搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

室温制备低电阻率高透过率H, W共掺杂ZnO薄膜

王延峰 张晓丹 黄茜 刘阳 魏长春 赵颖

引用本文:
Citation:

室温制备低电阻率高透过率H, W共掺杂ZnO薄膜

王延峰, 张晓丹, 黄茜, 刘阳, 魏长春, 赵颖

Room temperature deposition of highly conductive and transparent H and W co-doped ZnO film

Wang Yan-Feng, Zhang Xiao-Dan, Huang Qian, Liu Yang, Wei Chang-Chun, Zhao Ying
PDF
导出引用
  • 采用脉冲直流磁控溅射法, 以WO3:ZnO陶瓷靶为溅射靶材, 通过在溅射气氛中引入H2的方式, 在室温条件下制备了低电阻率、高可见和近红外光区透过率的H, W共掺杂ZnO (HWZO) 薄膜. 系统地研究了H2流量对所制备的HWZO薄膜的结构、组分、元素价态、光电特性的影响. 结果表明: 掺入的H可促进Zn的氧化, 改善薄膜的结晶质量, 提高薄膜透过率. H引入之后薄膜的载流子浓度增加, 电阻率降低. 在H2流量为6 mL/min时制备的HWZO薄膜性能最优, 电阻率为7.71×10-4 Ω·m, 光学带隙为3.58 eV, 400–1100 nm的平均透过率为82.4%.
    Highly conductive and transparent hydrogen and tungsten co-doped zinc oxide (HWZO) thin films are prepared at room temperature by pulsed DC magnetron sputtering using a WZO (98.5 wt.% ZnO, 1.5 wt.% WO3) ceramic target with different H2 flow rates. The influence of H2 flow rate on the structural, compositional, elemental valence state as well as electrical and optical properties are systematically investigated. The results indicate that the incorporation of H does not change the structure of tungsten doped zinc oxide (WZO) namely, both WZO and HWZO films are polycrystalline with hexagonal structure and a preferred orientation along c-axis, respectively whereas the crystallinity is firstly improved and then deteriorated with the increase of H2 flow rate. Furthermore, the reaction between Zn and O can be promoted by the incorporated H. With an optimal H2 flow rate, the carrier concentration increases from 3.32×1020 cm-3 for WZO film to 5.44×1020 cm-3 for HWZO film, and the resistivity decreases from 1.20×10-3 Ω·cm to 7.71×10-4 Ω·cm. The average transmittance in a range of 400-1100 nm is improved from 69.2% to 82.4 %, and the optical band gap is widened from 3.42 eV to 3.58 eV.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2011CBA00706, 2011CBA00707)、国家自然科学基金 (批准号: 60976051)、教育部新世纪人才项目 (批准号: NCET-08-0295)、教育部重点实验室开放课题 (批准号: 2011KFKT06) 和中央高校基本科研业务费专项资金 (批准号: 65011981) 资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2011CBA00706, 2011CBA00707), National Natural Science Foundation of China (Grant No. 60976051), Program for New Century Excellent Talents in University of China (Grant No. NCET-08-0295), Ministry of Education Key Laboratory of Topics (Grant No. 2011KFKT06) and the Fundamental Research Funds for the Central Universities, China (Grant No. 65011981).
    [1]

    Meier J, Vallat-Sauvain E, Dubail S, Kroll U, Dubail J, Golay S, Feitknecht L, Torres P, Faÿ S, Fischer D, Shah A 2001 Sol. Energy Mater. Sol. Cells 66 73

    [2]

    Yan B J, Yue G Z, Sivec L, Yang J, Guha S, Jiang C S 2011 Appl. Phys. Lett. 99 113512

    [3]

    Zhang X D, Zheng X X, Wang G H, Xu S Z, Yue Q, Lin Q, Wei C C, Sun J, Zhang D K, Xiong S Z, Geng X H, Zhao Y 2010 Acta Phys. Sin. 59 8231 (in Chinese) [张晓丹, 郑新霞, 王光红, 许盛之, 岳强, 林泉, 魏长春, 孙建, 张德坤, 熊绍珍, 耿新华, 赵颖2010 物理学报 59 8231]

    [4]

    Zheng X X, Zhang X D, Yang S S, Wang G H, Xu S Z, Wei C C, Sun J, Geng X H, Xiong S Z, Zhao Y 2011 Acta Phys. Sin. 60 068801 (in Chinese) [郑新霞, 张晓丹, 杨素素, 王光红, 许盛之, 魏长春, 孙建, 耿新华, 熊绍珍, 赵颖2011 物理学报 60 068801]

    [5]

    Wang Y F, Zhang X D, Bai L S, Huang Q, Wei C C, Zhao Y 2012 Appl. Phys. Lett. 100 263508

    [6]

    Selvan J A A, Delahoy A E, Guo S Y, Li Y M 2006 Sol. Energy Mater. Sol. Cells 90 3371

    [7]

    Agashe C, Kluth O, Schöpe G, Siekmann H, Hrgen J, Rech B 2003 Thin Solid Films 442 167

    [8]

    Meng Y, Yang X L, Chen H X, Shen J, Jiang Y M, Zhang Z J, Hua Z Y 2001 Thin Solid Films 394 219

    [9]

    Wang Y F, Huang Q, Song Q G, Liu Y, Wei C C, Zhao Y, Zhang X D 2012 Acta Phys. Sin. 61 137801 (in Chinese) [王延峰, 黄茜, 宋庆功, 刘阳, 魏长春, 赵颖, 张晓丹2012 物理学报 61 137801]

    [10]

    Li X F, Zhang Q, Miao W N, Huang L, Zhang Z J, Hua Z Y 2006 J. Vac. Sci. Technol. A 24 1866

    [11]

    Wang Y F, Huang Q, Wei C C, Zhang D K, Zhao Y, Zhang X D 2012 Appl. Surf. Sci. 258 8797

    [12]

    Oh B Y, Jeong M C, Lee W, Myoung J M 2004 J. Crystal Growth 274 453

    [13]

    Lee J, Lee D, Lim D, Yang K 2007 Thin Solid Films 515 6094

    [14]

    Oliveira C, Rebouta L, Lacerda-Arôso T D, Lanceros-Mendez S, Viseu T, Tavares C J, Tovar J, Ferdov S, Alves E 2009 Thin Solid Films 517 6290

    [15]

    Wang Y P, Lu J G, Bie X, Gong L, Li X, Song D, Zhao X Y, Ye W Y, Ye Z Z 2011 J. Vac. Sci. Technol. A 29 031505

    [16]

    van de Walle C G, Neugebauer J 2003 Nature 423 626

    [17]

    van de Walle C G 2000 Phys. Rev. Lett. 85 1012

    [18]

    Lee S H, Lee T S, Lee K S, Cheong B, Kim Y D, Kim W M 2008 J. Phys. D: Appl. Phys. 41 095303

    [19]

    Chen L Y, Chen W H, Wang J J, Hong F C N, Su Y K 2004 Appl. Phys. Lett. 85 5628

    [20]

    Liu W F, Du G T, Sun Y F, Bian J M, Cheng Y, Yang T P, Chang Y C, Xu Y B 2007 Appl. Surf. Sci. 253 2999

    [21]

    Ellmer K 2001 J. Phys. D: Appl. Phys. 34 3097

    [22]

    Strohmeier B R, Hercules D M 1984 J. Catal. 86 266

    [23]

    Chen M, Wang X, Yu Y H, Pei Z L, Bai X D, Sun C, Huang R F, Wen L S 2000 Appl. Surf. Sci. 158 134

    [24]

    Nefedov V I, Gati D, Dzhurinskii B F, Sergushin N P, Salyn Y V 1975 Zh. Neorg. Khimii 20 2307

    [25]

    Ng K T, Hercules D M 1976 J. Phys. Chem. 80 2095

    [26]

    Sarkar A, Ghosh S, Chaudhuri S, Pal A K 1991 Thin Solid Films 204 255

    [27]

    Swanepoel R 1983 J. Phys. E: Sci. Instrum. 16 1214

  • [1]

    Meier J, Vallat-Sauvain E, Dubail S, Kroll U, Dubail J, Golay S, Feitknecht L, Torres P, Faÿ S, Fischer D, Shah A 2001 Sol. Energy Mater. Sol. Cells 66 73

    [2]

    Yan B J, Yue G Z, Sivec L, Yang J, Guha S, Jiang C S 2011 Appl. Phys. Lett. 99 113512

    [3]

    Zhang X D, Zheng X X, Wang G H, Xu S Z, Yue Q, Lin Q, Wei C C, Sun J, Zhang D K, Xiong S Z, Geng X H, Zhao Y 2010 Acta Phys. Sin. 59 8231 (in Chinese) [张晓丹, 郑新霞, 王光红, 许盛之, 岳强, 林泉, 魏长春, 孙建, 张德坤, 熊绍珍, 耿新华, 赵颖2010 物理学报 59 8231]

    [4]

    Zheng X X, Zhang X D, Yang S S, Wang G H, Xu S Z, Wei C C, Sun J, Geng X H, Xiong S Z, Zhao Y 2011 Acta Phys. Sin. 60 068801 (in Chinese) [郑新霞, 张晓丹, 杨素素, 王光红, 许盛之, 魏长春, 孙建, 耿新华, 熊绍珍, 赵颖2011 物理学报 60 068801]

    [5]

    Wang Y F, Zhang X D, Bai L S, Huang Q, Wei C C, Zhao Y 2012 Appl. Phys. Lett. 100 263508

    [6]

    Selvan J A A, Delahoy A E, Guo S Y, Li Y M 2006 Sol. Energy Mater. Sol. Cells 90 3371

    [7]

    Agashe C, Kluth O, Schöpe G, Siekmann H, Hrgen J, Rech B 2003 Thin Solid Films 442 167

    [8]

    Meng Y, Yang X L, Chen H X, Shen J, Jiang Y M, Zhang Z J, Hua Z Y 2001 Thin Solid Films 394 219

    [9]

    Wang Y F, Huang Q, Song Q G, Liu Y, Wei C C, Zhao Y, Zhang X D 2012 Acta Phys. Sin. 61 137801 (in Chinese) [王延峰, 黄茜, 宋庆功, 刘阳, 魏长春, 赵颖, 张晓丹2012 物理学报 61 137801]

    [10]

    Li X F, Zhang Q, Miao W N, Huang L, Zhang Z J, Hua Z Y 2006 J. Vac. Sci. Technol. A 24 1866

    [11]

    Wang Y F, Huang Q, Wei C C, Zhang D K, Zhao Y, Zhang X D 2012 Appl. Surf. Sci. 258 8797

    [12]

    Oh B Y, Jeong M C, Lee W, Myoung J M 2004 J. Crystal Growth 274 453

    [13]

    Lee J, Lee D, Lim D, Yang K 2007 Thin Solid Films 515 6094

    [14]

    Oliveira C, Rebouta L, Lacerda-Arôso T D, Lanceros-Mendez S, Viseu T, Tavares C J, Tovar J, Ferdov S, Alves E 2009 Thin Solid Films 517 6290

    [15]

    Wang Y P, Lu J G, Bie X, Gong L, Li X, Song D, Zhao X Y, Ye W Y, Ye Z Z 2011 J. Vac. Sci. Technol. A 29 031505

    [16]

    van de Walle C G, Neugebauer J 2003 Nature 423 626

    [17]

    van de Walle C G 2000 Phys. Rev. Lett. 85 1012

    [18]

    Lee S H, Lee T S, Lee K S, Cheong B, Kim Y D, Kim W M 2008 J. Phys. D: Appl. Phys. 41 095303

    [19]

    Chen L Y, Chen W H, Wang J J, Hong F C N, Su Y K 2004 Appl. Phys. Lett. 85 5628

    [20]

    Liu W F, Du G T, Sun Y F, Bian J M, Cheng Y, Yang T P, Chang Y C, Xu Y B 2007 Appl. Surf. Sci. 253 2999

    [21]

    Ellmer K 2001 J. Phys. D: Appl. Phys. 34 3097

    [22]

    Strohmeier B R, Hercules D M 1984 J. Catal. 86 266

    [23]

    Chen M, Wang X, Yu Y H, Pei Z L, Bai X D, Sun C, Huang R F, Wen L S 2000 Appl. Surf. Sci. 158 134

    [24]

    Nefedov V I, Gati D, Dzhurinskii B F, Sergushin N P, Salyn Y V 1975 Zh. Neorg. Khimii 20 2307

    [25]

    Ng K T, Hercules D M 1976 J. Phys. Chem. 80 2095

    [26]

    Sarkar A, Ghosh S, Chaudhuri S, Pal A K 1991 Thin Solid Films 204 255

    [27]

    Swanepoel R 1983 J. Phys. E: Sci. Instrum. 16 1214

  • [1] 王仕东, 闫雅婷, 王瑞英, 朱志立, 谷锦华. 铯掺杂提升反梯度结构二维(CMA)2MA8Pb9I28钙钛矿薄膜及太阳电池的性能. 物理学报, 2023, 72(13): 138801. doi: 10.7498/aps.72.20230357
    [2] 曹宇, 蒋家豪, 刘超颖, 凌同, 孟丹, 周静, 刘欢, 王俊尧. 高效硫硒化锑薄膜太阳电池中的渐变能隙结构. 物理学报, 2021, 70(12): 128802. doi: 10.7498/aps.70.20202016
    [3] 王延峰, 谢希成, 刘晓洁, 韩冰, 武晗晗, 连宁宁, 杨富, 宋庆功, 裴海林, 李俊杰. F, Al共掺杂ZnO透明导电薄膜的制备及掺杂机理研究. 物理学报, 2020, 69(19): 197801. doi: 10.7498/aps.69.20200580
    [4] 赵其琛, 郝瑞亭, 刘思佳, 刘欣星, 常发冉, 杨敏, 陆熠磊, 王书荣. 单靶溅射制备铜锌锡硫薄膜及原位退火研究. 物理学报, 2017, 66(22): 226801. doi: 10.7498/aps.66.226801
    [5] 耿超, 郑义, 张永哲, 严辉. 硅薄膜太阳电池表面纳米线阵列光学设计. 物理学报, 2016, 65(7): 070201. doi: 10.7498/aps.65.070201
    [6] 王延峰, 孟旭东, 郑伟, 宋庆功, 翟昌鑫, 郭兵, 张越, 杨富, 南景宇. V掺杂ZnO透明导电薄膜研究. 物理学报, 2016, 65(8): 087802. doi: 10.7498/aps.65.087802
    [7] 丁东, 杨仕娥, 陈永生, 郜小勇, 谷锦华, 卢景霄. Al纳米颗粒增强微晶硅薄膜太阳电池光吸收的模拟研究. 物理学报, 2015, 64(24): 248801. doi: 10.7498/aps.64.248801
    [8] 郑雪, 余学功, 杨德仁. -Si:H/SiNx叠层薄膜对晶体硅太阳电池的钝化. 物理学报, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [9] 王延峰, 张晓丹, 黄茜, 杨富, 孟旭东, 宋庆功, 赵颖. B掺杂ZnO透明导电薄膜的实验及理论研究. 物理学报, 2013, 62(24): 247802. doi: 10.7498/aps.62.247802
    [10] 王延峰, 黄茜, 宋庆功, 刘阳, 魏长春, 赵颖, 张晓丹. W掺杂ZnO透明导电薄膜的理论及实验研究. 物理学报, 2012, 61(13): 137801. doi: 10.7498/aps.61.137801
    [11] 奚小网, 胡林华, 徐炜炜, 戴松元. TiCl4处理多孔薄膜对染料敏化太阳电池中电子传输特性影响研究. 物理学报, 2011, 60(11): 118203. doi: 10.7498/aps.60.118203
    [12] 张坤, 刘芳洋, 赖延清, 李轶, 颜畅, 张治安, 李劼, 刘业翔. 太阳电池用Cu2ZnSnS4薄膜的反应溅射原位生长及表征. 物理学报, 2011, 60(2): 028802. doi: 10.7498/aps.60.028802
    [13] 李林娜, 陈新亮, 王斐, 孙建, 张德坤, 耿新华, 赵颖. H2 气对脉冲磁控溅射铝掺杂氧化锌薄膜性能的影响. 物理学报, 2011, 60(6): 067304. doi: 10.7498/aps.60.067304
    [14] 丁万昱, 徐军, 陆文琪, 邓新绿, 董闯. 微波ECR磁控溅射制备SiNx薄膜的XPS结构研究. 物理学报, 2009, 58(6): 4109-4116. doi: 10.7498/aps.58.4109
    [15] 蔡宏琨, 陶科, 王林申, 赵敬芳, 隋妍萍, 张德贤. 柔性衬底非晶硅薄膜太阳电池界面处理的研究. 物理学报, 2009, 58(11): 7921-7925. doi: 10.7498/aps.58.7921
    [16] 徐炜炜, 戴松元, 方霞琴, 胡林华, 孔凡太, 潘 旭, 王孔嘉. 电沉积处理与染料敏化纳米薄膜太阳电池的优化. 物理学报, 2005, 54(12): 5943-5948. doi: 10.7498/aps.54.5943
    [17] 戴松元, 孔凡太, 胡林华, 史成武, 方霞琴, 潘 旭, 王孔嘉. 染料敏化纳米薄膜太阳电池实验研究. 物理学报, 2005, 54(4): 1919-1926. doi: 10.7498/aps.54.1919
    [18] 曾隆月, 戴松元, 王孔嘉, 史成武, 孔凡太, 胡林华, 潘 旭. 染料敏化纳米ZnO薄膜太阳电池机理初探. 物理学报, 2005, 54(1): 53-57. doi: 10.7498/aps.54.53
    [19] 王宝义, 张仁刚, 张 辉, 万冬云, 魏 龙. ZnO退火条件对硫化法制备的ZnS薄膜特性的影响. 物理学报, 2005, 54(4): 1874-1878. doi: 10.7498/aps.54.1874
    [20] 张仁刚, 王宝义, 张 辉, 马创新, 魏 龙. 不同参数溅射的ZnO薄膜硫化后的特性. 物理学报, 2005, 54(5): 2389-2393. doi: 10.7498/aps.54.2389
计量
  • 文章访问数:  5208
  • PDF下载量:  598
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-12
  • 修回日期:  2012-08-08
  • 刊出日期:  2013-01-05

/

返回文章
返回