y, Feng X, Mullen K 2011 Adv. Mater. 23 2779Google Scholar

    [49]

    Zeng Z, Huang X, Yin Z, Li H, Chen Y, Li H, Zhang Q, Ma J, Boey F, Zhang H 2012 Adv. Mater. 24 4138Google Scholar

    [50]

    Cao X, Zeng Z, Shi W, Yep P, Yan Q, Zhang H 2013 Small 9 1703Google Scholar

    [51]

    Qi X, Tan C, Wei J, Zhang H 2013 Nanoscale 5 1440Google Scholar

    [52]

    Won S, Hwangbo Y, Lee S K, Kim K S, Kim K S, Lee S M, Lee H J, Ahn J H, Kim J H, Lee S B 2014 Nanoscale 6 6057Google Scholar

    [53]

    Mu J, Wang G, Yan H, Li H, Wang X, Gao E, Hou C, Pham A T C, Wu L, Zhang Q, Li Y, Xu Z, Guo Y, Reichmanis E, Wang H, Zhu M 2018 Nat. Commun. 9 590Google Scholar

    [54]

    Baughman R H, Zakhidov A A, Heer W A 2016 Science 297 787

    [55]

    Li H J, Lu W G, Li J J, Bai X D, Gu C Z 2005 Phys. Rev. Lett. 95 086601Google Scholar

    [56]

    Cai L, Li J, Luan P, Dong H, Zhao D, Zhang Q, Zhang X, Tu M, Zeng Q, Zhou W, Xie S 2012 Adv. Funct. Mater. 22 5238Google Scholar

    [57]

    Lee P, Ham J, Lee J, Hong S, Han S, Suh Y D, Lee S E, Yeo J, Lee S S, Lee D, Ko S H 2014 Adv. Funct. Mater. 24 5671Google Scholar

    [58]

    Zhang Y, Sheehan C J, Zhai J, Zou G, Luo H, Xiong J, Zhu Y T, Jia Q X 2010 Adv. Mater. 22 3027Google Scholar

    [59]

    Liu K, Sun Y, Liu P, Lin X, Fan S, Jiang K 2011 Adv. Funct. Mater. 21 2721Google Scholar

    [60]

    Kim S Y, Park S, Park H W, Park D H, Jeong Y, Kim D H 2015 Adv. Mater. 27 4178Google Scholar

    [61]

    Xu F, Wang X, Zhu Y, Zhu Y 2012 Adv. Funct. Mater. 22 1279Google Scholar

    [62]

    Tahk D, Lee H H, Khang D Y 2009 Macromolecules 42 7079Google Scholar

    [63]

    Hau S K, Yip H L, Zou J, Jen A K Y 2009 Org. Electron. 10 1401Google Scholar

    [64]

    Marchiori B, Delattre R, Hannah S, Blayac S, Ramuz M 2018 Sci. Rep. 8 8477Google Scholar

    [65]

    Crispin X, Jakobsson F L E, Crispin A, Grim P C M, Andersson P, Volodin A, Haesendonck C, Auweraer M V, Salaneck W R, Berggren M 2006 Chem. Mater. 18 4354Google Scholar

    [66]

    Kim S, Lee S J, Cho S, Shin S, Jeong U, Myoung J M 2017 Chem. Commun. 53 8292Google Scholar

    [67]

    Wang Y, Zhu C, Pfattner R, Yan H, Jin L, Chen S, Molina-Lopez F, Lissel F, Liu J, Rabiah N I, Chen Z, Chung J W, Linder C, Toney M F, Murmann B, Bao Z 2017 Sci. Adv. 3 e1602076Google Scholar

    [68]

    Chen T, Xue Y, Roy A K, Dai L 2014 ACS Nano 8 1039Google Scholar

    [69]

    Suh Y D, Kwon J, Lee J, Lee H, Jeong S, Kim D, Cho H, Yeo J, Ko S H 2016 Adv. Electron. Mater. 2 1600277

    [70]

    Liu Z, Fang S, Moura F A, Ding J, Jiang N, Di J, Zhang M, Lepró X, Galvão D, Haines C, Yuan N, Yin S, Lee D W, Wang R, Wang H, Lv W, Dong C, Zhang R, Chen M, Yin Q, Chong Y, Zhang R, Wang X, Lima M D, OvalleRobles R, Qian D, Lu H, Baughman R H 2015 Science 349 400Google Scholar

    [71]

    Mu J, Hou C, Wang G, Wang X, Zhang Q, Li Y, Wang H, Zhu M 2016 Adv. Mater. 28 9491Google Scholar

    [72]

    Yan C, Wang J, Lee P S 2015 ACS Nano 9 2130Google Scholar

    [73]

    Zhang Y, Wang S, Li X, Fan J A, Xu S, Song Y M, Choi K J, Yeo W H, Lee W, Nazaar S N, Lu B, Yin L, Hwang K C, Rogers J A, Huang Y 2014 Adv. Funct. Mater. 24 2028Google Scholar

    [74]

    Jang S, Kim C, Park J J, Jin M L, Kim S J, Park O O, Kim T S, Jung H T 2018 Small 14 1702818

    [75]

    Wang H, Liu Z, Ding J, Lepro X, Fang S, Jiang N, Yuan N, Wang R, Yin Q, Lv W, Liu Z, Zhang M, Ovalle-Robles R, Inoue K, Yin S, Baughman R H 2016 Adv. Mater. 28 4998Google Scholar

    [76]

    Seol Y G, Trung T Q, Yoon O J, Sohn I Y, Lee N E 2012 J. Mater. Chem. 22 23759Google Scholar

    [77]

    Zhu Y, Xu F 2012 Adv. Mater. 24 1073Google Scholar

    [78]

    Pyo J B, Kim B S, Park H, Kim T A, Koo C M, Lee J, Son J G, Lee S S, Park J H 2015 Nanoscale 7 16434Google Scholar

    [79]

    Jin Y, Hwang S, Ha H, Park H, Kang S W, Hyun S, Jeon S, Jeong S H 2016 Adv. Electron. Mater. 2 1500302Google Scholar

    [80]

    Rojas J P, Arevalo A, Foulds I G, Hussain M M 2014 Appl. Phys. Lett. 105 154101Google Scholar

    [81]

    Zhang Z, Deng J, Li X, Yang Z, He S, Chen X, Guan G, Ren J, Peng H 2015 Adv. Mater. 27 356Google Scholar

    [82]

    Yu Y, Zhang Y, Li K, Yan C, Zheng Z 2015 Small 11 3444Google Scholar

    [83]

    Jang H Y, Lee S K, Cho S H, Ahn J H, Park S 2013 Chem. Mater. 25 3535Google Scholar

    [84]

    Hong S, Yeo J, Kim G, Kim D, Lee H, Kwon J, Lee H, Lee P, Ko S H 2013 ACS Nano 7 5024Google Scholar

    [85]

    Xu Z, Li W, Huang J, Liu Q, Guo X, Guo W, Liu X 2018 J. Mater. Chem. A 6 19584Google Scholar

    [86]

    Wang X, Zhang Y, Zhang X, Huo Z, Li X, Que M, Peng Z, Wang H, Pan C 2018 Adv. Mater. 30 e1706738

    [87]

    Wu H, Kong D, Ruan Z, Hsu P C, Wang S, Yu Z, Carney T J, Hu L, Fan S, Cui Y 2013 Nat. Nanotechnol. 8 421Google Scholar

    [88]

    Kim K H, Vural M, Islam M F 2011 Adv. Mater. 23 2865Google Scholar

    [89]

    Liao M, Wan P, Wen J, Gong M, Wu X, Wang Y, Shi R, Zhang L 2017 Adv. Funct. Mater. 27 1703852Google Scholar

    [90]

    Peng X, Wu K, Hu Y, Zhuo H, Chen Z, Jing S, Liu Q, Liu C, Zhong L 2018 J. Mater. Chem. A 6 23550Google Scholar

    [91]

    Tang Y, Gong S, Chen Y, Yap L W, Cheng W 2014 ACS Nano 8 5707Google Scholar

    [92]

    Yang B, Yuan W 2019 ACS Appl. Mater. Interfaces 11 16765Google Scholar

    [93]

    Deng Z, Hu T, Lei Q, He J, Ma P X, Guo B 2019 ACS Appl. Mater. Interfaces 11 6796Google Scholar

    [94]

    Odent J, Wallin T J, Pan W, Kruemplestaedter K, Shepherd R F, Giannelis E P 2017 Adv. Funct. Mater. 27 1701807Google Scholar

    [95]

    Zhou Y, Wan C, Yang Y, Yang H, Wang S, Dai Z, Ji K, Jiang H, Chen X, Long Y 2019 Adv. Funct. Mater. 29 1806220Google Scholar

    [96]

    Kayser L V, Lipomi D J 2019 Adv. Mater. 31 e1806133Google Scholar

    [97]

    Lee Y Y, Kang H Y, Gwon S H, Choi G M, Lim S M, Sun J Y, Joo Y C 2016 Adv. Mater. 28 1636Google Scholar

    [98]

    Duan S, Yang K, Wang Z, Chen M, Zhang L, Zhang H, Li C 2016 ACS Appl. Mater. Interfaces 8 2187Google Scholar

    [99]

    Duan S, Wang Z, Zhang L, Liu J, Li C 2017 ACS Appl. Mater. Interfaces 9 30772Google Scholar

    [100]

    Wu C, Fang L, Huang X, Jiang P 2014 ACS Appl. Mater. Interfaces 6 21026Google Scholar

    [101]

    Ge J, Yao H B, Wang X, Ye Y D, Wang J L, Wu Z Y, Liu J W, Fan F J, Gao H L, Zhang C L, Yu S H 2013 Angew. Chem. Int. Ed. 52 1654Google Scholar

    [102]

    Yu Y, Zeng J, Chen C, Xie Z, Guo R, Liu Z, Zhou X, Yang Y, Zheng Z 2014 Adv. Mater. 26 810Google Scholar

    [103]

    He W, Zhang R, Cheng Y, Zhang C, Zhou X, Liu Z, H X, Liu Z, S J, W Y, Q D, Liu Z 2020 Sci. China Mater. 63 1318Google Scholar

    [104]

    Larson C, Peele B, Li S, Robinson S, Totaro M, Beccai L, Mazzolai B, Shepherd R 2016 Science 351 1071Google Scholar

    [105]

    Liang J, Tong K, Pei Q 2016 Adv. Mater. 28 5986Google Scholar

    [106]

    Xu F, Wu M Y, Safron N S, Roy S S, Jacobberger R M, Bindl D J, Seo J H, Chang T H, Ma Z, Arnold M S 2014 Nano Lett. 14 682Google Scholar

    [107]

    Lee H, Hong S, Lee J, Suh Y D, Kwon J, Moon H, Kim H, Yeo J, Ko S H 2016 ACS Appl. Mater. Interfaces 8 15449Google Scholar

    [108]

    Moon H, Lee H, Kwon J, Suh Y D, Kim D K, Ha I, Yeo J, Hong S, Ko S H 2017 Sci. Rep. 7 41981Google Scholar

    [109]

    Choi C, Lee J M, Kim S H, Kim S J, Di J, Baughman R H 2016 Nano Lett. 16 7677Google Scholar

    [110]

    Hou C, Xu Z, Qiu W, Wu R, Wang Y, Xu Q, Liu X Y, Guo W 2019 Small 15 e1805084Google Scholar

    [111]

    Wan Y, Qiu Z, Huang J, Yang J, Wang Q, Lu P, Yang J, Zhang J, Huang S, Wu Z, Guo C F 2018 Small 14 e1801657Google Scholar

    [112]

    Li L, Xiang H, Xiong Y, Zhao H, Bai Y, Wang S, Sun F, Hao M, Liu L, Li T, Peng Z, Xu J, Zhang T 2018 Adv. Sci. 5 1800558Google Scholar

    [113]

    Liu H, Li Y, Dai K, Zheng G, Liu C, Shen C, Yan X, Guo J, Guo Z 2016 J. Mater. Chem. C 4 157Google Scholar

    [114]

    Li Y, Zhou B, Zheng G, Liu X, Li T, Yan C, Cheng C, Dai K, Liu C, Shen C, Guo Z 2018 J. Mater. Chem. C 6 2258Google Scholar

    [115]

    Kang D, Pikhitsa P V, Choi Y W, Lee C, Shin S S, Piao L, Park B, Suh K Y, Kim T I, Choi M 2014 Nature 516 222Google Scholar

    [116]

    Li X, Zhang R, Yu W, Wang K, Wei J, Wu D, Cao A, Li Z, Cheng Y, Zheng Q, Ruoff R S, Zhu H 2012 Sci. Rep. 2 870Google Scholar

    [117]

    Wu X, Han Y, Zhang X, Zhou Z, Lu C 2016 Adv. Funct. Mater. 26 6246Google Scholar

    [118]

    Kang J, Jang Y, Kim Y, Cho S H, Suhr J, Hong B H, Choi J B, Byun D 2015 Nanoscale 7 6567Google Scholar

    [119]

    Huang J, Xu Z, Qiu W, Chen F, Meng Z, Hou C, Guo W, Liu X Y 2020 Adv. Funct. Mater. 30 1910547Google Scholar

    [120]

    An B W, Gwak E J, Kim K, Kim Y C, Jang J, Kim J Y, Park J U 2016 Nano Lett. 16 471Google Scholar

  • 图 1  (a) AgNW-PUU-PDMS薄膜被玻璃棒挤压的光学照片; (b) AgNW-PUU-PDMS薄膜放置在拉伸装置上以及拉伸50%应变的光学照片[14]; (c) AgNW-poly(TBA-co-AA)复合物的制备过程; (d) AgNW-poly (TBA-co-AA) 复合物的截面扫描电镜 (SEM) 图; (e) AgNW-poly (TBA-co-AA) 复合物热驱动的示意图, 展示了68%的面积变化[34]

    Fig. 1.  (a) Stretched area created by pressing AgNW-PUU-PDMS (silver nanowires-polyurethane-urea poly(dimethylsiloxane)) film with the end of a glass rod; (b) photographs of sample mounted on a stretching tester and sample after 50% increase in film length[14]; (c) schematic illustration of the fabrication process of AgNW-polymer composites; (d) scanning electron microscope (SEM) image of the conductive cross-section surface of a AgNW-poly(TBA-co-AA) (poly(tert-butylacrylate-co-acrylic acid)) composite; (e) photographs of deformed circular active area of actuator in response to electric fields with different amplitude[34].

    图 2  (a)银片/橡胶复合物的光学照片和示意图; (b)导电复合物作为皮肤电极检测皮肤拉伸压缩时的心电信号, 插图描述了拉伸和压缩时电极-皮肤界面的保形接触[38]; (c)由模板印刷工艺制备可拉伸天线的示意图[37]

    Fig. 2.  (a) Optical photographs and schematic illustration of the formation process of Ag-PDMS/Ecoflex; (b) effect of skin deformation on electrocardiogram signals collected by electrically conductive composites electrode. The insets show the conformal contact at the skin-electrode interface during compression and stretch[38]; (c) stencil printing process to fabricate a stretchable antenna[37].

    图 3  (a) Mxene水凝胶制备过程示意图; (b), (c) 3D Mxene泡沫和3D Mxene干凝胶的光学图片; (d) Mxene水凝胶, MXene /氧化石墨烯杂化膜和MXene膜在电流密度0.2—1000 A/g的速率性能; (e)在1000 mV/s下的循环伏安图[43]

    Fig. 3.  (a) Schematic illustration of the formation process of MXene hydrogel; (b), (c) optical photographs of the 3D MXene foam and 3D MXene xerogel; (d) rate performance of the the Mxene hydrogel, Mxene/ reduced graphene oxide film, and MXene film electrodes at current densities ranging from 0.2 to 1000 A/g; (e) cyclic voltammetry profiles collected at 1000 mV/s[43].

    图 4  (a)带有内部导电路径的液态金属复合物被拉伸和加捻的光学照片, 左边的插图展示了未变形的液态金属复合物, 右边的插图为复合物被拉伸50%的光学照片; (b)自修复的软体机器人; (c)从软机器人的自上而下视图穿越平滑地形的电影帧序列[46]

    Fig. 4.  (a) A liquid metal (LM)-elastomer composite being stretched and twisted with an intricate design of electrically conductive traces. The lower left inset shows the undeformed sample and lower right inset is an optical micrograph showing the LM microdroplets in the elastomer at ϕ = 50%; (b) a soft quadruped with autonomously self-healing soft-matter electronics; (c) movie frame sequence from the top-down view of the soft robot traversing smooth terrain[46].

    图 5  (a)磁流变弹性体的SEM图, 标尺为10 μm; (b) LMMRE电阻与应变的关系; (c)LMMRE作为传感器监测手指运动过程中的电阻变化; (d)手持式加热装置的分解示意图和红外热图像, 标尺为1 cm[47]

    Fig. 5.  (a) SEM images of the liquid metal-filled magnetorheological elastomer (LMMRE). Scale bars are 10 µm; (b) resistance-strain curve of the LMMRE; (c) resistance-strain curve of the LMMRE as a sensor. Inset are finger with different gestures; (d) exploded schematics and thermal images of the hand-held heating column. Scale bars are 1 cm[47].

    图 6  (a) Graphene-AgNW薄膜在PET基底上的实物照片, 标尺为2 cm, 插图为复合物的SEM图, 标尺为5 μm; Graphene-AgNW-PDMS在弯曲(b)、拉伸(c)过程中的电阻变化; (d)单像素隐形眼镜显示器的示意图; (e)隐形眼镜装置的实物照片, 标尺为5 mm, 插图为混合电极和隐形眼镜表面略微凹陷的无机发光二极管的光学显微图像, 标尺为300 μm; (f)人体模型眼睛上的无机发光二极管混合电极隐形眼镜装置的照片, 标尺为5 mm[27]

    Fig. 6.  (a) Photograph of graphene-AgNW hybrid film on a polyethylene terephthalate (PET) substrate. The scale bar indicates 2 cm. The inset shows a SEM image of this hybrid (scale bar: 5 μm); (b), (c) relative difference in resistance as a function of radius of curvature and tensile strain; (d) schematic illustration of the device layout; (e) photograph of the contact lens device (scale bar: 5 mm). (Inset: optical microscopic image of slightly sunken inorganic light-emitting diode (ILED) on the surface of hybrid electrode and contact lens. Scale bar is300 μm); (f) a photograph of the ILED-hybrid electrode-contact lens device on an eye of a mannequin. Scale bar is 5 mm[27].

    图 7  (a)在PDMS上印刷弹性导体, 左插图显示SWNT呈浓稠糊状, 右插图为线宽为100 µm的印刷弹性导体的显微镜照片; (b) SWNT复合物的SEM图像[19]; (c) CNT/AgNW纳米复合物中AgNW和CNT含量与透明度的关系; (d) CNT/AgNW纳米复合物与只含有AgNW的复合物在拉伸过程中的电阻变化[57]

    Fig. 7.  (a) Printed elastic conductors on a PDMS sheet. The insets show single walled carbon nanotubes (SWNTs) dispersed in paste and a micrograph of printed elastic conductors with a line width of 100 µm; (b) SEM image of the elastic conductor[19]; (c) surface plot of transparency for various AgNW and carbon nanotubes (CNT) concentration; (d) stretchability comparison of AgNW only percolation network and hierarchical multiscale AgNW/CNT hybrid nanocomposite[57].

    图 8  (a)从CNT森林中拉出的取向CNT薄膜的SEM图, 箭头代表拉伸方向; (b) CNT-PDMS薄膜在第一次、第二次拉伸-释放过程中的电阻变化[58]; (c)三种CNT薄膜堆叠排列的示意图; (d)两层CNT交叉排列的SEM图; (e) CNT呈(45°, 45°)交叉排列的CNT-PDMS薄膜在第一次拉伸后的连续三次拉伸30%的电阻变化[59]; (f)由CNT纤维制备的电子皮肤在拉伸状态的光学照片[60]

    Fig. 8.  (a) SEM images of CNT ribbons directly drawn from CNT forest (arrow shows the drawing direction), and magnified CNT ribbons; (b) resistance of a CNT/PDMS film as a function of tensile strains in the 1 st stretching, 1 st releasing and 2 nd stretching cycles[58]; (c) illustration of strips of cross-stacked films with three typical directions; (d) SEM image of a 2-layer cross-stacked CNT film; (e) change of resistance of a (45°, 45°) SACNT/PDMS film during three sequential stretch processes after the first stretch process[59]; (f) photographs of a fully fabricated e-skin device under stretching conditions[60].

    图 9  (a) PEDOT:PSS和离子增强剂的分子结构式; (b) PEDOT:PSS薄膜加入STEC后的示意图; (c) PEDOT/STEC薄膜的应力应变曲线; (d)加入不同离子增强剂的PEDOT:PSS复合物在拉伸过程中的电导率变化, 插图为PEDOT/STEC薄膜在拉伸状态下的照片[67]

    Fig. 9.  (a) Chemical structures of poly(3, 4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and representative ionic additives–assisted stretchability and electrical conductivity (STEC) enhancers; (b) schematic diagram representing the morphology of a stretchable PEDOT film with STEC enhancers; (c) stress/strain of freestanding PEDOT/STEC films; (d) conductivity under various strains for PEDOT with different STEC enhancers. Inset: photograph showing a freestanding PEDOT/STEC film being stretched[67].

    图 10  (a)具有不同CVD沉积时间的聚乙烯醇(PVA)涂覆的平面和褶皱石墨烯片的电阻对拉伸应变的依赖性[68]; (b) PET薄膜上铜纳米粒子的SEM图; (c)铜纳米粒子复合物在弯曲过程中的电阻变化, 下面插图展示了薄膜在最大最小弯曲半径下的状态, 右边插图展现了薄膜在折叠(破坏)状态下仍然导电[69]

    Fig. 10.  (a) Dependency of resistance of the polyvinyl alcohol (PVA)-coated planar and wrinkled graphene sheets with different chemical vapor deposition (CVD) deposition times on the tensile strain [68]; (b) SEM image of transferred Cu nanoparticle random network on a PET film; (c) resistance change against bending radius. Bottom inset pictures show the digital image at maximum and minimum bending radius. Right inset pictures show permanently damaged (folded) transparent conductor at maximum bending radius, yet electrically conductive[69].

    图 11  (a)蛇纹石结构的Ag-PDMS弹性导体的制备过程; (b)弹性导体透明度与片层电阻的关系; (c) Ag-PDMS弹性导体在拉伸过程中的电阻变化[74]

    Fig. 11.  (a) Fabrication of the serpentine transparent conductors; (b) the relationship between the transmittance and sheet resistance of the composites; (c) the resistance of composites plotted as a function of the applied strain percentage[74].

    图 12  (a) NTSm@fiber制备过程示意图; (b) SEM图展现了施加100%应变时NTS180 @fiber的多级褶皱[70]; (c)熔融-拉丝法制备微米级纤维的示意图; (d)纤维拉伸过程中的电导率变化(插图为小应变下的电导率变化)[75]

    Fig. 12.  (a) Steps in the fabrication of an NTSm@fiber; (b) SEM images showing long- and short-period buckles for an NTS180@fiber at 100% applied strain [70]; (c) schematic illustration of the melt-draw method used for the preparation of micrometer-size rubber fibers; (d) fiber electrical conductivity versus applied strain (with an inset for small applied strains)[75].

    图 13  (a)面内褶皱的CNT的SEM图; (b) CNT-PDMS在拉伸过程中的电阻变化[77]; (c)褶皱的AgNW网络透明电极的制备过程示意图; (d), (e)水面漂浮的AgNW网络压缩前后的光学显微镜图[78]

    Fig. 13.  (a) SEM image showing the lateral buckling of CNTs; (b) resistance change of a typical CNT-PDMS film as a function of applied strain[77]; (c) schematic for the preparation of AgNW networks with wavy configurations; (d), (e) optical microscope images of AgNW networks floated on water (d) before and (e) after compression[78].

    图 14  (a)使用不同收集器制备不同取向的PVA纤维的示意图; (b)图案化电极的工艺流程图, 包括金属化、纳米纤维转移、图案化和包装; (c)不同取向PVA纤维的SEM, 标尺为10 μm; (d)柔性AgNW电极的光学照片[86]

    Fig. 14.  (a) Schematic illustration of the electrospinning with different collectors to obtain various PVA NFs with controlled fiber orientation; (b) technological flow chart of the patterned electrode, including metallization, nanofibers (NFs) transfer, patterning, and packaging; (c) SEM images of different oriented PVA NFs. Scale bar is10 μm; (d) optical photographs of a fabricated stretchable transparent AgNWs electrode[86].

    图 15  (a) CNT-rGO-CNF气凝胶的制备过程示意图[90]; (b) CuNW-PVA气凝胶在第一次和第二次拉伸-释放60%应变过程中的电阻变化; (c) CuNW-PVA气凝胶在拉伸应变60%下循环1000次的电阻变化, 插图为拉伸至60%应变5次、100次、1000次的电阻变化[91]

    Fig. 15.  (a) Schematic illustration of the fabrication of the CNT/rGO/CNF (carbon nanotubes-reduced grapheme oxide-cellulose fibers) aerogel[90]; (b) variation of the resistance of the copper nanowires-polyvinyl alcohol (CuNW-PVA) as a function of tensile strain up to 60% in the first two stretch-release cycles; (c) variation of the resistance of the CuNW-PVA as a function of stretching cycles at a strain of 60%. The inset showed the resistance changes for the 5th, 100th, and 1000th stretching cycles, respectively[91].

    图 16  (a) Agar-PAM双网络水凝胶呈花瓣状、打结及拉伸状态下的光学照片; (b) Agar-PAM双网络水凝胶作为传感器在拉伸-释放过程中的电阻和影响因子变化[92]; (c)在人体模型上自粘水凝胶后, 通过LED灯演示人体模型上的水凝胶传感器; (d) PNIPAM/L/CNT水凝胶作为应变传感器的应用, 在不同部位电阻呈现可重复的规律性变化[93]

    Fig. 16.  (a) Photograph of transparent flower-shaped, knotting and stretching Agar-PAM (polyacrylamide) hydrogel; (b) resistance change and gauge factor variations of the Agar-PAM hydrogel as sensors on applied tension[92]; (c) demonstration of hydrogels as sensor on a wooden mannequin and pressure-dependent conductivity by LED bulb after the hydrogels self-adhered on a wooden mannequin model; (d) the application of (poly-N-isopropylacrylamide) PNIPAM/L/CNT hydrogel as a strain sensor, showing repeatable regular resistance changes in different parts[93].

    图 17  (a)制备CNT/rGO-PDMS复合物的示意图; (b) CNT/rGO-PDMS复合物在拉伸过程中的电导率变化, 插图为2 wt.% CNT/rGO的复合物在不同拉伸应变下对应的电导率[13]; (c) CNT/rGO-PDMS导体作为电气互联连接LED灯, 在拉伸弯曲过程中LED灯亮度不变[98]

    Fig. 17.  (a) Schematic illustration of the CNT/rGO-PDMS preparation; (b) conductivity of the composite as a function of tensile strain, inset curve shows the electrical conductivity of the CNT/rGO-PDMS with 2 wt.% graphene/CNT loading under stretching [13]; (c) the brightness of LED lamps depending on the strains and bends[98].

    图 18  (a) PUS-AgNW-PDMS双网络制备过程示意图[101]; (b)褶皱的SWNT/PP泡沫在拉伸过程中的SEM截面图; (c)不同预应变的SWNT/PP泡沫在拉伸过程中的电阻变化[25]

    Fig. 18.  (a) Fabrication procedure for PUS-AgNW-PDMS stretchable conductors[101]; (b) SEM images for cross-sections of 35% biaxial pre-strain SWNT/PP (polypropylene foam) at applied strains; (c) resistance change as a function of applied strain for SWNT/PP with different biaxial fabrication strains[25].

    图 19  (a)基于GO-AgNW/PUA制备的可拉伸OLED的结构示意图; (b) OLED在不同拉伸应变下的光学照片[25]; (c)基于PAM-LiCl和ZnS制备的OLED的结构示意图; (d) OLED在不同拉伸应变下的光学照片[104]

    Fig. 19.  (a) Schematic drawing of a fully stretchable OLED using GO-AgNW/PUA composite electrode; (b) optical photographs of an OLED stretched to specified strains[25]; (c) schematic drawing of OLED using PAM-LiCl-ZnS composite electrode; (d) optical photographs of an OLED stretched to specified strains[104].

    图 20  (a)基于丝网印刷的AgNW源/漏电极的全印刷FET的配置示意图; (b)柔性10 × 6 FET阵列的光学照片[105]; (c)附着在织物上的FET拉伸30%的光学照片[106]

    Fig. 20.  (a) Schematic illustration of the configuration of a fully printed FET based on screen-printed AgNW source/drain electrodes; (b) optical image of a fully printed stretchable 10 × 6 FET array[105]; (c) FET adhered to a textile and stretched to 30%[106].

    图 21  (a)基于Ag-Au核壳结构制备的超级电容器在循环拉伸过程中的相对电容变化[107]; (b) Ag/Au/PPy核壳纳米网络薄膜的制备过程示意图; (c)基于Ag/Au/PPy核壳结构制备的超级电容器在不同拉伸应变下的CV曲线, 扫描速率为50 mV/s. 插图为电容器在拉伸状态下的示意图[108]

    Fig. 21.  (a) The relative capacitance change of the Ag-Au core-shell NW-based supercapacitor during the repeated stretching cycles[107]; (b) fabrication step of Ag/Au/PPy core-shell NW network mesh film; (c) CV curves of the supercapacitor based on Ag/Au/PPy coreshell NW mesh at a scan rate of 50 mV/s at indicated strain rates. Insets are schematic illustration of transparent and stretchable supercapacitor on strain condition[108].

    图 22  (a)加捻的矩形夹芯纤维的示意图, 该纤维包括一个Ecoflex橡胶芯和两个对称的、褶皱的CNT电极; (b)纤维厚度方向的电容和分数变化与拉伸应变的关系, 插图为纤维侧视图的照片[109]; (c)裂纹传感器的示意图[115]; (d)基于褶皱的碳纳米管制备的传感器对手臂运动的响应[112]

    Fig. 22.  (a) Schematic illustration of a twist-inserted rectangular sandwich fiber, which comprises an Ecoflex rubber core and two symmetric, buckled CNT electrodes; (b) capacitance and fractional change in fiber thickness versus tensile strain. Inset: photograph showing a side view of the sandwich fiber[109]; (c) Illustration of the crack-based sensor[115]; (d) response of the sensor to motions of arm muscle with different gestures[112].

    图 23  (a)基于AgNW-PDMS渗透网络复合物制备的透明可拉伸加热器的示意图; (b)施加不同电压, AgNW-PDMS在0−30%应变下的温度变化, 插图为在不同拉伸应变下的红外图[22]

    Fig. 23.  (a) Schematic illustration of the stretchable and transparent heater composed of Ag NW-PDMS composites; (b) transient temperature evolution of heater under stepwise application of 0−30% strain at a constant voltage. Insets are temperature field at each strain[22].

  • [1]

    Bao Z, Chen X 2016 Adv. Mater. 28 4177Google Scholar

    [2]

    Tok J B H, Bao Z 2012 Sci. China Chem. 55 718Google Scholar

    [3]

    Yan C, Lee P S 2014 Small 10 3443Google Scholar

    [4]

    Mannsfeld S C, Tee B C, Stoltenberg R M, Chen C V, Barman S, Muir B V, Sokolov A N, Reese C, Bao Z 2010 Nat. Mater. 9 859Google Scholar

    [5]

    Ramuz M, Tee B C, Tok J B, Bao Z 2012 Adv. Mater 24 3223Google Scholar

    [6]

    Ma R, Chou S Y, Xie Y, Pei Q 2019 Chem. Soc. Rev. 48 1741Google Scholar

    [7]

    Trung T Q, Lee N E 2017 Adv. Mater. 29 1603167Google Scholar

    [8]

    Chen Z H, Fang R, Li W, Guan J 2019 Adv. Mater. 31 e1900756Google Scholar

    [9]

    Yao S, Zhu Y 2015 Adv. Mater. 27 1480Google Scholar

    [10]

    Gao H L, Xu L, Long F, Pan Z, Du Y X, Lu Y, Ge J, Yu S H 2014 Angew. Chem. Int. Ed. 53 4561Google Scholar

    [11]

    Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng H M 2011 Nat. Mater. 10 424Google Scholar

    [12]

    Park J, Wang S, Li M, Ahn C, Hyun J K, Kim D S, Kim D K, Rogers J A, Huang Y, Jeon S 2012 Nat. Commun. 3 916Google Scholar

    [13]

    Chen M, Zhang L, Duan S, Jing S, Jiang H, Li C 2014 Adv. Funct. Mater. 24 7548Google Scholar

    [14]

    Kim D H, Yu K C, Kim Y, Kim J W 2015 ACS Appl. Mater. Interfaces 7 15214Google Scholar

    [15]

    Hu W, Wang R, Lu Y, Pei Q 2014 J. Mater. Chem. C 2 1298Google Scholar

    [16]

    Huang Y Y, Terentjev E M 2012 Polymers 4 275Google Scholar

    [17]

    Kim T A, Kim H S, Lee S S, Park M 2012 Carbon 50 444Google Scholar

    [18]

    Chun K Y, Oh Y, Rho J, Ahn J H, Kim Y J, Choi H R, Baik S 2010 Nat. Nanotechnol. 5 853Google Scholar

    [19]

    Sekitani T, Nakajima H, Maeda H, Fukushima T, Aida T, Hata K, Someya T 2009 Nat. Mater. 8 494Google Scholar

    [20]

    Sekitani T, Noguchi Y, Hata K, Fukushima T, Aida T, Someya T 2008 Science 321 1468Google Scholar

    [21]

    Huang Y Y, Terentjev E M 2010 Adv. Funct. Mater. 20 4062Google Scholar

    [22]

    Hong S, Lee H, Lee J, Kwon J, Han S, Suh Y D, Cho H, Shin J, Yeo J, Ko S H 2015 Adv. Mater. 27 4744Google Scholar

    [23]

    Jiang S, Zhang H, Song S, Ma Y, Li J, Lee G H, Han Q, Liu J 2015 ACS Nano 9 10252Google Scholar

    [24]

    Garnett E C, Cai W, Cha J J, Mahmood F, Connor S T, Greyson Christoforo M, Cui Y, McGehee M D, Brongersma M L 2012 Nat. Mater. 11 241

    [25]

    Liang J, Li L, Tong K, Ren Z, Hu W, Niu X C, Pei Q 2014 ACS Nano 8 1590Google Scholar

    [26]

    Lee M S, Lee K, Kim S Y, Lee H, Park J, Choi K H, Kim H K, Kim D G, Lee D Y, Nam S, Park J U 2013 Nano Lett. 13 2814Google Scholar

    [27]

    Woo J Y, Kim K K, Lee J, Kim J T, Han C S 2014 Nanotechnology 25 285203

    [28]

    Hecht D S, Hu L, Irvin G 2011 Adv. Mater. 23 1482Google Scholar

    [29]

    Sun Y, Gates B, Mayers B, Xia Y 2002 Nano Lett. 2 165Google Scholar

    [30]

    Hu L, Kim H S, Lee J Y, Peumans P, Cui Y 2010 ACS Nano 4 2955Google Scholar

    [31]

    De S, Higgins T M, Lyons P E, Doherty E M, Nirmalraj P N, Blau W J, Boland J J, Coleman J N 2009 ACS Nano 3 1767Google Scholar

    [32]

    Yang Y, Ding S, Araki T, Jiu J, Sugahara T, Wang J, Vanfleteren J, Sekitani T, Suganuma K 2016 Nano Res. 9 401Google Scholar

    [33]

    Yu Z, Zhang Q, Li L, Chen Q, Niu X, Liu J, Pei Q 2011 Adv. Mater. 23 664Google Scholar

    [34]

    Yun S, Niu X, Yu Z, Hu W, Brochu P, Pei Q 2012 Adv. Mater. 24 1321Google Scholar

    [35]

    Han S, Hong S, Ham J, Yeo J, Lee J, Kang B, Lee P, Kwon J, Lee S S, Yang M Y, Ko S H 2014 Adv. Mater. 26 5808Google Scholar

    [36]

    Matsuhisa N, Inoue D, Zalar P, Jin H, Matsuba Y, Itoh A, Yokota T, Hashizume D, Someya T 2017 Nat. Mater. 16 834

    [37]

    Li Z, Le T, Wu Z, Yao Y, Li L, Tentzeris M, Moon K S, Wong C P 2015 Adv. Funct. Mater. 25 464Google Scholar

    [38]

    Guo W, Zheng P, Huang X, Zhuo H, Wu Y, Yin Z, Li Z, Wu H 2019 ACS Appl. Mater. Interfaces 11 8567Google Scholar

    [39]

    Tang M, Zheng P, Wang K, Qin Y, Jiang Y, Cheng Y, Li Z, Wu L 2019 J. Mater. Chem. A 7 27278Google Scholar

    [40]

    Moon G D, Lim G H, Song J H, Shin M, Yu T, Lim B, Jeong U 2013 Adv. Mater. 25 2707Google Scholar

    [41]

    Shin M, Song J H, Lim G H, Lim B, Park J J, Jeong U 2014 Adv. Mater. 26 3706Google Scholar

    [42]

    Yue Y, Liu N, Liu W, Li M, Ma Y, Luo C, Wang S, Rao J, Hu X, Su J, Zhang Z, Huang Q, Gao Y 2018 Nano Energy 50 79Google Scholar

    [43]

    Shang T, Lin Z, Qi C, Liu X, Li P, Tao Y, Wu Z, Li D, Simon P, Yang Q H 2019 Adv. Funct. Mater. 29 1903960Google Scholar

    [44]

    Bartlett M D, Kazem N, Powell-Palm M J, Huang X, Sun W, Malen J A, Majidi C 2017 Proc. Natl. Acad. Sci. U.S.A. 114 2143Google Scholar

    [45]

    Kazem N, Bartlett M D, Majidi C 2018 Adv. Mater. 30 e1706594Google Scholar

    [46]

    Markvicka E J, Bartlett M D, Huang X, Majidi C 2018 Nat. Mater. 17 618Google Scholar

    [47]

    Yun G, Tang S Y, Sun S, Yuan D, Zhao Q, Deng L, Yan S, Du H, Dickey M D, Li W 2019 Nat. Commun. 10 1300Google Scholar

    [48]

    Pang S, Hernandez Y, Feng X, Mullen K 2011 Adv. Mater. 23 2779Google Scholar

    [49]

    Zeng Z, Huang X, Yin Z, Li H, Chen Y, Li H, Zhang Q, Ma J, Boey F, Zhang H 2012 Adv. Mater. 24 4138Google Scholar

    [50]

    Cao X, Zeng Z, Shi W, Yep P, Yan Q, Zhang H 2013 Small 9 1703Google Scholar

    [51]

    Qi X, Tan C, Wei J, Zhang H 2013 Nanoscale 5 1440Google Scholar

    [52]

    Won S, Hwangbo Y, Lee S K, Kim K S, Kim K S, Lee S M, Lee H J, Ahn J H, Kim J H, Lee S B 2014 Nanoscale 6 6057Google Scholar

    [53]

    Mu J, Wang G, Yan H, Li H, Wang X, Gao E, Hou C, Pham A T C, Wu L, Zhang Q, Li Y, Xu Z, Guo Y, Reichmanis E, Wang H, Zhu M 2018 Nat. Commun. 9 590Google Scholar

    [54]

    Baughman R H, Zakhidov A A, Heer W A 2016 Science 297 787

    [55]

    Li H J, Lu W G, Li J J, Bai X D, Gu C Z 2005 Phys. Rev. Lett. 95 086601Google Scholar

    [56]

    Cai L, Li J, Luan P, Dong H, Zhao D, Zhang Q, Zhang X, Tu M, Zeng Q, Zhou W, Xie S 2012 Adv. Funct. Mater. 22 5238Google Scholar

    [57]

    Lee P, Ham J, Lee J, Hong S, Han S, Suh Y D, Lee S E, Yeo J, Lee S S, Lee D, Ko S H 2014 Adv. Funct. Mater. 24 5671Google Scholar

    [58]

    Zhang Y, Sheehan C J, Zhai J, Zou G, Luo H, Xiong J, Zhu Y T, Jia Q X 2010 Adv. Mater. 22 3027Google Scholar

    [59]

    Liu K, Sun Y, Liu P, Lin X, Fan S, Jiang K 2011 Adv. Funct. Mater. 21 2721Google Scholar

    [60]

    Kim S Y, Park S, Park H W, Park D H, Jeong Y, Kim D H 2015 Adv. Mater. 27 4178Google Scholar

    [61]

    Xu F, Wang X, Zhu Y, Zhu Y 2012 Adv. Funct. Mater. 22 1279Google Scholar

    [62]

    Tahk D, Lee H H, Khang D Y 2009 Macromolecules 42 7079Google Scholar

    [63]

    Hau S K, Yip H L, Zou J, Jen A K Y 2009 Org. Electron. 10 1401Google Scholar

    [64]

    Marchiori B, Delattre R, Hannah S, Blayac S, Ramuz M 2018 Sci. Rep. 8 8477Google Scholar

    [65]

    Crispin X, Jakobsson F L E, Crispin A, Grim P C M, Andersson P, Volodin A, Haesendonck C, Auweraer M V, Salaneck W R, Berggren M 2006 Chem. Mater. 18 4354Google Scholar

    [66]

    Kim S, Lee S J, Cho S, Shin S, Jeong U, Myoung J M 2017 Chem. Commun. 53 8292Google Scholar

    [67]

    Wang Y, Zhu C, Pfattner R, Yan H, Jin L, Chen S, Molina-Lopez F, Lissel F, Liu J, Rabiah N I, Chen Z, Chung J W, Linder C, Toney M F, Murmann B, Bao Z 2017 Sci. Adv. 3 e1602076Google Scholar

    [68]

    Chen T, Xue Y, Roy A K, Dai L 2014 ACS Nano 8 1039Google Scholar

    [69]

    Suh Y D, Kwon J, Lee J, Lee H, Jeong S, Kim D, Cho H, Yeo J, Ko S H 2016 Adv. Electron. Mater. 2 1600277

    [70]

    Liu Z, Fang S, Moura F A, Ding J, Jiang N, Di J, Zhang M, Lepró X, Galvão D, Haines C, Yuan N, Yin S, Lee D W, Wang R, Wang H, Lv W, Dong C, Zhang R, Chen M, Yin Q, Chong Y, Zhang R, Wang X, Lima M D, OvalleRobles R, Qian D, Lu H, Baughman R H 2015 Science 349 400Google Scholar

    [71]

    Mu J, Hou C, Wang G, Wang X, Zhang Q, Li Y, Wang H, Zhu M 2016 Adv. Mater. 28 9491Google Scholar

    [72]

    Yan C, Wang J, Lee P S 2015 ACS Nano 9 2130Google Scholar

    [73]

    Zhang Y, Wang S, Li X, Fan J A, Xu S, Song Y M, Choi K J, Yeo W H, Lee W, Nazaar S N, Lu B, Yin L, Hwang K C, Rogers J A, Huang Y 2014 Adv. Funct. Mater. 24 2028Google Scholar

    [74]

    Jang S, Kim C, Park J J, Jin M L, Kim S J, Park O O, Kim T S, Jung H T 2018 Small 14 1702818

    [75]

    Wang H, Liu Z, Ding J, Lepro X, Fang S, Jiang N, Yuan N, Wang R, Yin Q, Lv W, Liu Z, Zhang M, Ovalle-Robles R, Inoue K, Yin S, Baughman R H 2016 Adv. Mater. 28 4998Google Scholar

    [76]

    Seol Y G, Trung T Q, Yoon O J, Sohn I Y, Lee N E 2012 J. Mater. Chem. 22 23759Google Scholar

    [77]

    Zhu Y, Xu F 2012 Adv. Mater. 24 1073Google Scholar

    [78]

    Pyo J B, Kim B S, Park H, Kim T A, Koo C M, Lee J, Son J G, Lee S S, Park J H 2015 Nanoscale 7 16434Google Scholar

    [79]

    Jin Y, Hwang S, Ha H, Park H, Kang S W, Hyun S, Jeon S, Jeong S H 2016 Adv. Electron. Mater. 2 1500302Google Scholar

    [80]

    Rojas J P, Arevalo A, Foulds I G, Hussain M M 2014 Appl. Phys. Lett. 105 154101Google Scholar

    [81]

    Zhang Z, Deng J, Li X, Yang Z, He S, Chen X, Guan G, Ren J, Peng H 2015 Adv. Mater. 27 356Google Scholar

    [82]

    Yu Y, Zhang Y, Li K, Yan C, Zheng Z 2015 Small 11 3444Google Scholar

    [83]

    Jang H Y, Lee S K, Cho S H, Ahn J H, Park S 2013 Chem. Mater. 25 3535Google Scholar

    [84]

    Hong S, Yeo J, Kim G, Kim D, Lee H, Kwon J, Lee H, Lee P, Ko S H 2013 ACS Nano 7 5024Google Scholar

    [85]

    Xu Z, Li W, Huang J, Liu Q, Guo X, Guo W, Liu X 2018 J. Mater. Chem. A 6 19584Google Scholar

    [86]

    Wang X, Zhang Y, Zhang X, Huo Z, Li X, Que M, Peng Z, Wang H, Pan C 2018 Adv. Mater. 30 e1706738

    [87]

    Wu H, Kong D, Ruan Z, Hsu P C, Wang S, Yu Z, Carney T J, Hu L, Fan S, Cui Y 2013 Nat. Nanotechnol. 8 421Google Scholar

    [88]

    Kim K H, Vural M, Islam M F 2011 Adv. Mater. 23 2865Google Scholar

    [89]

    Liao M, Wan P, Wen J, Gong M, Wu X, Wang Y, Shi R, Zhang L 2017 Adv. Funct. Mater. 27 1703852Google Scholar

    [90]

    Peng X, Wu K, Hu Y, Zhuo H, Chen Z, Jing S, Liu Q, Liu C, Zhong L 2018 J. Mater. Chem. A 6 23550Google Scholar

    [91]

    Tang Y, Gong S, Chen Y, Yap L W, Cheng W 2014 ACS Nano 8 5707Google Scholar

    [92]

    Yang B, Yuan W 2019 ACS Appl. Mater. Interfaces 11 16765Google Scholar

    [93]

    Deng Z, Hu T, Lei Q, He J, Ma P X, Guo B 2019 ACS Appl. Mater. Interfaces 11 6796Google Scholar

    [94]

    Odent J, Wallin T J, Pan W, Kruemplestaedter K, Shepherd R F, Giannelis E P 2017 Adv. Funct. Mater. 27 1701807Google Scholar

    [95]

    Zhou Y, Wan C, Yang Y, Yang H, Wang S, Dai Z, Ji K, Jiang H, Chen X, Long Y 2019 Adv. Funct. Mater. 29 1806220Google Scholar

    [96]

    Kayser L V, Lipomi D J 2019 Adv. Mater. 31 e1806133Google Scholar

    [97]

    Lee Y Y, Kang H Y, Gwon S H, Choi G M, Lim S M, Sun J Y, Joo Y C 2016 Adv. Mater. 28 1636Google Scholar

    [98]

    Duan S, Yang K, Wang Z, Chen M, Zhang L, Zhang H, Li C 2016 ACS Appl. Mater. Interfaces 8 2187Google Scholar

    [99]

    Duan S, Wang Z, Zhang L, Liu J, Li C 2017 ACS Appl. Mater. Interfaces 9 30772Google Scholar

    [100]

    Wu C, Fang L, Huang X, Jiang P 2014 ACS Appl. Mater. Interfaces 6 21026Google Scholar

    [101]

    Ge J, Yao H B, Wang X, Ye Y D, Wang J L, Wu Z Y, Liu J W, Fan F J, Gao H L, Zhang C L, Yu S H 2013 Angew. Chem. Int. Ed. 52 1654Google Scholar

    [102]

    Yu Y, Zeng J, Chen C, Xie Z, Guo R, Liu Z, Zhou X, Yang Y, Zheng Z 2014 Adv. Mater. 26 810Google Scholar

    [103]

    He W, Zhang R, Cheng Y, Zhang C, Zhou X, Liu Z, H X, Liu Z, S J, W Y, Q D, Liu Z 2020 Sci. China Mater. 63 1318Google Scholar

    [104]

    Larson C, Peele B, Li S, Robinson S, Totaro M, Beccai L, Mazzolai B, Shepherd R 2016 Science 351 1071Google Scholar

    [105]

    Liang J, Tong K, Pei Q 2016 Adv. Mater. 28 5986Google Scholar

    [106]

    Xu F, Wu M Y, Safron N S, Roy S S, Jacobberger R M, Bindl D J, Seo J H, Chang T H, Ma Z, Arnold M S 2014 Nano Lett. 14 682Google Scholar

    [107]

    Lee H, Hong S, Lee J, Suh Y D, Kwon J, Moon H, Kim H, Yeo J, Ko S H 2016 ACS Appl. Mater. Interfaces 8 15449Google Scholar

    [108]

    Moon H, Lee H, Kwon J, Suh Y D, Kim D K, Ha I, Yeo J, Hong S, Ko S H 2017 Sci. Rep. 7 41981Google Scholar

    [109]

    Choi C, Lee J M, Kim S H, Kim S J, Di J, Baughman R H 2016 Nano Lett. 16 7677Google Scholar

    [110]

    Hou C, Xu Z, Qiu W, Wu R, Wang Y, Xu Q, Liu X Y, Guo W 2019 Small 15 e1805084Google Scholar

    [111]

    Wan Y, Qiu Z, Huang J, Yang J, Wang Q, Lu P, Yang J, Zhang J, Huang S, Wu Z, Guo C F 2018 Small 14 e1801657Google Scholar

    [112]

    Li L, Xiang H, Xiong Y, Zhao H, Bai Y, Wang S, Sun F, Hao M, Liu L, Li T, Peng Z, Xu J, Zhang T 2018 Adv. Sci. 5 1800558Google Scholar

    [113]

    Liu H, Li Y, Dai K, Zheng G, Liu C, Shen C, Yan X, Guo J, Guo Z 2016 J. Mater. Chem. C 4 157Google Scholar

    [114]

    Li Y, Zhou B, Zheng G, Liu X, Li T, Yan C, Cheng C, Dai K, Liu C, Shen C, Guo Z 2018 J. Mater. Chem. C 6 2258Google Scholar

    [115]

    Kang D, Pikhitsa P V, Choi Y W, Lee C, Shin S S, Piao L, Park B, Suh K Y, Kim T I, Choi M 2014 Nature 516 222Google Scholar

    [116]

    Li X, Zhang R, Yu W, Wang K, Wei J, Wu D, Cao A, Li Z, Cheng Y, Zheng Q, Ruoff R S, Zhu H 2012 Sci. Rep. 2 870Google Scholar

    [117]

    Wu X, Han Y, Zhang X, Zhou Z, Lu C 2016 Adv. Funct. Mater. 26 6246Google Scholar

    [118]

    Kang J, Jang Y, Kim Y, Cho S H, Suhr J, Hong B H, Choi J B, Byun D 2015 Nanoscale 7 6567Google Scholar

    [119]

    Huang J, Xu Z, Qiu W, Chen F, Meng Z, Hou C, Guo W, Liu X Y 2020 Adv. Funct. Mater. 30 1910547Google Scholar

    [120]

    An B W, Gwak E J, Kim K, Kim Y C, Jang J, Kim J Y, Park J U 2016 Nano Lett. 16 471Google Scholar

  • [1] 王宙恒, 陈颖, 郑坤炜, 李海成, 马寅佶, 冯雪. 柔性电子技术中的半导体材料性能调控概述. 物理学报, 2021, 70(16): 164203. doi: 10.7498/aps.70.20210095
    [2] 王闯, 鲍容容, 潘曹峰. 基于纳米发电机的触觉传感在柔性可穿戴电子设备中的研究与应用. 物理学报, 2021, 70(10): 100705. doi: 10.7498/aps.70.20202157
    [3] 邵光伟, 郭珊珊, 于瑞, 陈南梁, 叶美丹, 刘向阳. 可拉伸超级电容器的研究进展:电极、电解质和器件. 物理学报, 2020, 69(17): 178801. doi: 10.7498/aps.69.20200881
    [4] 杨文达, 陈洪英, 陈䶮, 田国, 高兴森. 铁电纳米结构中奇异极化拓扑畴的研究新进展. 物理学报, 2020, 69(21): 217501. doi: 10.7498/aps.69.20201063
    [5] 瞿立建. 浸没于带电纳米粒子溶液中的聚电解质刷: 强拉伸理论. 物理学报, 2020, 69(14): 148201. doi: 10.7498/aps.69.20200432
    [6] 申茂良, 张岩. 基于压电纳米发电机的柔性传感与能量存储器件. 物理学报, 2020, 69(17): 170701. doi: 10.7498/aps.69.20200784
    [7] 姚宽明, 姚靖仪, 海照, 李登峰, 解兆谦, 于欣格. 用于触觉感知的自供能可拉伸压电橡胶皮肤电子器件. 物理学报, 2020, 69(17): 178701. doi: 10.7498/aps.69.20200664
    [8] 江风益, 刘军林, 张建立, 徐龙权, 丁杰, 王光绪, 全知觉, 吴小明, 赵鹏, 刘苾雨, 李丹, 王小兰, 郑畅达, 潘拴, 方芳, 莫春兰. 半导体黄光发光二极管新材料新器件新设备. 物理学报, 2019, 68(16): 168503. doi: 10.7498/aps.68.20191044
    [9] 洪元婷, 马江平, 武峥, 应静诗, 尤慧琳, 贾艳敏. AgNbO3压电纳米材料压-电-化学耦合研究. 物理学报, 2018, 67(10): 107702. doi: 10.7498/aps.67.20180287
    [10] 曹兴忠, 宋力刚, 靳硕学, 张仁刚, 王宝义, 魏龙. 正电子湮没谱学研究半导体材料微观结构的应用进展. 物理学报, 2017, 66(2): 027801. doi: 10.7498/aps.66.027801
    [11] 马国亮, 杨剑群, 李兴冀, 刘超铭, 侯春风. 电子辐照聚乙烯/碳纳米管拉伸变形机理. 物理学报, 2016, 65(17): 178104. doi: 10.7498/aps.65.178104
    [12] 武执政, 余坤, 郭志伟, 李云辉, 江海涛. 类特异材料半导体复合结构中的电子Tamm态. 物理学报, 2015, 64(10): 107302. doi: 10.7498/aps.64.107302
    [13] 陈懂, 肖河阳, 加伟, 陈虹, 周和根, 李奕, 丁开宁, 章永凡. 半导体材料AAl2C4(A=Zn, Cd, Hg; C=S, Se)的电子结构和光学性质. 物理学报, 2012, 61(12): 127103. doi: 10.7498/aps.61.127103
    [14] 张元, 王鹿霞. 红外光激发作用下分子导电纳米结的非弹性电流研究. 物理学报, 2011, 60(4): 047304. doi: 10.7498/aps.60.047304
    [15] 韩文鹏, 刘红. 拉伸形变下BC3纳米管的能带结构. 物理学报, 2010, 59(6): 4194-4201. doi: 10.7498/aps.59.4194
    [16] 林政, 刘旻. 具有立方晶系结构的多晶体材料的弹性常数——Y弹性常数. 物理学报, 2009, 58(6): 4096-4102. doi: 10.7498/aps.58.4096
    [17] 林政, 刘旻. 具有六方晶系结构的多晶体材料弹性常数——Y弹性常数. 物理学报, 2009, 58(12): 8511-8521. doi: 10.7498/aps.58.8511
    [18] 倪向贵, 殷建伟. 拉伸条件下双壁碳纳米管弹性性能的原子模拟. 物理学报, 2006, 55(12): 6522-6525. doi: 10.7498/aps.55.6522
    [19] 陈 丽, 李 华. 新型超导材料MgCNi3的电子结构与超导电性研究. 物理学报, 2004, 53(3): 922-926. doi: 10.7498/aps.53.922
    [20] 李铁城, 许政一. Debye-Hückel方程描写的离子导体对光、中子和电子束的准弹性散射. 物理学报, 1978, 27(2): 175-180. doi: 10.7498/aps.27.175
计量
  • 文章访问数:  19492
  • PDF下载量:  574
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-29
  • 修回日期:  2020-05-26
  • 上网日期:  2020-06-13
  • 刊出日期:  2020-09-05

/

返回文章
返回