搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CH3NH3PbBr3纳米线中束缚激子g因子的各向异性

宋飞龙 王玉暖 张峰 武诗谣 谢昕 杨静南 孙思白 党剑臣 肖姗 杨龙龙 钟海政 许秀来

引用本文:
Citation:

CH3NH3PbBr3纳米线中束缚激子g因子的各向异性

宋飞龙, 王玉暖, 张峰, 武诗谣, 谢昕, 杨静南, 孙思白, 党剑臣, 肖姗, 杨龙龙, 钟海政, 许秀来

The g-factor anisotropy of trapped excitons in CH3NH3PbBr3 perovskite

Song Fei-Long, Wang Yu-Nuan, Zhang Feng, Wu Shi-Yao, Xie Xin, Yang Jing-Nan, Sun Si-Bai, Dang Jian-Chen, Xiao Shan, Yang Long-Long, Zhong Hai-Zheng, Xu Xiu-Lai
PDF
HTML
导出引用
  • 有机-无机杂化钙钛矿材料与其他半导体材料相比具有高的缺陷容忍率, 在太阳能电池、发光二极管、低阈值激光器等领域有重要的应用前景. 通常情况下, 钙钛矿材料是通过溶液法合成的, 这种方法虽然可以得到性能优异的钙钛矿器件, 但同时也会在合成过程中产生大量缺陷. 尽管目前在理论和实验上对钙钛矿材料的缺陷做了很多研究, 但对单个缺陷附近的束缚激子发光问题的研究较少. 本文通过共聚焦显微系统研究了低温(4.2 K)下单根钙钛矿纳米线的荧光光谱, 观测到来自于缺陷周围束缚激子的窄线宽和高强度的荧光峰, 同时观测到了磁场下的塞曼分裂和抗磁现象, 并通过施加矢量磁场发现了束缚激子的g因子存在各向异性. 单个束缚态激子的磁光性质的研究为深入理解束缚激子在量子光源以及自旋电子学中的应用提供了依据.
    Hybrid organic-inorganic perovskites show large potential applications in solar cells, light emitting diodes and low threshold lasers because of the high tolerance of defects compared with other semiconductor materials. Normally they have been synthesized by dilution method, generating a device with high performance, but they also introduce lots of defects. So far, investigations have been done intensively on ensemble defects both in theory and experiment, but single-defect related trapped excitons are yet to be explored. In this work, we prepared high-quality CH3NH3PbBr3 perovskite nanowires with the length of about 1 μm and the width of several hundred nanometers by “reverse” ligand assisted reprecipitation method, and performed the magneto-photoluminescence measurement of different trapped excitons in single perovskite nanowires at a low temperature with a standard confocal microscopic system. The photoluminescence (PL) peak with narrow linewidth has been observed from trapped excitons with high luminescence intensity and the trapped excitons can be coupled with phonons in different ways. Both Zeeman splittings and diamagnetic effects have been observed in single trapped excitons under the magnetic field, and we found that the different trapped excitons have different Zeeman splittings and diamagnetic effects which is caused by the different defects near the trapped excitons. At the same time, we have extracted the g-factor of the trapped excitons under different magnetic field angles. The extracted exciton g-factors show anisotropic, which can be ascribed to the limitation of the lattice structure of the perovskite and the trapped exciton wave-function anisotropy under a vector magnetic field. Our results demonstrate that trapped excitons with narrow linewidth have very good luminescence properties and studying the magneto-optical properties from single trapped excitons can provide a deep understanding of trapped excitons in perovskites for applications in quantum light sources and spintronics. Furthermore, our results can also provide a possibility to control the electron spin in single-trapped-excitons-based hybrid organic-inorganic perovskites by manipulating the g-factor through an applied vector magnetic field, which promotes the application of the perovskite-based spintronics.
      通信作者: 许秀来, xlxu@iphy.ac.cn
      Corresponding author: Xu Xiu-Lai, xlxu@iphy.ac.cn
    [1]

    Huang J S, Shao Y C, Dong Q F 2015 J. Phys. Chem. Lett. 6 3218Google Scholar

    [2]

    Lin Q, Armin A, Nagiri R C R, Burn P L, Meredith P 2015 Nat. Photonics 9 106Google Scholar

    [3]

    Kojima A, Kenjiro T, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [4]

    Xing G, Mathews N, Lim S S, Yantara N, Liu X, Sabba D, Grätzel M, Mhaisalkar S, Sum T Z 2014 Nat. Mater. 13 476Google Scholar

    [5]

    Liu Z, Li C, Shang Q Y, Zhao L Y, Zhong Y G, Gao Y, Du W N, Mi Y, Chen J, Zhang S, Liu X F, Fu Y S, Zhang Q 2018 Chin. Phys. B 27 114209Google Scholar

    [6]

    Fu M, Tamarat P, Trebbia J, Bodnarchuk M I, Kovalenko M V, Even J, Lounis B 2018 Nat. Commun. 9 3318Google Scholar

    [7]

    Pfingsten O, Klein J, Protesescu L, Bodnarchuk M I, Kovalenko M V, Bacher G 2018 Nano Lett. 18 4440Google Scholar

    [8]

    Cao Y, Wang N N, Tian H, Guo J S, Wei Y Q, Chen H, Miao Y F, Zou W, Pan K, He Y R, Cao H, Ke Y, Xu M M, Wang Y, Yang M, Du K, Fu Z W, Kong D C, Dai D X, JinY Z, Li G Q, Li H, Peng Q M, Wang J P, Huang W 2018 Nature 562 249Google Scholar

    [9]

    Yin W, Shi T, Yan Y 2014 Adv. Mater. 26 4653Google Scholar

    [10]

    Chen C, Hu X, Lu W, Chang S, Shi L, Li L, Zhong H Z, Han J 2018 J. Phys. D: Appl. Phys. 51 045105Google Scholar

    [11]

    Zhang C, Sun D L, Yu Z G, Sheng C X, McGill S, Semenov D, Vardeny Z V 2018 Phys. Rev. B 97 134412Google Scholar

    [12]

    魏应强, 徐磊, 彭其明, 王建浦 2019 物理学报 68 158506Google Scholar

    Wei Y Q, Xu L, Peng Q M, Wang J P 2019 Acta Phys. Sin. 68 158506Google Scholar

    [13]

    Li J, Haney P M 2016 Phys. Rev. B 93 155432Google Scholar

    [14]

    Kim M, Im J, Freeman A J, Ihm J, Jin H 2014 Proc. Natl. Acad. Sci. U.S.A. 111 6900Google Scholar

    [15]

    Kepenekian M, Robles R, Katan C, Sapori D, Pedesseau L, Even J 2015 ACS Nano 9 11557Google Scholar

    [16]

    Niesner D, Wilhelm M, Levchuk I, Osvet A, Shrestha S, Batentschuk M, Brabec C J, Fauster T 2016 Phys. Rev. Lett. 117 126401Google Scholar

    [17]

    Hutter E M, Gelvezrueda M C, Osherov A, Bulovic V, Grozema F C, Stranks S D, Savenije T J 2017 Nat. Mater. 16 115Google Scholar

    [18]

    Zhai Y, Baniya S, Zhang C, Li J, Haney P M, Sheng C, Ehrenfreund E, Vardeny Z V 2017 Sci. Adv. 3 e1700704Google Scholar

    [19]

    Giovanni D, Ma H, Chua J, Grätzel M, Ramesh R, Mhaisalkar S, Mathews N, Sum T C 2015 Nano Lett. 15 1553Google Scholar

    [20]

    Giovanni D, Chong W K, Dewi H A, Thirumal K, Neogi I, Ramesh R, Mhaisalkar S G, Mathews N, Sum T C 2015 Sci. Adv. 2 e1600477

    [21]

    Song F L, Qian C J, Wang Y N, Zhang F, Peng K, Wu S Y, Xie X, Yang J N, Sun S B, Yu Y, Dang J C, Xiao S, Yang L L, Jin K J, Zhong H Z, Xu X L 2020 Laser Photonics Rev. 14 1900267Google Scholar

    [22]

    Zhang F, Chen C, Kershaw S V, Xiao C T, Han J B, Zou B S, Wu X, Chang S, Dong Y P, Rogach A L, Zhong H Z 2017 ChemNanoMat. 3 303Google Scholar

    [23]

    张钰, 周欢萍 2019 物理学报 68 158804Google Scholar

    Zhang Y, Zhou H P 2019 Acta Phys. Sin. 68 158804Google Scholar

    [24]

    Zhang Y Y, Chen S Y, Xu P, Xiang H J, Gong X G, Walsh A, Wei S H 2018 Chin. Phys. Lett. 35 036104Google Scholar

    [25]

    Tilchin J, Dirin D N, Maikov G I, Sashchiuk A, Kovalenko M V, Lifshitz E 2016 ACS Nano 10 6363Google Scholar

    [26]

    Lozhkina O A, Yudin V I, Murashkina A A, Shilovs V V, Davydov V G, Kevorkyants R, Emeline A V, Kapitonov Y V, Bahnemann D W 2018 J. Phys. Chem. Lett. 9 302Google Scholar

    [27]

    Sun S B, Yu Y, Dang J C, Peng K, Xie X, Song F L, Qian C J, Wu S Y, Ali H, Tang J, Yang J N, Xiao S, Tian S L, Wang M, Shan X Y, Rafiq M A, Wang C, Xu X L 2019 Appl. Phys. Lett. 114 113104Google Scholar

    [28]

    Branny A, Wang G, Kumar S, Robert C, Lassagne B, Marie X, Gerardot B D, Urbaszek B 2016 Appl. Phys. Lett. 108 142101Google Scholar

    [29]

    Chakraborty C, Goodfellow K M, Vamivakas A N 2016 Opt. Mater. Express 6 2081Google Scholar

    [30]

    Empedocles S A, Bawendi M G 1999 J. Phys. Chem. B 103 1826Google Scholar

    [31]

    Leguy A M A, Goñi A R, Frost J M, Skelton J, Brivio F, Rodríguez-Martínez X, Weber O L, Pallipurath A, Alonso M I, Campoy-Quiles M, Weller M T, Nelson J, Walsh A, Barnes P R F 2016 Phys. Chem. Chem. Phys. 18 27051Google Scholar

    [32]

    Tanaka K, Takahashi T, Ban T, Kondo T, Uchida K, Miura N 2003 Solid State Commun. 127 619Google Scholar

    [33]

    Tang J, Xu X L 2018 Chin. Phys. B 27 027804Google Scholar

    [34]

    Fu M, Tamarat P, Huang H, Even J, Rogach A L, Lounis B 2017 Nano Lett. 17 2895Google Scholar

    [35]

    Yu Z G 2016 Sci. Rep. 6 28576Google Scholar

    [36]

    Van Bree J, Silov A Y, Maasakkers V M, Pryor C E, Flatte M E, Koenraad P M 2016 Phys. Rev. B 93 035311Google Scholar

    [37]

    Van Bree J, Silov A Y, Koenraad P M, Flatté M E, Pryor C E 2012 Phys. Rev. B 85 165323Google Scholar

    [38]

    Wu S Y, Peng K, Battiato S, Zannier V, Bertoni A, Goldoni G, Xie X, Yang J N, Xiao S, Qian C J, Song F L, Sun S B, Dang J C, Yu Y, Beltram F, Sorba L, Li A, Li B B, Rossella F, Xu X L 2019 Nano Res. 12 2842Google Scholar

    [39]

    Park Y S, Guo S J, Makarov N S, Klimov V I 2015 Acs Nano 9 10386Google Scholar

  • 图 1  低温矢量磁场共聚焦测量系统示意图. 442 nm的激发光通过光纤耦合到测量系统, 激发样品后, 样品发出的荧光通过收集光路耦合至光纤, 最后被光谱仪和探测器记录信号. 图1左下角是$ {\rm{C}}{{\rm{H}}_3}{\rm{N}}{{\rm{H}}_3}{\rm{PbB}}{{\rm{r}}_3} $纳米线样品的SEM图, 图中的比例尺为1 μm

    Fig. 1.  Schematic diagram of the confocal microscope measurement system with a vector magnetic field at low temperature(4 K). The excitation laser with the wavelength of 442 nm is coupled to the measurement system through an optical fiber, the PL of the sample is coupled out to the system through another optical fiber when the sample is excited by the laser, the PL signals are collected by a spectrometer and CCD detector. A SEM image of $ {\rm{C}}{{\rm{H}}_3}{\rm{N}}{{\rm{H}}_3}{\rm{PbB}}{{\rm{r}}_3} $ nanowire is shown in the left bottom of Fig. 1, the scale bar is 1 μm.

    图 2  低温(4.2 K)下不同纳米线的典型荧光光谱随激发功率的变化 (a) 能量在2.25 eV附近的发光峰来自纳米线的自由激子发光, 其低能方向出现的不规则且线宽较宽的是束缚激子峰, 这些束缚激子峰随着激光功率的增加峰值能量不稳定; (b) 自由激子峰及线宽较窄的束缚激子峰, 随着激发功率的变化, 这些束缚激子峰的位置相对稳定; (c) 束缚激子峰及其在低能方向的声子伴线, 声子能量为9.5 meV; (d)束缚激子峰及其高能方向的热极化子峰, 声子能量为5.4 meV

    Fig. 2.  Power dependent PL spectra of different nanowires at 4.2 K: (a) PL spectra from free excitons and defect states with broader linewidth; (b) PL spectra from free excitons and defect states with narrow linewidth; (c) PL spectra from trapped exciton and its phonon replica at lower energy side with a phonon energy of 9.5 meV; (d) PL spectra from trapped excitons and hot polarons at higher energy side with a phonon energy of 5.4 meV.

    图 3  低温下不同纳米线在磁场下的荧光光谱 (a) 自由激子(FX)在磁场下无塞曼分裂, 束缚激子(TX)在磁场下有塞曼分裂; (b) 自由激子和束缚激子在磁场下均无塞曼分裂; (c)束缚激子在磁场下有塞曼分裂, 无抗磁现象; (d) 束缚激子在磁场下有塞曼分裂, 有抗磁现象

    Fig. 3.  PL spectra as a function of magnetic field at low temperature: (a) The peak of free excitons is not effected by the magnetic field while Zeeman splitting is observed for trapped excitons; (b) no splitting observed for both free excitons and trapped excitons; (c) the trapped excitons with a Zeeman effect but not diamagnetic effect; (d) the trapped excitons with both Zeeman effect and diamagnetic effect.

    图 4  (a)纳米线的荧光光谱随磁场的变化, 零磁场下的两个峰来自于不同的束缚激子; (b) (c)不同束缚激子在磁场下的塞曼分裂; (d) (e) 不同束缚激子在磁场下的抗磁行为

    Fig. 4.  (a) PL spectra of trapped excitons as a function of magnetic field; (b) (c) g factors of different trapped excitons; (d) (e) the diamagnetic shifts of different trapped excitons.

    图 5  (a) 磁场与纳米线生长方向夹角变化对束缚激子的光谱的影响; (b)束缚激子g因子随角度的变化

    Fig. 5.  The angle dependent PL spectra of trapped exciton (a) and the angle dependent g factors (b) between the magnetic field and the growth direction.

  • [1]

    Huang J S, Shao Y C, Dong Q F 2015 J. Phys. Chem. Lett. 6 3218Google Scholar

    [2]

    Lin Q, Armin A, Nagiri R C R, Burn P L, Meredith P 2015 Nat. Photonics 9 106Google Scholar

    [3]

    Kojima A, Kenjiro T, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [4]

    Xing G, Mathews N, Lim S S, Yantara N, Liu X, Sabba D, Grätzel M, Mhaisalkar S, Sum T Z 2014 Nat. Mater. 13 476Google Scholar

    [5]

    Liu Z, Li C, Shang Q Y, Zhao L Y, Zhong Y G, Gao Y, Du W N, Mi Y, Chen J, Zhang S, Liu X F, Fu Y S, Zhang Q 2018 Chin. Phys. B 27 114209Google Scholar

    [6]

    Fu M, Tamarat P, Trebbia J, Bodnarchuk M I, Kovalenko M V, Even J, Lounis B 2018 Nat. Commun. 9 3318Google Scholar

    [7]

    Pfingsten O, Klein J, Protesescu L, Bodnarchuk M I, Kovalenko M V, Bacher G 2018 Nano Lett. 18 4440Google Scholar

    [8]

    Cao Y, Wang N N, Tian H, Guo J S, Wei Y Q, Chen H, Miao Y F, Zou W, Pan K, He Y R, Cao H, Ke Y, Xu M M, Wang Y, Yang M, Du K, Fu Z W, Kong D C, Dai D X, JinY Z, Li G Q, Li H, Peng Q M, Wang J P, Huang W 2018 Nature 562 249Google Scholar

    [9]

    Yin W, Shi T, Yan Y 2014 Adv. Mater. 26 4653Google Scholar

    [10]

    Chen C, Hu X, Lu W, Chang S, Shi L, Li L, Zhong H Z, Han J 2018 J. Phys. D: Appl. Phys. 51 045105Google Scholar

    [11]

    Zhang C, Sun D L, Yu Z G, Sheng C X, McGill S, Semenov D, Vardeny Z V 2018 Phys. Rev. B 97 134412Google Scholar

    [12]

    魏应强, 徐磊, 彭其明, 王建浦 2019 物理学报 68 158506Google Scholar

    Wei Y Q, Xu L, Peng Q M, Wang J P 2019 Acta Phys. Sin. 68 158506Google Scholar

    [13]

    Li J, Haney P M 2016 Phys. Rev. B 93 155432Google Scholar

    [14]

    Kim M, Im J, Freeman A J, Ihm J, Jin H 2014 Proc. Natl. Acad. Sci. U.S.A. 111 6900Google Scholar

    [15]

    Kepenekian M, Robles R, Katan C, Sapori D, Pedesseau L, Even J 2015 ACS Nano 9 11557Google Scholar

    [16]

    Niesner D, Wilhelm M, Levchuk I, Osvet A, Shrestha S, Batentschuk M, Brabec C J, Fauster T 2016 Phys. Rev. Lett. 117 126401Google Scholar

    [17]

    Hutter E M, Gelvezrueda M C, Osherov A, Bulovic V, Grozema F C, Stranks S D, Savenije T J 2017 Nat. Mater. 16 115Google Scholar

    [18]

    Zhai Y, Baniya S, Zhang C, Li J, Haney P M, Sheng C, Ehrenfreund E, Vardeny Z V 2017 Sci. Adv. 3 e1700704Google Scholar

    [19]

    Giovanni D, Ma H, Chua J, Grätzel M, Ramesh R, Mhaisalkar S, Mathews N, Sum T C 2015 Nano Lett. 15 1553Google Scholar

    [20]

    Giovanni D, Chong W K, Dewi H A, Thirumal K, Neogi I, Ramesh R, Mhaisalkar S G, Mathews N, Sum T C 2015 Sci. Adv. 2 e1600477

    [21]

    Song F L, Qian C J, Wang Y N, Zhang F, Peng K, Wu S Y, Xie X, Yang J N, Sun S B, Yu Y, Dang J C, Xiao S, Yang L L, Jin K J, Zhong H Z, Xu X L 2020 Laser Photonics Rev. 14 1900267Google Scholar

    [22]

    Zhang F, Chen C, Kershaw S V, Xiao C T, Han J B, Zou B S, Wu X, Chang S, Dong Y P, Rogach A L, Zhong H Z 2017 ChemNanoMat. 3 303Google Scholar

    [23]

    张钰, 周欢萍 2019 物理学报 68 158804Google Scholar

    Zhang Y, Zhou H P 2019 Acta Phys. Sin. 68 158804Google Scholar

    [24]

    Zhang Y Y, Chen S Y, Xu P, Xiang H J, Gong X G, Walsh A, Wei S H 2018 Chin. Phys. Lett. 35 036104Google Scholar

    [25]

    Tilchin J, Dirin D N, Maikov G I, Sashchiuk A, Kovalenko M V, Lifshitz E 2016 ACS Nano 10 6363Google Scholar

    [26]

    Lozhkina O A, Yudin V I, Murashkina A A, Shilovs V V, Davydov V G, Kevorkyants R, Emeline A V, Kapitonov Y V, Bahnemann D W 2018 J. Phys. Chem. Lett. 9 302Google Scholar

    [27]

    Sun S B, Yu Y, Dang J C, Peng K, Xie X, Song F L, Qian C J, Wu S Y, Ali H, Tang J, Yang J N, Xiao S, Tian S L, Wang M, Shan X Y, Rafiq M A, Wang C, Xu X L 2019 Appl. Phys. Lett. 114 113104Google Scholar

    [28]

    Branny A, Wang G, Kumar S, Robert C, Lassagne B, Marie X, Gerardot B D, Urbaszek B 2016 Appl. Phys. Lett. 108 142101Google Scholar

    [29]

    Chakraborty C, Goodfellow K M, Vamivakas A N 2016 Opt. Mater. Express 6 2081Google Scholar

    [30]

    Empedocles S A, Bawendi M G 1999 J. Phys. Chem. B 103 1826Google Scholar

    [31]

    Leguy A M A, Goñi A R, Frost J M, Skelton J, Brivio F, Rodríguez-Martínez X, Weber O L, Pallipurath A, Alonso M I, Campoy-Quiles M, Weller M T, Nelson J, Walsh A, Barnes P R F 2016 Phys. Chem. Chem. Phys. 18 27051Google Scholar

    [32]

    Tanaka K, Takahashi T, Ban T, Kondo T, Uchida K, Miura N 2003 Solid State Commun. 127 619Google Scholar

    [33]

    Tang J, Xu X L 2018 Chin. Phys. B 27 027804Google Scholar

    [34]

    Fu M, Tamarat P, Huang H, Even J, Rogach A L, Lounis B 2017 Nano Lett. 17 2895Google Scholar

    [35]

    Yu Z G 2016 Sci. Rep. 6 28576Google Scholar

    [36]

    Van Bree J, Silov A Y, Maasakkers V M, Pryor C E, Flatte M E, Koenraad P M 2016 Phys. Rev. B 93 035311Google Scholar

    [37]

    Van Bree J, Silov A Y, Koenraad P M, Flatté M E, Pryor C E 2012 Phys. Rev. B 85 165323Google Scholar

    [38]

    Wu S Y, Peng K, Battiato S, Zannier V, Bertoni A, Goldoni G, Xie X, Yang J N, Xiao S, Qian C J, Song F L, Sun S B, Dang J C, Yu Y, Beltram F, Sorba L, Li A, Li B B, Rossella F, Xu X L 2019 Nano Res. 12 2842Google Scholar

    [39]

    Park Y S, Guo S J, Makarov N S, Klimov V I 2015 Acs Nano 9 10386Google Scholar

  • [1] 张艳, 宗朔通, 孙志刚, 刘虹霞, 陈峰华, 张克维, 胡季帆, 赵同云, 沈保根. HoCoSi快淬带的磁性和各向异性磁热效应. 物理学报, 2022, 71(16): 167501. doi: 10.7498/aps.71.20220683
    [2] 张鹏, 朴红光, 张英德, 黄焦宏. 钙钛矿锰氧化物的磁相变临界行为及磁热效应研究进展. 物理学报, 2021, 70(15): 157501. doi: 10.7498/aps.70.20210097
    [3] 张蔚曦, 李勇, 田昌海, 佘彦超. 具有大磁晶各向异性能的单层BaPb的室温量子反常霍尔效应. 物理学报, 2021, 70(15): 157502. doi: 10.7498/aps.70.20210014
    [4] 郝迪, 郭三栋, 马智远, 惠宇廷. 线性引力论的引力磁分量及其磁效应. 物理学报, 2020, 69(13): 130401. doi: 10.7498/aps.69.20191673
    [5] 俱海浪, 李宝河, 吴志芳, 张璠, 刘帅, 于广华. Co/Ni多层膜垂直磁各向异性的研究. 物理学报, 2015, 64(9): 097501. doi: 10.7498/aps.64.097501
    [6] 刘娜, 王海, 朱涛. CoFeB/Pt多层膜的垂直磁各向异性研究. 物理学报, 2012, 61(16): 167504. doi: 10.7498/aps.61.167504
    [7] 竺云, 韩娜. 引入纳米氧化层的CoFe/Pd双层膜结构中增强的垂直磁各向异性研究. 物理学报, 2012, 61(16): 167505. doi: 10.7498/aps.61.167505
    [8] 陈家洛, 狄国庆. 磁各向异性热电效应对自旋相关器件的影响. 物理学报, 2012, 61(20): 207201. doi: 10.7498/aps.61.207201
    [9] 顾文娟, 潘靖, 杜薇, 胡经国. 铁磁共振法测磁各向异性. 物理学报, 2011, 60(5): 057601. doi: 10.7498/aps.60.057601
    [10] 陈文兵, 韩满贵, 邓龙江. 具有横向磁晶各向异性的钴纳米线的微波吸收性能. 物理学报, 2011, 60(1): 017507. doi: 10.7498/aps.60.017507
    [11] 施方也, 方允樟, 孙怀君, 郑金菊, 林根金, 吴锋民. 应力退火Fe基纳米晶薄带横向磁各向异性的介观结构研究. 物理学报, 2007, 56(7): 4009-4016. doi: 10.7498/aps.56.4009
    [12] 吴 坚, 曹庆琪, 谷坤明, 张世远, 都有为. 钙钛矿(La1-yTby)0.67Sr0.33MnO3的磁致伸缩效应. 物理学报, 1999, 48(13): 280-285. doi: 10.7498/aps.48.280
    [13] 王成伟, 彭 勇, 潘善林, 张浩力, 力虎林. α-Fe纳米线阵列膜磁各向异性的穆斯堡尔谱研究. 物理学报, 1999, 48(11): 2146-2150. doi: 10.7498/aps.48.2146
    [14] 纪松, 杨国斌, 王润. 纳米软磁合金的双相无规磁各向异性模型. 物理学报, 1996, 45(12): 2061-2067. doi: 10.7498/aps.45.2061
    [15] 熊湘沅, 何开元. Fe-Cu-Nb-Si—B纳米晶合金的有效磁各向异性随退火温度的变化. 物理学报, 1995, 44(8): 1286-1290. doi: 10.7498/aps.44.1286
    [16] 曾训一, 陆晓佳, 王亚旗. YIG中生长感生磁各向异性的来源. 物理学报, 1989, 38(11): 1891-1895. doi: 10.7498/aps.38.1891
    [17] 关鹏, 刘宜华. 磁感生各向异性的一个新模型. 物理学报, 1989, 38(7): 1182-1186. doi: 10.7498/aps.38.1182
    [18] 李义兵, 李少平. 各向异性磁介质中的静磁交换模. 物理学报, 1989, 38(7): 1177-1181. doi: 10.7498/aps.38.1177
    [19] 邝宇平, 翁世浚. 立方晶体铁磁各向异性的自旋波理论. 物理学报, 1964, 20(9): 890-908. doi: 10.7498/aps.20.890
    [20] 向仁生. 关於铬矾单晶的顺磁各向异性. 物理学报, 1957, 13(3): 177-180. doi: 10.7498/aps.13.177
计量
  • 文章访问数:  10257
  • PDF下载量:  320
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-01
  • 修回日期:  2020-05-21
  • 上网日期:  2020-05-23
  • 刊出日期:  2020-08-20

/

返回文章
返回