搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电路模拟吸收体的宽带吸波型频率选择表面设计

赵宇婷 李迎松 杨国辉

引用本文:
Citation:

基于电路模拟吸收体的宽带吸波型频率选择表面设计

赵宇婷, 李迎松, 杨国辉

A novel wideband absorptive frequency selective surface based on circuit analog absorber

Zhao Yu-Ting, Li Ying-Song, Yang Guo-Hui
PDF
HTML
导出引用
  • 设计了一种加载集总电阻的单极化低频透射吸波型频率选择表面(absorptive frequency selective surface, AFSS). 该结构由二维有耗频率选择表面(FSS)阻抗屏和三维带阻FSS级联组成. 利用集总电阻加载的容性FSS和高选择性的三维宽阻带FSS实现了超宽带通响应以及低剖面、高选择性特性. 仿真结果显示设计的吸波型频率选择表面通带为1—3.5 GHz, 吸波频段为6.6—11.6 GHz, 通带与吸波频段的过渡带比为1.9. 最后制作实物进行了实验验证, 测试结果与仿真基本一致, 充分验证了设计的有效性和正确性.
    In this paper, a single polarized absorptive frequency selective surface (AFSS) with ultra-wide transmission band and broad absorption band has been proposed numerically and experimentally. Based on the principle of circuit analog absorber (CAA), the proposed wideband AFSS is realized via replacing the ground plane with a band-stop frequency selective sturcture. The proposed AFSS is finally a hybrid structure composed of a wideband lossy frequency selective surface (FSS) in the top and a 3D band-stop frequency selective structure in the bottom. The wideband lossy FSS with thinner profile in the top is realized by utilizing a low pass capasitive elements to compensate the equivalent load inductance arising from the air space that is less than quarter wavelength installing between FSS and ground plane, and the low pass capactive lossy FSS is synthesized using “Gong”-shaped patterns with lumped resistors. Meanwhile, the unit cell of 3D frequency selective structure consists of two electrical coupling C-shaped patterns is investigated to achieve a wide stop band with high selectivity, which can be equivalent to the ground plane in the absorption band. By cascading the wideband lossy FSS and the 3D band-stop frequency selective structure, a thinner hybrid AFSS is presented with ultra-wide transmission band and broad absorption band. The results obtained from simulation shown that an absorption band with absorptivity above 90% is obtained from 6.6 to 11.6 GHz, and the 1 dB transmisson band is from 1 to 3.5 GHz with minimum insertion loss of 0.21 dB. Moreover, the performance can be guaranteed for TE-polarized oblique incidence up to 30°. Finally, a prototype is fabricated to validate its performance, the measured results shown that the 1 dB transmission band ranges from 1 to 3.5 GHz, and the absorption band is operating from 6.3 to 11 GHz at normal TE-polarized incidence. A good agreement between the experiment and simulation results is achieved, which verifies the effectiveness of the design.
      通信作者: 李迎松, liyingsong@ieee.org
    • 基金项目: 国家重点研发计划(批准号: 2016YFE0111100)、黑龙江重点研发计划(批准号: GX17A016)和中国博士后基金(批准号: 201M620918, 2019T120134)资助的课题
      Corresponding author: Li Ying-Song, liyingsong@ieee.org
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFE0111100), the Key Research and Development Program of Heilongjiang Province, China (Grant No. GX17A016), and the China Postdoctoral Science Foundation (Grant Nos. 2017M620918, 2019T120134)
    [1]

    Munk B A 2000 Frequency Selective Surfaces: Theory and Design (NewYork: Wiley) pp12–20.

    [2]

    Munk B A 2009 Metamaterials: Critique and Alternatives (Hoboken: Wiley) pp50–56.

    [3]

    Costa F, Monorchio A 2012 IEEE Trans. Antennas Propag. 60 2740Google Scholar

    [4]

    周航, 屈绍波, 彭卫东, 王甲富, 马华, 张东伟, 张介秋, 柏鹏, 徐卓 2012 物理学报 61 104201Google Scholar

    Zhou H, Qu S B, Peng W D, Wang J F, Ma H, Zhang D W, Zhang J Q, Bai P, Xu Z 2012 Acta Phys. Sin. 61 104201Google Scholar

    [5]

    Zhong S, Wu L, Liu T, Huang J, Jiang W, Ma Y 2018 Opt. Express. 26 16466Google Scholar

    [6]

    Chen Q, Sang D, Guo M, Fu Y Q 2019 IEEE Trans. Antennas Propag. 67 1045Google Scholar

    [7]

    Wang Z F, Fu J H, Zeng Q S, Song M X, Denidni T A 2019 IEEE Trans. Antennas Propag. 18 1443Google Scholar

    [8]

    Guo Q X, Li Z R, Su J X, Yang L Y, Song J M 2019 IEEE Trans. Antennas Propag. 18 961Google Scholar

    [9]

    Chen Q, Liu L G, Chen L, Bai J J, Fu Y Q 2016 Electron. Lett. 52 418Google Scholar

    [10]

    Zhang Y X, Li B, Zhu L, Tang Y M, Chang Y M, Bo Y M 2018 IEEE Antennas Wirel. Propag. Lett. 17 633Google Scholar

    [11]

    Shen Z X, Wang J, Li B 2016 IEEE Trans. Antennas Propag. 64 3087Google Scholar

    [12]

    Luo G Q, Hong W, Tang H J, Chen J X, Wu K 2006 IEEE Microw. Wirel. Compon. Lett. 16 648Google Scholar

    [13]

    Rashid A K, Shen Z X 2010 IEEE Antennas and Propagation Society International Symposium Toronto, Canada, July 11–17, 2010 p978

    [14]

    Yu W L, Luo G Q, Yu Y F, Liao Z, Jin H Y, Shen Z X 2019 IEEE Antennas Wirel. Propag. Lett. 18 1701Google Scholar

    [15]

    Yu W L, Luo G Q, Yu Y F, Cao W H, Pan Y J, Shen Z X 2019 IEEE Trans. Antennas Propag. 67 1318Google Scholar

    [16]

    Yu Y F, Luo G Q, Liu Q, Yu W L, Jin H Y, Liao Z, Shen Z X 2019 IEEE Access. 7 2520Google Scholar

    [17]

    波扎 著 (张肇仪 译) 2010 微波工程 (北京: 电子工业出版社) 第157—160页

    Pozer D M (translated by Zhang Z Y) 2010 Microwave Engineering (Beijing: Electronic Industry Press) pp157–160 (in Chinese)

    [18]

    Costa F, Monorchio A, Manara G 2016 IEEE Electromagnetic Compatibility Magazine. 5 67Google Scholar

    [19]

    周良 2011 博士学位论文 (南京: 南京航空航天大学)

    Zhou L 2011 Ph. D. Dissertation (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese)

    [20]

    Ghodgaonkar D K, Varadan V V, Varadan V K IEEE 1989 Trans. Instrum. Meas. 38 789Google Scholar

  • 图 1  电路示意图 (a) 吸波体; (b) AFSS

    Fig. 1.  Circuit Model: (a) Absorber; (b) AFSS.

    图 2  吸波体结构设计 (a) 三维视图; (b) 正视图

    Fig. 2.  Design of the absorber: (a) 3-D view; (b) front view.

    图 3  吸波体特性 (a) S11与吸收率; (b) 阻抗特性

    Fig. 3.  Characteristic of the absorber: (a) S11 and absorptivity; (b) impedance characteristic.

    图 4  带阻FSS (a)单元设计; (b)等效电路

    Fig. 4.  Band-stop FSS: (a) The design of unit cell; (b) equivalent circuit.

    图 5  带阻FSS的等效电路仿真与全波仿真结果对比

    Fig. 5.  Comparison between simulation results and full wave simulation.

    图 6  (a) AFSS的3 × 1周期结构示意图; (b)TE极化波入射下的S参数与吸收率; (c) TE极化波斜入射时的反射系数与传输系数

    Fig. 6.  (a) Geometry of the proposed AFSS (3 × 1 periodic structure); (b) S parameters and absorptivity at TE-polarized incidence; (c) reflection/transmission coefficients at TE-polarized oblique incidences.

    图 7  AFSS样品 (a)有耗FSS; (b)带阻FSS

    Fig. 7.  Fabricated AFSS: (a) Lossy FSS; (b) bandstop FSS.

    图 8  (a)实验装置(b) S参数的仿真结果与测量结果的对比

    Fig. 8.  (a) Experimental setup; (b) comparison between simulated and measured S parameters.

    表 1  所设计AFSS与前人所设计的AFSS比较

    Table 1.  Comparisons between the proposed AFSS and the previous AFSSs.

    参考文献通带频段/GHz吸波段分数带宽/%${\rm{F}}{{\rm{R}}_{{\rm{ap}}}}$${f_{\rm{a}}}$/ GHz尺寸(@${f_a}$)极化结构
    [14]2—2.8239.82.17.90.24 × 0.24 × 0.36单极化混合
    [15] ≤ 1.5434.63.14.80.14 × 0.14 × 0.13单极化三维
    [16] ≤ 1.28433.34.20.21 × 0.17 × 0.17双极化二维
    本文1—3.5541.86.30.1 × 0.17 × 0.3单极化混合
    下载: 导出CSV
  • [1]

    Munk B A 2000 Frequency Selective Surfaces: Theory and Design (NewYork: Wiley) pp12–20.

    [2]

    Munk B A 2009 Metamaterials: Critique and Alternatives (Hoboken: Wiley) pp50–56.

    [3]

    Costa F, Monorchio A 2012 IEEE Trans. Antennas Propag. 60 2740Google Scholar

    [4]

    周航, 屈绍波, 彭卫东, 王甲富, 马华, 张东伟, 张介秋, 柏鹏, 徐卓 2012 物理学报 61 104201Google Scholar

    Zhou H, Qu S B, Peng W D, Wang J F, Ma H, Zhang D W, Zhang J Q, Bai P, Xu Z 2012 Acta Phys. Sin. 61 104201Google Scholar

    [5]

    Zhong S, Wu L, Liu T, Huang J, Jiang W, Ma Y 2018 Opt. Express. 26 16466Google Scholar

    [6]

    Chen Q, Sang D, Guo M, Fu Y Q 2019 IEEE Trans. Antennas Propag. 67 1045Google Scholar

    [7]

    Wang Z F, Fu J H, Zeng Q S, Song M X, Denidni T A 2019 IEEE Trans. Antennas Propag. 18 1443Google Scholar

    [8]

    Guo Q X, Li Z R, Su J X, Yang L Y, Song J M 2019 IEEE Trans. Antennas Propag. 18 961Google Scholar

    [9]

    Chen Q, Liu L G, Chen L, Bai J J, Fu Y Q 2016 Electron. Lett. 52 418Google Scholar

    [10]

    Zhang Y X, Li B, Zhu L, Tang Y M, Chang Y M, Bo Y M 2018 IEEE Antennas Wirel. Propag. Lett. 17 633Google Scholar

    [11]

    Shen Z X, Wang J, Li B 2016 IEEE Trans. Antennas Propag. 64 3087Google Scholar

    [12]

    Luo G Q, Hong W, Tang H J, Chen J X, Wu K 2006 IEEE Microw. Wirel. Compon. Lett. 16 648Google Scholar

    [13]

    Rashid A K, Shen Z X 2010 IEEE Antennas and Propagation Society International Symposium Toronto, Canada, July 11–17, 2010 p978

    [14]

    Yu W L, Luo G Q, Yu Y F, Liao Z, Jin H Y, Shen Z X 2019 IEEE Antennas Wirel. Propag. Lett. 18 1701Google Scholar

    [15]

    Yu W L, Luo G Q, Yu Y F, Cao W H, Pan Y J, Shen Z X 2019 IEEE Trans. Antennas Propag. 67 1318Google Scholar

    [16]

    Yu Y F, Luo G Q, Liu Q, Yu W L, Jin H Y, Liao Z, Shen Z X 2019 IEEE Access. 7 2520Google Scholar

    [17]

    波扎 著 (张肇仪 译) 2010 微波工程 (北京: 电子工业出版社) 第157—160页

    Pozer D M (translated by Zhang Z Y) 2010 Microwave Engineering (Beijing: Electronic Industry Press) pp157–160 (in Chinese)

    [18]

    Costa F, Monorchio A, Manara G 2016 IEEE Electromagnetic Compatibility Magazine. 5 67Google Scholar

    [19]

    周良 2011 博士学位论文 (南京: 南京航空航天大学)

    Zhou L 2011 Ph. D. Dissertation (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese)

    [20]

    Ghodgaonkar D K, Varadan V V, Varadan V K IEEE 1989 Trans. Instrum. Meas. 38 789Google Scholar

计量
  • 文章访问数:  6924
  • PDF下载量:  284
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-30
  • 修回日期:  2020-07-02
  • 上网日期:  2020-09-27
  • 刊出日期:  2020-10-05

/

返回文章
返回