搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过渡金属(Cr, Mn, Fe, Co)掺杂对TiO2磁性影响的第一性原理研究

王少霞 赵旭才 潘多桥 庞国旺 刘晨曦 史蕾倩 刘桂安 雷博程 黄以能 张丽丽

引用本文:
Citation:

过渡金属(Cr, Mn, Fe, Co)掺杂对TiO2磁性影响的第一性原理研究

王少霞, 赵旭才, 潘多桥, 庞国旺, 刘晨曦, 史蕾倩, 刘桂安, 雷博程, 黄以能, 张丽丽

First principle study of influence of transition metal (Cr, Mn, Fe, Co) doping on magnetism of TiO2

Wang Shao-Xia, Zhao Xu-Cai, Pan Duo-Qiao, Pang Guo-Wang, Liu Chen-Xi, Shi Lei-Qian, Liu Gui-An, Lei Bo-Cheng, Huang Yi-Neng, Zhang Li-Li
PDF
HTML
导出引用
  • 关于过渡金属掺杂TiO2是否会产生室温铁磁性及其磁性的来源存在争议, 为了解决此问题, 本文采用基于密度泛函理论下的GGA+U方法对体系Ti0.875X0.125O2 (X = Cr, Mn, Fe, Co)的磁学性质及光学性质进行了第一性原理的研究. 首先计算了铁磁和反铁磁的基态能量, 比较后推测出铁磁态为它们的基态; 分析能带结构发现Ti0.875Cr0.125O2和Ti0.875Mn0.125O2两种体系保持半导体性质, Ti0.875Fe0.125O2和Ti0.875Co0.125O2两种体系表现金属特性; 掺杂体系都产生了室温铁磁性, 磁性来源主要是过渡金属元素(Cr, Mn, Fe, Co)3d电子轨道诱导极化了周围的O-2p态自旋电子, 导致体系产生净磁矩而呈现铁磁性; 掺杂体系的吸收光谱均发生了红移, 有效扩展了对可见光的吸收范围.
    It is still in controversy whether the transition metal doped TiO2 will generate room temperature ferromagnetism and where its magnetism originates from. In order to solve this problem, in this paper we use the GGA+U method based on density functional theory to conduct a first-principle study of the magnetic and optical properties for each of the systems of Ti0.875X0.125O2, X = Cr, Mn, Fe, Co. We calculate the ground state energy of each system, on the supposition that they are ferromagnetic or antiferromagnetic. After comparison, the ferromagnetic state is speculated to be its ground state. The binding energy and magnetism calculation results show that Ti0.875Cr0.125O2 has the best stability in all doped systems, that the transition metal element doped TiO2 system has a net magnetic moment, and that the doped systems are ferrimagnetic. In comparison, the net magnetic moment produced by Cr, Mn and Fe doped with TiO2 are substantial, showing that these three systems have good ferromagnetic properties. The Curie temperatures of all doped systems are above room temperature, which is of great significance for the electron spin to retain the information in dilute magnetic semiconductors (DMS), and also greatly helps with the practical application of magnetic materials. The analysis of the energy band structure reveals that intrinsic TiO2 is non ferromagnet, Ti0.875Cr0.125O2 and Ti0.875Mn0.125O2 maintain semiconductor properties, and Ti0.875Fe0.125O2 and Ti0.875Co0.125O2 exhibit metal characteristics. The doped systems produce room temperature ferromagnetism, the main magnetic source is the transition metal elements (Cr, Mn, Fe, Co) 3d electron orbit induced polarization of the surrounding O-2p state spin electrons, causing the systems to produce a net magnetic moment and be ferromagnetic. The absorption spectrum of the doped system is red-shifted, which shows that the doping causes the range of its absorption spectrum to extend to the visible range. At the same time, in all the doped systems in this article, Fe and Co doped TiO2 have the best light absorption intensity, and the magnetic property of the Fe doped system is the strongest, which indicates that when the system is ferromagnetic, the spin up and spin down splitting will occur in the local magnetic field, which will change the electronic structure of TiO2 and enhance its photocatalytic performance. The calculation results in this paper are of theoretical significance for preparing TiO2 with curie temperature above room temperature by being doped with transition metal elements of Cr, Mn, Fe, and Co.
      通信作者: 张丽丽, suyi2046@sina.com
    • 基金项目: 国家自然科学基金(批准号: 11664042)资助的课题
      Corresponding author: Zhang Li-Li, suyi2046@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11664042)
    [1]

    Yang K, Dai Y, Huang B 2007 J. Phys. Chem. C 111 12086Google Scholar

    [2]

    Yang K, Dai Y, Huang B, Han S 2006 J. Phys. Chem. B 110 24011Google Scholar

    [3]

    Gao Y, Hou Q Y, Liu Q L 2019 J. Supercond. Nov. Magn. 32 2877Google Scholar

    [4]

    Liu Y, Wei L, Zhang W, Zhang J, Han P 2013 Solid State. Commun. 164 27Google Scholar

    [5]

    Yao X, Wang X, Su L, Yan H, Yao M 2011 J. Mol. Catal. A-Chem. 351 11Google Scholar

    [6]

    Matsumoto Y, Murakami M, Shono T, Hasegawa T, Fukumura T, Kawasaki M, Ahmet P, Chikyow T, Koshihara S, Koinuma H 2001 Science 291 854Google Scholar

    [7]

    Hoa N T Q, Huyen D N 2013 J. Mater. Sci.-Mater. El. 24 793Google Scholar

    [8]

    Chanda A, Rout K, Vasundhara M, Joshi S R, Singh J 2018 RSC Adv. 8 10939Google Scholar

    [9]

    Sharma S, Chaudhary S, Kashyap S C, Sharma S K 2011 J. Appl. Phys. 109 951Google Scholar

    [10]

    Tao J G, Guan L X, Pan J S, Huan C H A, Wang L, Kuo J L, Zhang Z, Chai J W, Wang S J 2009 Appl. Phys. Lett. 95 062505Google Scholar

    [11]

    Kim R, Cho S, Park W, Cho D, Oh S, Saint-Martin R, Berthet P, Park J, Yu J 2014 J. Phys. Condens. Matter 26 146003Google Scholar

    [12]

    Xu J, Li L, Lv L, Zhang X, Chen X, Wang J, Zhang F, Zhong W, Du Y W 2009 Chin. Phys. Lett. 26 097502Google Scholar

    [13]

    Wang Y, Zhang R, Li J, Li L, Lin S 2014 Nanoscale Res. Lett. 9 46Google Scholar

    [14]

    Rumaiz A K, Woicik J C, Cockayne E, Lin H Y, Jaffari G H, Shah S I 2009 Appl. Phys. Lett. 95 262111Google Scholar

    [15]

    Peng H, Li J, Li S, Xia J 2008 J. Phys. Condens. Matter 20 125207Google Scholar

    [16]

    Fujishima A, Honda K 1972 Nature 238 37Google Scholar

    [17]

    李聪, 郑友进, 付斯年, 姜宏伟, 王丹 2016 物理学报 65 037102Google Scholar

    Li C, Zheng Y J, Fu S N, Jiang H W, Wang D 2016 Acta Phys. Sin. 65 037102Google Scholar

    [18]

    Burdett J K, Hughbanks T, Miller G J, Richardson J W, Smith J V 1987 J. Am. Chem. Soc. 109 3639Google Scholar

    [19]

    张丽丽, 夏桐, 刘桂安, 雷博程, 赵旭才, 王少霞, 黄以能 2019 物理学报 68 017401Google Scholar

    Zhang L L, Xia T, Liu G A, Lei B C, Zhao X C, Wang S X, Huang Y N 2019 Acta Phys. Sin. 68 017401Google Scholar

    [20]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K, Payne M C 2005 Z. Krist.-Cryst. Mater. 220 567Google Scholar

    [21]

    Segall M D, Lindan P, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717Google Scholar

    [22]

    Di Valentin C, Finazzi E, Pacchioni G, Selloni A, Livraghi S, Paganini M C, Giamello E 2007 Chem. Phys. 339 44Google Scholar

    [23]

    Pickett W E, Erwin S C, Ethridge E C 1998 Phys. Rev. B 58 1201Google Scholar

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [25]

    Morgan B J, Watson G W 2010 J. Phys. Chem. C 114 2328Google Scholar

    [26]

    Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys. Rev. Lett. 95 256404Google Scholar

    [27]

    王闯, 赵永红, 刘永 2019 物理学报 68 176301Google Scholar

    Wang C, Zhao Y H, Liu Y 2019 Acta Phys. Sin. 68 176301Google Scholar

    [28]

    Cheng Y C, Zhu Z Y, Mi W B, Guo Z B, Schwingenschloegl U 2013 Phys. Rev. B 87 100401Google Scholar

    [29]

    Sasioglu E, Sandratskii L M, Bruno P 2004 Phys. Rev. B 70 024427Google Scholar

    [30]

    Fukushima T, Sato K, Katayama-Yoshida H, Dederichs P H 2004 Jpn. J. Appl. Phys. 43 L1416Google Scholar

    [31]

    Salmani E M, Laghrissi A, Lamouri R, Dehmani M, Benchafia E M, Ez-Zahraouy H, Benyoussef A 2017 Opt. Quantum Electron. 49 97Google Scholar

    [32]

    Fukumura T, Kawasaki M 2013 Functional Metal Oxides: New Science and Novel Appl. (Tokyo: Weinheim, Germany) pp91−131

    [33]

    Roy S, Luitel H, Sanyal D 2019 Comput. Condens. Matter 18 e00349Google Scholar

    [34]

    Sun J, Wang H T, He J L, Tian Y J 2005 Phys. Rev. B 71 125132Google Scholar

    [35]

    Brown G F, Wu J Q 2009 Laser Photonics Rev. 3 394Google Scholar

    [36]

    周诗文, 彭平, 陈文钦, 庾名槐, 郭惠, 袁珍 2019 物理学报 68 037101Google Scholar

    Zhou S W, Peng P, Chen W Q, Yu M H, Guo H, Yuan Z 2019 Acta Phys.Sin. 68 037101Google Scholar

    [37]

    侯清玉, 曲灵丰, 赵春旺 2016 物理学报 65 057401Google Scholar

    Hou Q Y, Qu L F, Zhao C W 2016 Acta Phys. Sin. 65 057401Google Scholar

    [38]

    赵宗彦, 柳清菊, 张瑾, 朱忠其 2007 物理学报 56 6592Google Scholar

    Zhao Z Y, Liu Q J, Zhang J, Zhu Z Q 2007 Acta Phys. Sin. 56 6592Google Scholar

  • 图 1  结构模型 (a) 本征TiO2; (b) Ti0.875X0.125O2 (X = Cr, Mn, Fe, Co)

    Fig. 1.  Structural models: (a) Pure TiO2; (b) Ti0.875X0.125O2 (X = Cr, Mn, Fe, Co).

    图 2  (a) TiO2掺杂前后体系的结合能; (b)各掺杂TiO2体系自旋净磁矩与自旋密度模

    Fig. 2.  (a) Binding energy of TiO2 system before and after doping; (b) spin net magnetic moment and spin density mode of the doped TiO2 system.

    图 3  本征TiO2体系: (a)能带图; (b)态密度图

    Fig. 3.  Pure TiO2 system: (a) Band diagram; (b) state density diagram.

    图 4  Cr掺杂TiO2体系 (a) 能带图; (b) 自旋态密度图; (c) Fermi能级附近放大图

    Fig. 4.  Cr-doped TiO2 system: (a) Band diagram; (b) spin state density diagram; (c) enlarged view near Fermi level.

    图 5  Mn掺杂TiO2体系 (a) 能带图; (b) 自旋态密度图; (c) Fermi能级附近放大图

    Fig. 5.  Mn-doped TiO2 system: (a) Band diagram; (b) spin state density diagram; (c) enlarged view near Fermi level.

    图 6  Fe掺杂TiO2体系 (a)能带图; (b)自旋态密度图

    Fig. 6.  Fe-doped TiO2 system: (a) Band diagram; (b) spin state density diagram.

    图 7  Co掺杂TiO2体系 (a) 能带图; (b) 自旋态密度图; (c) Fermi能级附近放大图

    Fig. 7.  Co-doped TiO2 system: (a) Band diagram; (b) spin state density diagram; (c) enlarged view near Fermi level.

    图 8  掺杂前后TiO2体系 (a) 吸收光谱图; (b) 可见光波长范围内的吸收光谱图

    Fig. 8.  TiO2 system before and after doping: (a) Absorption spectra; (b) absorption spectra in the visible wavelength rang.

    表 1  掺杂前后体系结构参数计算结果

    Table 1.  Calculation results of system parameters before and after doping.

    模型EbEFM/eVEAFM/eVE/meV2Integrated spin density/μB2Integrated|spin density|/μB
    TiO2(2 × 1 × 1)–7457.281
    Ti0.875Cr0.125O2–7727.549–20572.796–20572.7672933.316
    Ti0.875Mn0.125O2–7063.942–18797.713–18797.6743933.668
    Ti0.875Fe0.125O2–7158.347–19034.057–19034.0174044.296
    Ti0.875Co0.125O2–7253.848–19269.779–19269.689901.6672.056
    下载: 导出CSV
  • [1]

    Yang K, Dai Y, Huang B 2007 J. Phys. Chem. C 111 12086Google Scholar

    [2]

    Yang K, Dai Y, Huang B, Han S 2006 J. Phys. Chem. B 110 24011Google Scholar

    [3]

    Gao Y, Hou Q Y, Liu Q L 2019 J. Supercond. Nov. Magn. 32 2877Google Scholar

    [4]

    Liu Y, Wei L, Zhang W, Zhang J, Han P 2013 Solid State. Commun. 164 27Google Scholar

    [5]

    Yao X, Wang X, Su L, Yan H, Yao M 2011 J. Mol. Catal. A-Chem. 351 11Google Scholar

    [6]

    Matsumoto Y, Murakami M, Shono T, Hasegawa T, Fukumura T, Kawasaki M, Ahmet P, Chikyow T, Koshihara S, Koinuma H 2001 Science 291 854Google Scholar

    [7]

    Hoa N T Q, Huyen D N 2013 J. Mater. Sci.-Mater. El. 24 793Google Scholar

    [8]

    Chanda A, Rout K, Vasundhara M, Joshi S R, Singh J 2018 RSC Adv. 8 10939Google Scholar

    [9]

    Sharma S, Chaudhary S, Kashyap S C, Sharma S K 2011 J. Appl. Phys. 109 951Google Scholar

    [10]

    Tao J G, Guan L X, Pan J S, Huan C H A, Wang L, Kuo J L, Zhang Z, Chai J W, Wang S J 2009 Appl. Phys. Lett. 95 062505Google Scholar

    [11]

    Kim R, Cho S, Park W, Cho D, Oh S, Saint-Martin R, Berthet P, Park J, Yu J 2014 J. Phys. Condens. Matter 26 146003Google Scholar

    [12]

    Xu J, Li L, Lv L, Zhang X, Chen X, Wang J, Zhang F, Zhong W, Du Y W 2009 Chin. Phys. Lett. 26 097502Google Scholar

    [13]

    Wang Y, Zhang R, Li J, Li L, Lin S 2014 Nanoscale Res. Lett. 9 46Google Scholar

    [14]

    Rumaiz A K, Woicik J C, Cockayne E, Lin H Y, Jaffari G H, Shah S I 2009 Appl. Phys. Lett. 95 262111Google Scholar

    [15]

    Peng H, Li J, Li S, Xia J 2008 J. Phys. Condens. Matter 20 125207Google Scholar

    [16]

    Fujishima A, Honda K 1972 Nature 238 37Google Scholar

    [17]

    李聪, 郑友进, 付斯年, 姜宏伟, 王丹 2016 物理学报 65 037102Google Scholar

    Li C, Zheng Y J, Fu S N, Jiang H W, Wang D 2016 Acta Phys. Sin. 65 037102Google Scholar

    [18]

    Burdett J K, Hughbanks T, Miller G J, Richardson J W, Smith J V 1987 J. Am. Chem. Soc. 109 3639Google Scholar

    [19]

    张丽丽, 夏桐, 刘桂安, 雷博程, 赵旭才, 王少霞, 黄以能 2019 物理学报 68 017401Google Scholar

    Zhang L L, Xia T, Liu G A, Lei B C, Zhao X C, Wang S X, Huang Y N 2019 Acta Phys. Sin. 68 017401Google Scholar

    [20]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K, Payne M C 2005 Z. Krist.-Cryst. Mater. 220 567Google Scholar

    [21]

    Segall M D, Lindan P, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717Google Scholar

    [22]

    Di Valentin C, Finazzi E, Pacchioni G, Selloni A, Livraghi S, Paganini M C, Giamello E 2007 Chem. Phys. 339 44Google Scholar

    [23]

    Pickett W E, Erwin S C, Ethridge E C 1998 Phys. Rev. B 58 1201Google Scholar

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [25]

    Morgan B J, Watson G W 2010 J. Phys. Chem. C 114 2328Google Scholar

    [26]

    Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys. Rev. Lett. 95 256404Google Scholar

    [27]

    王闯, 赵永红, 刘永 2019 物理学报 68 176301Google Scholar

    Wang C, Zhao Y H, Liu Y 2019 Acta Phys. Sin. 68 176301Google Scholar

    [28]

    Cheng Y C, Zhu Z Y, Mi W B, Guo Z B, Schwingenschloegl U 2013 Phys. Rev. B 87 100401Google Scholar

    [29]

    Sasioglu E, Sandratskii L M, Bruno P 2004 Phys. Rev. B 70 024427Google Scholar

    [30]

    Fukushima T, Sato K, Katayama-Yoshida H, Dederichs P H 2004 Jpn. J. Appl. Phys. 43 L1416Google Scholar

    [31]

    Salmani E M, Laghrissi A, Lamouri R, Dehmani M, Benchafia E M, Ez-Zahraouy H, Benyoussef A 2017 Opt. Quantum Electron. 49 97Google Scholar

    [32]

    Fukumura T, Kawasaki M 2013 Functional Metal Oxides: New Science and Novel Appl. (Tokyo: Weinheim, Germany) pp91−131

    [33]

    Roy S, Luitel H, Sanyal D 2019 Comput. Condens. Matter 18 e00349Google Scholar

    [34]

    Sun J, Wang H T, He J L, Tian Y J 2005 Phys. Rev. B 71 125132Google Scholar

    [35]

    Brown G F, Wu J Q 2009 Laser Photonics Rev. 3 394Google Scholar

    [36]

    周诗文, 彭平, 陈文钦, 庾名槐, 郭惠, 袁珍 2019 物理学报 68 037101Google Scholar

    Zhou S W, Peng P, Chen W Q, Yu M H, Guo H, Yuan Z 2019 Acta Phys.Sin. 68 037101Google Scholar

    [37]

    侯清玉, 曲灵丰, 赵春旺 2016 物理学报 65 057401Google Scholar

    Hou Q Y, Qu L F, Zhao C W 2016 Acta Phys. Sin. 65 057401Google Scholar

    [38]

    赵宗彦, 柳清菊, 张瑾, 朱忠其 2007 物理学报 56 6592Google Scholar

    Zhao Z Y, Liu Q J, Zhang J, Zhu Z Q 2007 Acta Phys. Sin. 56 6592Google Scholar

  • [1] 肖文悦, 董小硕, 买买提热夏提·买买提, 牛娜娜, 李国栋, 朱泽涛, 毕杰昊. Zn2+和TiO2合金化过程中不同成分占比对薄膜结构和光催化性能的影响. 物理学报, 2024, 73(18): 183301. doi: 10.7498/aps.73.20240814
    [2] 宋蕊, 王必利, 冯凯, 姚佳, 李霞. 应力调控对单层TiOCl2电子结构及光学性质的影响. 物理学报, 2022, 71(7): 077101. doi: 10.7498/aps.71.20212023
    [3] 高旭东, 杨得草, 魏雯静, 李公平. 电子束对ZnO和TiO2辐照损伤的模拟计算. 物理学报, 2021, 70(23): 234101. doi: 10.7498/aps.70.20211223
    [4] 熊子谦, 张鹏程, 康文斌, 方文玉. 一种新型二维TiO2的电子结构与光催化性质. 物理学报, 2020, 69(16): 166301. doi: 10.7498/aps.69.20200631
    [5] 王鑫, 李桦, 董正超, 仲崇贵. 二维应变作用下超导薄膜LiFeAs的磁性和电子性质. 物理学报, 2019, 68(2): 027401. doi: 10.7498/aps.68.20180957
    [6] 王春杰, 王月, 高春晓. 高压下金红石相TiO2的晶界电学性质. 物理学报, 2019, 68(20): 206401. doi: 10.7498/aps.68.20190630
    [7] 杜成旭, 王婷, 杜颖妍, 贾倩, 崔玉亭, 胡爱元, 熊元强, 毋志民. Ag-Cr共掺LiZnP新型稀磁半导体的光电性质. 物理学报, 2018, 67(18): 187101. doi: 10.7498/aps.67.20180450
    [8] 潘凤春, 林雪玲, 陈焕铭. C掺杂金红石相TiO2的电子结构和光学性质的第一性原理研究. 物理学报, 2015, 64(22): 224218. doi: 10.7498/aps.64.224218
    [9] 程旭东, 吴海信, 唐小路, 王振友, 肖瑞春, 黄昌保, 倪友保. Na2Ge2Se5电子结构和光学性质的第一性原理研究. 物理学报, 2014, 63(18): 184208. doi: 10.7498/aps.63.184208
    [10] 谢知, 程文旦. TiO2纳米管电子结构和光学性质的第一性原理研究. 物理学报, 2014, 63(24): 243102. doi: 10.7498/aps.63.243102
    [11] 焦照勇, 郭永亮, 牛毅君, 张现周. 缺陷黄铜矿结构Xga2S4 (X=Zn, Cd, Hg)晶体电子结构和光学性质的第一性原理研究. 物理学报, 2013, 62(7): 073101. doi: 10.7498/aps.62.073101
    [12] 王寅, 冯庆, 王渭华, 岳远霞. 碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究. 物理学报, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [13] 张小超, 赵丽军, 樊彩梅, 梁镇海, 韩培德. 过渡金属(Fe,Co,Ni,Zn)掺杂金红石TiO2的电子结构和光学性质. 物理学报, 2012, 61(7): 077101. doi: 10.7498/aps.61.077101
    [14] 陈海川, 杨利君. LiGaX2(X=S, Se, Te)的电子结构,光学和弹性性质的第一性原理计算. 物理学报, 2011, 60(1): 014207. doi: 10.7498/aps.60.014207
    [15] 罗礼进, 仲崇贵, 方靖淮, 赵永林, 周朋霞, 江学范. Heusler合金Mn2 NiAl的电子结构和磁性对四方畸变的响应及其压力响应. 物理学报, 2011, 60(12): 127502. doi: 10.7498/aps.60.127502
    [16] 李沛娟, 周薇薇, 唐元昊, 张华, 施思齐. CeO2的电子结构,光学和晶格动力学性质:第一性原理研究. 物理学报, 2010, 59(5): 3426-3431. doi: 10.7498/aps.59.3426
    [17] 陈秋云, 赖新春, 王小英, 张永彬, 谭世勇. UO2的电子结构及光学性质的第一性原理研究. 物理学报, 2010, 59(7): 4945-4949. doi: 10.7498/aps.59.4945
    [18] 崔冬萌, 谢泉, 陈茜, 赵凤娟, 李旭珍. Si基外延Ru2Si3电子结构及光学性质研究. 物理学报, 2010, 59(3): 2027-2032. doi: 10.7498/aps.59.2027
    [19] 张学军, 高攀, 柳清菊. 氮铁共掺锐钛矿相TiO2电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(7): 4930-4938. doi: 10.7498/aps.59.4930
    [20] 李旭珍, 谢泉, 陈茜, 赵凤娟, 崔冬萌. OsSi2电子结构和光学性质的研究. 物理学报, 2010, 59(3): 2016-2021. doi: 10.7498/aps.59.2016
计量
  • 文章访问数:  12283
  • PDF下载量:  499
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-01
  • 修回日期:  2020-05-29
  • 上网日期:  2020-06-16
  • 刊出日期:  2020-10-05

/

返回文章
返回