搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

F, Al共掺杂ZnO透明导电薄膜的制备及掺杂机理研究

王延峰 谢希成 刘晓洁 韩冰 武晗晗 连宁宁 杨富 宋庆功 裴海林 李俊杰

引用本文:
Citation:

F, Al共掺杂ZnO透明导电薄膜的制备及掺杂机理研究

王延峰, 谢希成, 刘晓洁, 韩冰, 武晗晗, 连宁宁, 杨富, 宋庆功, 裴海林, 李俊杰

Insight of the doping mechanism of F and Al co-doped ZnO transparent conductive films

Wang Yan-Feng, Xie Xi-Cheng, Liu Xiao-Jie, Han Bing, Wu Han-Han, Lian Ning-Ning, Yang Fu, Song Qing-Gong, Pei Hai-Lin, Li Jun-Jie
PDF
HTML
导出引用
  • 本文采用磁控溅射技术, 对F和Al共掺杂ZnO (FAZO)薄膜进行研究, 系统地研究了溅射气压对薄膜结构、形貌、光电等特性的影响. 实验研究结果表明: F, Al共掺入并未改变ZnO的生长方式, 所制备的薄膜都呈(002)择优生长; 随着溅射气压增加, FAZO薄膜的沉积速率降低, 结晶质量恶化, 表面形貌由“弹坑状”逐渐变为“弹坑状”与“颗粒状”并存的形貌特性, 表面粗糙度增加. 在0.5 Pa时制备的FAZO薄膜性能最优, 迁移率40.03 cm2/(V·s), 载流子浓度3.92 × 1020 cm–3, 电阻率最低, 为3.98 × 10–4 Ω·cm, 380—1200 nm平均透过率约90%. 理论模拟结果表明: F和Al的共掺杂兼顾了F, Al单独掺杂的优点, 克服了以往金属元素掺杂仅依靠金属元素轨道提供导电电子的不足, 实现了既增加载流子浓度又减少了掺入原子各轨道间相互作用对载流子散射的影响. 掺入的F 2p电子轨道对O 2p及Zn 4s电子轨道产生排斥, 使它们分别下移, 提供导电电子; 同时掺入的Al的3s和3p电子轨道也为导电电子提供了贡献. F和Al共掺之后载流子浓度提升更加显著, 导电性能增强.
    Transparent conductive oxide (TCO) films, as transparent electrodes, are widely used in thin-film solar cells. The performance of TCO film has a significant influence on the conversion efficiency of the film solar cell fabricated byusing it. Although the conductivity can be improved by increasing the carrier concentration, the transmittance in the long wave will be sacrificed. Therefore, the only feasible method is to increase the carrier mobility within a certain carrier concentration range, rather than increase the mobility by reducing carrier concentration. In this paper, the F and Al co-doped ZnO (FAZO) films are deposited on glass substrates (Corning XG) by an RF magnetron sputtering technique with using a small amount of ZnF2 (1 wt.%) and Al2O3 (1 wt.%) dopant. The influences of sputtering pressure on the structure, morphology and photoelectric characteristics of the films are respectively investigated by X-ray diffraction analysis, scanning electron microscope, Hall effect measurement, and ultraviolet–visible–near infrared spectrophotometry. All the thin films show typical wurtzite structure with the c axis preferentially oriented perpendicular to the substrate. With the increase of sputtering pressure, the deposition rate of FAZO film decreases, the crystallization quality is deteriorated, surface topography changes gradually from “crater-like” to co-existent “crater-like” and “granular-like”, and the surface roughness increases. The FAZO film deposited at 0.5 Pa presents the optimal performance with a mobility of 40.03 cm2/V·s, carrier concentration of 3.92 × 1020 cm–3, resistivity of 3.98 × 10–4 Ω·cm, and about 90% average transmittance in a range of 380-1200 nm. The theoretical result shows that the co-doping of F and Al takes the advantages of single F and Al doped ZnO films, and overcomes the shortcoming of metal elements doping, which donates the carriers just from doped metal elements. Furthermore, the co-doping of F and Al not only increases the carriers but also reduces the scatterings caused by the inter-orbital interaction of doped atoms. The doped F 2p electron orbitals repel the O 2p and Zn 4s electron orbitals, making them move down and donate electrons. At the same time, the orbitals of Al 3s and Al 3p also make a contribution to the conductivity. After co-doping of F and Al, both the carrier concentration and conductivity increase significantly.
      通信作者: 李俊杰, ljj888999@hebeinu.edu.cn
    • 基金项目: 河北省自然科学基金(批准号: A2019405059)、河北省重点研发计划(批准号: 19214301D)、河北北方学院省属高校基本科研业务费(批准号: JYT2019001)、河北北方学院一般项目(批准号: YB2018014)和河北北方学院大学生创新创业训练项目(批准号: 201910092010)资助的课题
      Corresponding author: Li Jun-Jie, ljj888999@hebeinu.edu.cn
    • Funds: Project Supported by the Natural Science Foundation of Hebei Province, China (Grant No. A2019405059), the Key Research and Development Program of Hebei Province, China (Grant No. 19214301D), the Fundamental Research Fund of Hebei North University, China (Grant No. JYT2019001), the General Projects of Hebei North University, China (Grant No. YB2018014), and the Innovation and Entrepreneurship Training Program for College Students of Hebei North University, China (Grant No. 201910092010)
    [1]

    Gordon R G 2000 MRS Bull. 25 52

    [2]

    Minami T 2000 MRS Bull. 25 38

    [3]

    Moulin E, Bittkau K, Ghosh M, Bugnon G, Stuckelberger M, Meier M, Haug F J, Hüpkes J, Ballif C 2016 Sol. Energy Mater. Sol. Cells 145 185Google Scholar

    [4]

    Jost G, Merdzhanova T, Zimmermann T, Hüpkes J 2013 Thin Solid Films 532 66Google Scholar

    [5]

    Tao K, Sun Y, Cai H K, Zhang D X, Xie K, Wang Y 2012 Appl. Surf. Sci. 258 5943Google Scholar

    [6]

    Warasawa M, Kaijo A, Sugiyama M 2012 Thin Solid Films 520 2119Google Scholar

    [7]

    Wang Y F, Song J M, Bai L S, Yang F, Han B, Guo Y J, Dai B T, Zhao Y, Zhang X D 2018 Sol. Energy Mater. Sol. Cells 179 401Google Scholar

    [8]

    Liu B F, Bai L S, Li T T, Wei C C, Li B Z, Huang Q, Zhang D K, Wang G C, Zhao Y, Zhang X D 2017 Energy Environ. Sci. 10 1134Google Scholar

    [9]

    Zhang L, Huang J, Yang J, Tang K, Ren B, Zhang S W, Wang L J 2016 Surf. Coat. Technol. 307 1129Google Scholar

    [10]

    Tsay C Y, Pai K C 2018 Thin Solid Films 654 11Google Scholar

    [11]

    Kirby S D, van Dover R B 2009 Thin Solid Films 517 1958Google Scholar

    [12]

    Li Q, Zhu L P, Li Y G, Zhang X Y, Niu W Z, Guo Y M, Ye Z Z 2017 J. Alloys Compd. 697 156Google Scholar

    [13]

    Mallick A, Basak D 2017 Appl. Surf. Sci. 410 540Google Scholar

    [14]

    Shi Q, Zhou K S, Dai M J, Lin S S, Hou H J, Wei C B, Hu F 2014 Ceram. Int. 40 211Google Scholar

    [15]

    Ji X Z, Song J M, Wu T T, Tian Y, Han B, Liu X N, Wang H W, Gui Y B, Ding Y, Wang Y F 2019 Sol. Energy Mater. Sol. Cells 190 6Google Scholar

    [16]

    Wang Y F, Song J M, Song W Y, Tian Y, Han B, Meng X D, Yang F, Ding Y, Li J J 2019 Sol. Energy 186 126Google Scholar

    [17]

    Zheng G X, Song J M, Zhang J, Li J J, Han B, Meng X D, Yang F, Zhao Y, Wang Y F 2020 Mater. Sci. Semicond. Process. 112 105016Google Scholar

    [18]

    王延峰, 黄茜, 宋庆功, 刘阳, 魏长春, 赵颖, 张晓丹 2012 物理学报 61 137801Google Scholar

    Wang Y F, Huang Q, Song Q G, Liu Y, Wei C C, Zhao Y, Zhang X D 2012 Acta Phys. Sin. 61 137801Google Scholar

    [19]

    王延峰, 张晓丹, 黄茜, 杨富, 孟旭东, 宋庆功, 赵颖 2013 物理学报 62 247802Google Scholar

    Wang Y F, Zhang X D, Huang Q, Yang F, Meng X D, Song Q G, Zhao Y 2013 Acta Phys. Sin. 62 247802Google Scholar

    [20]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717Google Scholar

    [21]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [22]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [23]

    Sheetz R M, Ponomareva I, Richter E, Andriotis A N, Menon M 2009 Phys. Rev. B 80 195314Google Scholar

    [24]

    王延峰, 孟旭东, 郑伟, 宋庆功, 翟昌鑫, 郭兵, 张越, 杨富, 南景宇 2016 物理学报 65 087802Google Scholar

    Wang Y F, Meng X D, Zheng W, Song Q G, Zhai C X, Guo B, Zhang Y, Yang F, Nan J Y 2016 Acta Phys. Sin. 65 087802Google Scholar

    [25]

    Hsu F H, Wang N F, Tsai Y Z, Chuang M C, Cheng Y S, Houng M P 2013 Appl. Surf. Sci. 280 104Google Scholar

    [26]

    Yue H, Wu A, Feng Y, Zhang X, Li T 2011 Thin Solid Films 519 5577Google Scholar

    [27]

    Kluth O, Schöpe G, Hüpkes J, Agashe C, Müller J, Rech B 2003 Thin Solid Films 442 80Google Scholar

    [28]

    Assunção V, Fortunato E, Marques A, Águas H, Ferreira I, Costa M E V, Martins R 2003 Thin Solid Films 427 401Google Scholar

    [29]

    Maccoa B, Knoops H C M, Verheijen M A, Beyer W, Creatore M, Kessels W M M 2017 Sol. Energy Mater. Sol. Cells 173 111Google Scholar

    [30]

    Pei Z L, Sun C, Tan M H, Xiao J Q, Guan D H, Huang R F, Wen L S 2001 J. Appl. Phys. 90 3432Google Scholar

    [31]

    Sreedhar A, Kwon J H, Yi J, Gwag J S 2016 Ceram. Int. 42 14456Google Scholar

    [32]

    Cao L, Zhu LvP, Jiang J, Zhao R, Ye Z Z, Zhao B H 2011 Sol. Energy Mater. Sol. Cells 95 894Google Scholar

    [33]

    Xu H Y, Liu Y C, Mu R, Shao C L, Lu Y M, Shen D Z, Fan X W 2005 Appl. Phys. Lett. 86 123107

    [34]

    Burstein E 1954 Phys. Rev. 93 632Google Scholar

    [35]

    Moss T S 1954 Proc. Phys. Soc. London, Sect. B 67 775Google Scholar

    [36]

    Slassi A 2015 Opt. Quantum Electron. 47 2465Google Scholar

    [37]

    张富春, 张志勇, 张威虎, 阎军峰, 贠江妮 2009 光学学报 29 2015

    Zhang F C, Zhang Z Y, Zhang W H, Yan J F, Yun J N 2009 Acta Opt. Sin. 29 2015

    [38]

    Wang Y F, Zhang X D, Meng X D, Cao Y, Yang F, Nan J Y, Song Q G, Huang Q, Wei C C, Zhang J J, Zhao Y 2016 Sol. Energy Mater. Sol. Cells 145 171Google Scholar

  • 图 1  不同溅射气压制备FAZO薄膜的沉积速率

    Fig. 1.  The deposition rate of FAZO films deposited at different pressures.

    图 2  不同溅射气压制备FAZO薄膜的XRD衍射谱 (a) XRD 衍射谱; (b)半高宽(FWHM)和晶粒尺寸(D)

    Fig. 2.  XRD patterns of FAZO films deposited at different pressures: (a) XRD patterns; (b) full width at half maximum (FWHM) and grain size (D).

    图 3  不同溅射气压制备FAZO薄膜的表面形貌图 (a) 0.3 Pa; (b) 0.8 Pa; (c) 3.0 Pa

    Fig. 3.  SEM images of FAZO films deposited at different pressures: (a) 0.3 Pa; (b) 0.8 Pa; (c) 3.0 Pa.

    图 4  不同溅射气压制备FAZO薄膜的电学特性

    Fig. 4.  Electrical properties of FAZO films deposited at different pressures.

    图 5  FZO, AZO和FAZO能带结构图 (a) FZO; (b) AZO; (c) FAZO

    Fig. 5.  Band structure of FZO, AZO and FAZO: (a) FZO; (b) AZO; (c) FAZO.

    图 6  FZO, AZO和FAZO态密度图 (a) FZO; (b) AZO; (c) FAZO

    Fig. 6.  Density of states of FZO, AZO and FAZO: (a) FZO; (b) AZO; (c) FAZO.

    图 7  不同溅射气压制备FAZO薄膜以及AZO薄膜的光学特性 (a)透过谱; (b)反射谱; (c)吸收谱

    Fig. 7.  Optical properties of FAZO films deposited at different pressures and AZO film: (a) Transmittance; (b) reflection; (c) absorption.

    图 8  不同溅射气压制备FAZO薄膜和AZO薄膜的光学带隙

    Fig. 8.  Optical bandgap of FAZO films deposited at different pressures and AZO film.

  • [1]

    Gordon R G 2000 MRS Bull. 25 52

    [2]

    Minami T 2000 MRS Bull. 25 38

    [3]

    Moulin E, Bittkau K, Ghosh M, Bugnon G, Stuckelberger M, Meier M, Haug F J, Hüpkes J, Ballif C 2016 Sol. Energy Mater. Sol. Cells 145 185Google Scholar

    [4]

    Jost G, Merdzhanova T, Zimmermann T, Hüpkes J 2013 Thin Solid Films 532 66Google Scholar

    [5]

    Tao K, Sun Y, Cai H K, Zhang D X, Xie K, Wang Y 2012 Appl. Surf. Sci. 258 5943Google Scholar

    [6]

    Warasawa M, Kaijo A, Sugiyama M 2012 Thin Solid Films 520 2119Google Scholar

    [7]

    Wang Y F, Song J M, Bai L S, Yang F, Han B, Guo Y J, Dai B T, Zhao Y, Zhang X D 2018 Sol. Energy Mater. Sol. Cells 179 401Google Scholar

    [8]

    Liu B F, Bai L S, Li T T, Wei C C, Li B Z, Huang Q, Zhang D K, Wang G C, Zhao Y, Zhang X D 2017 Energy Environ. Sci. 10 1134Google Scholar

    [9]

    Zhang L, Huang J, Yang J, Tang K, Ren B, Zhang S W, Wang L J 2016 Surf. Coat. Technol. 307 1129Google Scholar

    [10]

    Tsay C Y, Pai K C 2018 Thin Solid Films 654 11Google Scholar

    [11]

    Kirby S D, van Dover R B 2009 Thin Solid Films 517 1958Google Scholar

    [12]

    Li Q, Zhu L P, Li Y G, Zhang X Y, Niu W Z, Guo Y M, Ye Z Z 2017 J. Alloys Compd. 697 156Google Scholar

    [13]

    Mallick A, Basak D 2017 Appl. Surf. Sci. 410 540Google Scholar

    [14]

    Shi Q, Zhou K S, Dai M J, Lin S S, Hou H J, Wei C B, Hu F 2014 Ceram. Int. 40 211Google Scholar

    [15]

    Ji X Z, Song J M, Wu T T, Tian Y, Han B, Liu X N, Wang H W, Gui Y B, Ding Y, Wang Y F 2019 Sol. Energy Mater. Sol. Cells 190 6Google Scholar

    [16]

    Wang Y F, Song J M, Song W Y, Tian Y, Han B, Meng X D, Yang F, Ding Y, Li J J 2019 Sol. Energy 186 126Google Scholar

    [17]

    Zheng G X, Song J M, Zhang J, Li J J, Han B, Meng X D, Yang F, Zhao Y, Wang Y F 2020 Mater. Sci. Semicond. Process. 112 105016Google Scholar

    [18]

    王延峰, 黄茜, 宋庆功, 刘阳, 魏长春, 赵颖, 张晓丹 2012 物理学报 61 137801Google Scholar

    Wang Y F, Huang Q, Song Q G, Liu Y, Wei C C, Zhao Y, Zhang X D 2012 Acta Phys. Sin. 61 137801Google Scholar

    [19]

    王延峰, 张晓丹, 黄茜, 杨富, 孟旭东, 宋庆功, 赵颖 2013 物理学报 62 247802Google Scholar

    Wang Y F, Zhang X D, Huang Q, Yang F, Meng X D, Song Q G, Zhao Y 2013 Acta Phys. Sin. 62 247802Google Scholar

    [20]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717Google Scholar

    [21]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [22]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [23]

    Sheetz R M, Ponomareva I, Richter E, Andriotis A N, Menon M 2009 Phys. Rev. B 80 195314Google Scholar

    [24]

    王延峰, 孟旭东, 郑伟, 宋庆功, 翟昌鑫, 郭兵, 张越, 杨富, 南景宇 2016 物理学报 65 087802Google Scholar

    Wang Y F, Meng X D, Zheng W, Song Q G, Zhai C X, Guo B, Zhang Y, Yang F, Nan J Y 2016 Acta Phys. Sin. 65 087802Google Scholar

    [25]

    Hsu F H, Wang N F, Tsai Y Z, Chuang M C, Cheng Y S, Houng M P 2013 Appl. Surf. Sci. 280 104Google Scholar

    [26]

    Yue H, Wu A, Feng Y, Zhang X, Li T 2011 Thin Solid Films 519 5577Google Scholar

    [27]

    Kluth O, Schöpe G, Hüpkes J, Agashe C, Müller J, Rech B 2003 Thin Solid Films 442 80Google Scholar

    [28]

    Assunção V, Fortunato E, Marques A, Águas H, Ferreira I, Costa M E V, Martins R 2003 Thin Solid Films 427 401Google Scholar

    [29]

    Maccoa B, Knoops H C M, Verheijen M A, Beyer W, Creatore M, Kessels W M M 2017 Sol. Energy Mater. Sol. Cells 173 111Google Scholar

    [30]

    Pei Z L, Sun C, Tan M H, Xiao J Q, Guan D H, Huang R F, Wen L S 2001 J. Appl. Phys. 90 3432Google Scholar

    [31]

    Sreedhar A, Kwon J H, Yi J, Gwag J S 2016 Ceram. Int. 42 14456Google Scholar

    [32]

    Cao L, Zhu LvP, Jiang J, Zhao R, Ye Z Z, Zhao B H 2011 Sol. Energy Mater. Sol. Cells 95 894Google Scholar

    [33]

    Xu H Y, Liu Y C, Mu R, Shao C L, Lu Y M, Shen D Z, Fan X W 2005 Appl. Phys. Lett. 86 123107

    [34]

    Burstein E 1954 Phys. Rev. 93 632Google Scholar

    [35]

    Moss T S 1954 Proc. Phys. Soc. London, Sect. B 67 775Google Scholar

    [36]

    Slassi A 2015 Opt. Quantum Electron. 47 2465Google Scholar

    [37]

    张富春, 张志勇, 张威虎, 阎军峰, 贠江妮 2009 光学学报 29 2015

    Zhang F C, Zhang Z Y, Zhang W H, Yan J F, Yun J N 2009 Acta Opt. Sin. 29 2015

    [38]

    Wang Y F, Zhang X D, Meng X D, Cao Y, Yang F, Nan J Y, Song Q G, Huang Q, Wei C C, Zhang J J, Zhao Y 2016 Sol. Energy Mater. Sol. Cells 145 171Google Scholar

  • [1] 曹宇, 蒋家豪, 刘超颖, 凌同, 孟丹, 周静, 刘欢, 王俊尧. 高效硫硒化锑薄膜太阳电池中的渐变能隙结构. 物理学报, 2021, 70(12): 128802. doi: 10.7498/aps.70.20202016
    [2] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究. 物理学报, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [3] 赵其琛, 郝瑞亭, 刘思佳, 刘欣星, 常发冉, 杨敏, 陆熠磊, 王书荣. 单靶溅射制备铜锌锡硫薄膜及原位退火研究. 物理学报, 2017, 66(22): 226801. doi: 10.7498/aps.66.226801
    [4] 耿超, 郑义, 张永哲, 严辉. 硅薄膜太阳电池表面纳米线阵列光学设计. 物理学报, 2016, 65(7): 070201. doi: 10.7498/aps.65.070201
    [5] 王延峰, 孟旭东, 郑伟, 宋庆功, 翟昌鑫, 郭兵, 张越, 杨富, 南景宇. V掺杂ZnO透明导电薄膜研究. 物理学报, 2016, 65(8): 087802. doi: 10.7498/aps.65.087802
    [6] 丁东, 杨仕娥, 陈永生, 郜小勇, 谷锦华, 卢景霄. Al纳米颗粒增强微晶硅薄膜太阳电池光吸收的模拟研究. 物理学报, 2015, 64(24): 248801. doi: 10.7498/aps.64.248801
    [7] 郑雪, 余学功, 杨德仁. -Si:H/SiNx叠层薄膜对晶体硅太阳电池的钝化. 物理学报, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [8] 王延峰, 张晓丹, 黄茜, 刘阳, 魏长春, 赵颖. 室温制备低电阻率高透过率H, W共掺杂ZnO薄膜. 物理学报, 2013, 62(1): 017803. doi: 10.7498/aps.62.017803
    [9] 王延峰, 张晓丹, 黄茜, 杨富, 孟旭东, 宋庆功, 赵颖. B掺杂ZnO透明导电薄膜的实验及理论研究. 物理学报, 2013, 62(24): 247802. doi: 10.7498/aps.62.247802
    [10] 王延峰, 黄茜, 宋庆功, 刘阳, 魏长春, 赵颖, 张晓丹. W掺杂ZnO透明导电薄膜的理论及实验研究. 物理学报, 2012, 61(13): 137801. doi: 10.7498/aps.61.137801
    [11] 於黄忠, 周晓明, 邓俊裕. 热处理对不同溶剂制备的共混体系太阳电池性能影响. 物理学报, 2011, 60(7): 077206. doi: 10.7498/aps.60.077206
    [12] 张坤, 刘芳洋, 赖延清, 李轶, 颜畅, 张治安, 李劼, 刘业翔. 太阳电池用Cu2ZnSnS4薄膜的反应溅射原位生长及表征. 物理学报, 2011, 60(2): 028802. doi: 10.7498/aps.60.028802
    [13] 李林娜, 陈新亮, 王斐, 孙建, 张德坤, 耿新华, 赵颖. H2 气对脉冲磁控溅射铝掺杂氧化锌薄膜性能的影响. 物理学报, 2011, 60(6): 067304. doi: 10.7498/aps.60.067304
    [14] 蔡宏琨, 陶科, 王林申, 赵敬芳, 隋妍萍, 张德贤. 柔性衬底非晶硅薄膜太阳电池界面处理的研究. 物理学报, 2009, 58(11): 7921-7925. doi: 10.7498/aps.58.7921
    [15] 戴松元, 孔凡太, 胡林华, 史成武, 方霞琴, 潘 旭, 王孔嘉. 染料敏化纳米薄膜太阳电池实验研究. 物理学报, 2005, 54(4): 1919-1926. doi: 10.7498/aps.54.1919
    [16] 徐炜炜, 戴松元, 方霞琴, 胡林华, 孔凡太, 潘 旭, 王孔嘉. 电沉积处理与染料敏化纳米薄膜太阳电池的优化. 物理学报, 2005, 54(12): 5943-5948. doi: 10.7498/aps.54.5943
    [17] 曾隆月, 戴松元, 王孔嘉, 史成武, 孔凡太, 胡林华, 潘 旭. 染料敏化纳米ZnO薄膜太阳电池机理初探. 物理学报, 2005, 54(1): 53-57. doi: 10.7498/aps.54.53
    [18] 王宝义, 张仁刚, 张 辉, 万冬云, 魏 龙. ZnO退火条件对硫化法制备的ZnS薄膜特性的影响. 物理学报, 2005, 54(4): 1874-1878. doi: 10.7498/aps.54.1874
    [19] 张仁刚, 王宝义, 张 辉, 马创新, 魏 龙. 不同参数溅射的ZnO薄膜硫化后的特性. 物理学报, 2005, 54(5): 2389-2393. doi: 10.7498/aps.54.2389
    [20] 马平, 刘乐园, 张升原, 王昕, 谢飞翔, 邓鹏, 聂瑞娟, 王守证, 戴远东, 王福仁. 直流磁控溅射一步法原位制备MgB2超导薄膜. 物理学报, 2002, 51(2): 406-409. doi: 10.7498/aps.51.406
计量
  • 文章访问数:  6547
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-20
  • 修回日期:  2020-06-13
  • 上网日期:  2020-10-16
  • 刊出日期:  2020-10-05

/

返回文章
返回