搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正电子湮没谱学在金属材料氢/氦行为研究中的应用

朱特 曹兴忠

引用本文:
Citation:

正电子湮没谱学在金属材料氢/氦行为研究中的应用

朱特, 曹兴忠

Research progress of hydrogen/helium effects in metal materials by positron annihilation spectroscopy

Zhu Te, Cao Xing-Zhong
PDF
HTML
导出引用
  • 用于核反应堆的金属结构材料中氢/氦泡的前躯体——(氢/氦)-空位复合体的形成受到温度、辐照剂量等多方面因素的影响, 研究其在材料中的形成和演化行为对气泡形核的理解及先进核反应堆材料的发展起着至关重要的作用. 然而, 受到分辨率的局限, 这种原子尺度的微结构很难用电镜等常规方法进行表征, 以致于该问题的研究上可利用的数据相对较少. 正电子湮没谱学是一种研究材料中微观缺陷的特色表征方法, 近些年来慢正电子束流和新型核探测谱仪技术的不断发展以及基于慢束发展起来的多种实验测试方法的改进, 使正电子湮没技术应用已拓展到金属材料中氢/氦行为的研究领域, 在金属材料表面氢/氦辐照损伤的研究中发挥了重要作用. 本文结合国内外相关进展以及本课题组的一些研究成果评述了正电子湮没谱学在金属材料氢氦行为研究中的应用, 着重讨论了正电子湮没寿命谱、多普勒展宽谱、符合多普勒展宽三种测量方法在如下金属材料氢/氦行为研究中的优势: 1)氢/氦气泡尺寸和浓度的估算; 2)高能氢/氦离子辐照损伤缺陷及缺陷的退火、时效的演化行为; 3)不同形变程度样品中氢/氦与形变缺陷的相互作用; 4)不同能量或剂量氢/氦离子辐照对材料造成的损伤以及氢氦协同作用.
    An important feature of the irradiation process in nuclear system is the formation of large displacement cascades, in which primary knock-on atoms and secondary particles formed by nuclear reactions generate a considerable number of defects such as dislocations, vacancies and transmutation gases. Predicting and mitigating the adverse effects of damage defect and transmutation hydrogen/helium produced by high-dose neutron irradiation on the mechanical properties of structural materials is the most significant challenge facing the current development of nuclear energy. To solve this problem, understanding the interaction mechanism between hydrogen/helium atoms and micro-defects is a very important breakthrough. Precursors of helium/ hydrogen bubble, small helium/hydrogen-filled vacancy complexes, may play an important role in realizing bubble nucleation, and the formation of these complexes is affected by many factors. However, only a little information about helium/hydrogen-vacancy clusters’ behavior has been obtained in metal/alloy materials. This is mainly limited by the characterization methods, such as the limited resolution of transmission electron microscope (TEM). Helium/hydrogen-vacancy clusters cannot be observed by TEM before the formation of helium bubbles. Applications of positron annihilation to the study of crystal lattice defects started around 1970s, when it was realized that positron annihilation is particularly sensitive to vacancy-type defects and that annihilation properties manifest the nature of each specific type of defect. In recent years, with the continuous development of slow positron beam and the improvement of various experimental testing methods based on slow positron beam, the application of positron annihilation technology has been extended to the research field of hydrogen/helium behavior in metal materials, which plays an important role in studying the hydrogen/helium radiation damage to metal materials. In this review, the basic principles of positron annihilation spectroscopy are briefly discussed and the three most important measurement methods used for hydrogen/helium effect studies are described (i.e. positron annihilation lifetime spectroscopy (PALS), Doppler broadening spectroscopy (DBS), coincidence Doppler broadening spectroscopy (CDBS)). In this paper, the application of positron annihilation spectroscopy to the study of hydrogen/helium behavior in metal materials is reviewed in combination with the reported relevant developments (including our research group’s achieve-ments). The advantages of three commonly used measurement methods in the following specific studies are highlighted: 1) The estimation of bubble size and concentration; 2) irradiation damage induced by hydrogen/helium; 3) the evolution behavior of irradiation-induced defects in the heat treatment process; 4) sy-nergistic effect of hydrogen and helium.
      通信作者: 曹兴忠, caoxzh@ihep.ac.cn
      Corresponding author: Cao Xing-Zhong, caoxzh@ihep.ac.cn
    [1]

    Kaminsky D, Das S K 1978 J. Nucl. Mater. 76-77 256Google Scholar

    [2]

    Stoller R E 1990 J. Nucl. Mater. 174 289Google Scholar

    [3]

    Cook I 2006 Nature Mater. 5 77Google Scholar

    [4]

    Klueh R L, Sokolov M A, Shiba K, Miwa Y, Robertson J P 2000 J. Nucl. Mater. 283-287 478

    [5]

    Shiba K, Hishinuma A 2000 J. Nucl. Mater. 283-287 474Google Scholar

    [6]

    Zinkle S J, Ghoniem N M 2011 J. Nucl. Mater. 417 2Google Scholar

    [7]

    Wakai E, Hashimoto N, Miwa Y, Robertson J P, Klueh R L, Shiba K, Jitsukawa S 2000 J. Nucl. Mater. 283-287 799Google Scholar

    [8]

    Chernikov V N, Zakharov A P, Kazansky P R 1988 J. Nucl. Mater. 155-157 1142Google Scholar

    [9]

    Kawakami T, Tokunaga K, Yoshida N 2006 Fusion Eng. Des. 81 335Google Scholar

    [10]

    Johnson W H 1975 Proceedings of the Royal Society of London 23 168

    [11]

    Tolstolutskaya G D, Ruzhytskiy V V, Kopanets I E, Karpov S A, Bryk V V, Voyevodin V, Garner F A 2006 J. Nucl. Mater. 356 136Google Scholar

    [12]

    Garner F A, Simonen E P, Oliver B, Greenwood L, Grossbeck M L, Wolfer W G Scott P M 2006 J. Nucl. Mater. 356 122Google Scholar

    [13]

    Garner F A, Oliver B, Greenwood L, James M R, Ferguson P D, Maloy S A, Sommer W 2001 J. Nucl. Mater. 296 66Google Scholar

    [14]

    Nagai Y, Takadate K, Tang Z, Ohkubo H, Sunaga H, Takizawa H, Hasegawa M 2003 Phys. Rev. B 67 224202Google Scholar

    [15]

    He S M, van Dijk N H, Schut H, Peekstok E R, van der Zwaag S 2010 Phys. Rev. B 81 094103Google Scholar

    [16]

    Hari Babu S, Rajaraman R, Amarendra G, Govindaraj R, Lalla N P, Dasgupta Arup, Bhalerao Gopal, Sundar C S 2012 Philos. Mag. 92 2848Google Scholar

    [17]

    Cao X Z, Zhang P, Xu Q, Sato K, Tsuchida H, Cheng G D, Wu H B, Jiang X P, Yu R S, Wang B Y, Wei L 2013 J. Phys.: Conference Ser. 443 012017Google Scholar

    [18]

    Lynn K G, Goland A N 1976 Solid State Commun. 18 1549Google Scholar

    [19]

    Jensen K O, Eldrup M, Singh B N, Victoria M 1988 J. Phys. F: Met. Phys. 18 1069Google Scholar

    [20]

    Eldrup M M 1992 Mater. Sci. Forum 105-110 229Google Scholar

    [21]

    Jensen K O, Nieminen R M 1987 Phys. Rev. B 35 2087Google Scholar

    [22]

    Nieminen R M, Laakkonen J 1979 Appl. Phys. 20 181Google Scholar

    [23]

    Eldrup M, Jensen K O 1987 Phys. Status Solidi A 102 145Google Scholar

    [24]

    Jensen K O, Eldrup M, Singh B N, Horsewell A, Victoria M, Sommer W F 1987 Mater. Sci. Forum 15-18 913Google Scholar

    [25]

    Shivachev B L, Troev T, Yoshiie T 2002 J. Nucl. Mater. 306 105Google Scholar

    [26]

    Troev T, Popov E, Staikov P, Nankov N, Yoshiie T 2009 Nucl. Instrum Meth. B 267 535Google Scholar

    [27]

    Kimura A, Kasada R, Sugano R, Hasegawa A, Matsui H 2000 J. Nucl. Mater. 283-287 827Google Scholar

    [28]

    Ishizaki T, Xu Q, Yoshiie T, Nagata S, Troev T 2002 J. Nucl. Mater. 307-311 961Google Scholar

    [29]

    Han L H, Fa T, Zhao Y W 2017 Defect Diffus Forum 373 96Google Scholar

    [30]

    Xu Q, Yamasaki H, Sato K, Yoshiie T 2011 Philos. Mag. Lett. 91 724Google Scholar

    [31]

    Xu Q, Fukumoto K, Ishi Y, Kuriyama Y, Uesugi T, Sato K, Mori Y, Yoshiie T 2016 J. Nucl. Mater. 468 260Google Scholar

    [32]

    胡远超, 曹兴忠, 李玉晓, 张鹏, 靳硕学, 卢二阳, 于润升, 魏龙, 王宝义 2015 物理学报 64 247804Google Scholar

    Hu Y C, Cao X Z, Li Y X, Zhang P, Jin S X, Lu E Y, Yu R S, Wei L, Wang B Y 2015 Acta Phys. Sin. 64 247804Google Scholar

    [33]

    van Veen A, Schut H, de Vries J 1991 AIP Conf. Proc. 218 171Google Scholar

    [34]

    Lu E Y, Cao X Z, Jin S X, Zhang C X, Zhang P, Guo L P, Zhu T, Gong Y H, Wang B Y 2015 Nucl. Instrum Meth. B 356-357 94Google Scholar

    [35]

    Jin S X, Zhang P, Lu E Y, Wang B Y, Yuan D Q, Wei L, Cao X Z 2016 J. Nucl. Mater. 479 390Google Scholar

    [36]

    Zhu T, Jin S X, Zhang P, Song L G, Cao X Z, Wang B Y, 2018 J. Nucl. Mater. 505 69Google Scholar

    [37]

    Bai X M, Voter A F 2010 Science 327 1631Google Scholar

    [38]

    Ackland G 2010 Science 327 1587Google Scholar

    [39]

    Gong Y H, Cao X Z, Jin S X, Lu E Y, Hu Y C, Zhu T, Kuang P, Xu Q, Wang B Y 2016 J. Nucl. Mater. 482 93Google Scholar

    [40]

    胡远超 2016 硕士学位论文 (郑州: 郑州大学)

    Hu Y C 2016 M. S Thesis (Zhengzhou: Zhengzhou University) (in Chinese)

    [41]

    Jiang J, Wu Y C, Liu X B, Wang R S, Nagai Y, Inoue K, Shimizu Y, Toyama T 2015 J. Nucl. Mater. 458 326Google Scholar

    [42]

    Qiu J, Xin Y, Ju X, Guo L P, Wang B Y, Zhong Y R, Huang Q Y, Wu Y C 2009 Nucl. Instrum Meth. B 267 3162Google Scholar

    [43]

    Xin Y, Ju X, Qiu J, Guo L P, Li T C, Luo F F, Zhang P, Cao X Z, Wang B Y 2013 J. Nucl. Mater. 432 120Google Scholar

    [44]

    Yuan D Q, Zheng Y N, Zuo Y, Fan P, Zhou D M, Zhang Q L, Ma X Q, Cui B Q, Chen L H, Jiang W S, Wu Y C, Huang Q Y, Peng L, Cao X Z, Wang B Y, Wei L, Zhu S Y 2014 Chin. Phys. Lett. 31 046101Google Scholar

    [45]

    Tanaka T, Oka K, Ohnuki S 2004 J. Nucl. Mater. 329-333 294

    [46]

    Lee E H, Hunn J D, Rao G R 1999 J. Nucl. Mater. 271-272 385Google Scholar

    [47]

    Zhu Te, Jin S X, Guo L P, Hu Y C, Lu E Y, Wu J P, Wang B Y, Wei L, Cao X Z 2016 Philos. Mag. 96 253Google Scholar

    [48]

    Zhu X L, Zhang Y, Cheng L, Yuan Y, Temmerman Gregory De, Wang B Y, Cao X Z, Lu G H 2016 Nucl. Fusion 56 036010Google Scholar

    [49]

    Kong F H, Qu M, Yan S, Cao X Z, Peng S X, Zhang A L, Xue J M, Wang Y G, Zhang P, Wang B Y 2017 Nucl. Instrum Meth. B 409 192Google Scholar

    [50]

    Wilson W D, Bisson C L, Baskes M I 1981 Phys. Rev. B 24 5616Google Scholar

    [51]

    Thomas J, Bastasz R 1981 J. Appl. Phys. 52 6426Google Scholar

    [52]

    Gong Y H, Jin S X, Zhu T, Cheng L, Cao X Z, Lu G H, Guo L P, Wang B Y 2018 Nucl. Fusion 58 046011Google Scholar

    [53]

    Arakawa K, Imamura R, Ohota K 2001 J. Appl. Phys. 89 4752Google Scholar

    [54]

    Zhu T, Cao X Z, Jin S X, Wu J P, Gong Y H, Lu E Y, Wang B Y, Yu R S, Wei L 2015 J. Nucl. Mater. 466 522Google Scholar

    [55]

    Zhu T, Jin S X, Gong Y H, Lu E Y, Song L G, Xu Q, Guo L P, Cao X Z, Wang B Y 2017 J. Nucl. Mater. 495 244Google Scholar

    [56]

    朱特, 曹兴忠, 吴建平, 靳硕学, 卢二阳, 龚毅豪, 赖信, 张鹏, 王宝义 2015 功能材料 46 19001Google Scholar

    Zhu T, Cao X Z, Wu J P, Jin S X, Lu E Y, Gong Y H, Lai X, Zhang P, Wang B Y 2015 J. Funct. Mater. 46 19001Google Scholar

    [57]

    Blewer R S 1973 Appl. Phys. Lett. 23 593Google Scholar

    [58]

    Asoka-Kumar P, Alatalo M, Ghosh V J 1996 Phys. Rev. Lett. 77 2097Google Scholar

    [59]

    Xu Q, Yoshiie T, Sato K 2006 Phys. Rev. B 73 134115Google Scholar

    [60]

    Zhu T, Wu H B, Cao X Z, Jin S X, Zhang P, Xiao A N, Wang B Y 2017 Phys. Status Solidi A 214 1600785Google Scholar

    [61]

    Alatalo M, Kauppinen H, Saarinen K 1995 Phys. Rev. B 51 4176Google Scholar

    [62]

    Myler U, Goldberg R D, Knights A P 1996 Appl. Phys. Lett. 69 3333Google Scholar

    [63]

    Cao X Z, Zhu T, Jin S X, Kuang P, Zhang P, Lu E Y, Gong Y H, Guo L P, Wang B Y 2017 Appl. Phys. A 123 177

    [64]

    Sabelova V, Krsjak V, Kuriplach J 2014 J. Nucl. Mater. 450 54Google Scholar

    [65]

    Sato K, Ikemura K, Krsjak V, Vieh C, Brun R, Xu Q, Yoshiie T, Dai Y 2016 J. Nucl. Mater. 468 281Google Scholar

    [66]

    Xu Q, Ishizaki T, Sato K, Yoshiie T, Nagata S 2006 Mater. Trans. 47 2885Google Scholar

  • 图 1  DBS中参数的定义

    Fig. 1.  The parameter definition in the Doppler broadening spectrum.

    图 2  纯铁的CDB与一维多普勒展宽能谱比较

    Fig. 2.  Peak-to-valley ratio of CDB system in the pure iron.

    图 3  金属钨中单个空位包含单个氢原子时的正电子波函数[26] (a) 三维立体图; (b)等高线图

    Fig. 3.  Calculated localized wave function of a positron trapped in a mono-vacancy bound with one hydrogen atom in tungsten[26]: (a) Isometric plot; (b) contour plot.

    图 4  不同尺寸的氢氦-空位复合体中正电子寿命[26]

    Fig. 4.  Calculated positron lifetime in nano-void containing 1 V, 2 V, 6 V, and various H/He atoms[26].

    图 5  SRIM模拟氢氦离子辐照低活化钢导致的辐照损伤及氢/氦浓度深度分布

    Fig. 5.  Profiles of damage and atom concentration in RAFM steel irradiated with 250 keV He2+ and 130 keV H+ calculated with SRIM.

    图 6  VEPFIT拟合氢氦辐照样品的S参数随注入深度的变化

    Fig. 6.  Fitted S parameters versus VEPFIT for irradiated samples.

    图 7  氦辐照Fe17Cr14.5Ni等时退火过程S-E曲线随温度变化过程[34]

    Fig. 7.  Variation of S parameters versus incident positron energy for He+ irradiated Fe17Cr14.5Ni alloy during isochronal annealing[34].

    图 8  氢辐照FeCu等时退火过程ΔS-E曲线随温度变化过程[35]

    Fig. 8.  Evolution of the S parameters in H-ions irradiated FeCu alloys during isochronal annealing[35].

    图 9  氢离子辐照FeCu等时退火过程S-W参数的变化[35]

    Fig. 9.  S-W plots for the H-ions irradiated samples during isochronal annealing[35].

    图 10  Fe9Cr合金氦离子辐照前后S (∆S)参数随正电子注入能量的变化[36]

    Fig. 10.  S-parameter and ∆S as a function of positron incident energy (mean implantation depth) in irradiated Fe9Cr alloys and for unirradiated specimen[36].

    图 11  Fe9Cr合金氦离子辐照前后S-W的变化[36]

    Fig. 11.  W-parameter as a function of the S-parameter for irradiated Fe9Cr alloys and for unirradiated one[36].

    图 12  氦离子注入充分退火和形变的纯铁样品 S-E曲线变化[39]

    Fig. 12.  Evolution of the S parameters in well-annealed Fe and deformed Fe with He-ions irradiation[39].

    图 13  氦离子辐照不同形变量的304不锈钢辐照前后S-E曲线变化[40]

    Fig. 13.  S-E curves for deformed 304 steel irradiated with He-ions[40].

    图 14  氢氦离子辐照RAFM钢正电子慢束结果[47]

    Fig. 14.  S-parameter (a) and ∆S/S (b) as a function of incident positron energy. ∆SHe + ∆SH and ∆SHe + H parameter were also shown in (c)[47].

    图 15  高能Ar辐照W合金注氘前后的正电子慢束结果[48]

    Fig. 15.  The S parameter versus depth in the argon-damaged tungsten samples (0/1/6 dpa) with and without deuterium plasma exposure[48].

    图 16  高能Au辐照多晶W样品注氦前后(a) S-D (深度)曲线, (b) S-W 曲线[49]

    Fig. 16.  (a) The S parameter versus depth in the tungsten samples, and the (S, W) plots are shown in (b)[49].

    图 17  形变316 L钢样品低能高剂量氦等离子体辐照前后的S-E曲线[52]

    Fig. 17.  Evolution of S-E curves in deformed 316 L steel exposed to high flux and low energy helium plasma[52].

    图 18  氦辐照前后Fe9Cr合金中W参数随正电子能量的变化

    Fig. 18.  Evolution of the W parameters in Fe9Cr alloy with He-ions irradiation.

    图 19  注量为1 × 1015和1 × 1016 He+/cm2的氦辐照Fe9Cr样品CDB测试曲线[63]

    Fig. 19.  CDB ratio curves for the Fe9Cr alloy irradiated with a dose of 1 × 1015 and 1 × 1016 He+/cm2[63].

    图 20  氦或中子辐照的纯Ni(a)和Cu(b)样品的CDB测试曲线[66]

    Fig. 20.  CDB ratio curves for the Ni irradiated with He-ions (a) and for the Cu irradiated with neutron[66](b).

    图 21  氦辐照的316L样品退火前后的CDB测试曲线

    Fig. 21.  CDB ratio curves for the He-ions irradiated 316L samples during isochronal annealing.

  • [1]

    Kaminsky D, Das S K 1978 J. Nucl. Mater. 76-77 256Google Scholar

    [2]

    Stoller R E 1990 J. Nucl. Mater. 174 289Google Scholar

    [3]

    Cook I 2006 Nature Mater. 5 77Google Scholar

    [4]

    Klueh R L, Sokolov M A, Shiba K, Miwa Y, Robertson J P 2000 J. Nucl. Mater. 283-287 478

    [5]

    Shiba K, Hishinuma A 2000 J. Nucl. Mater. 283-287 474Google Scholar

    [6]

    Zinkle S J, Ghoniem N M 2011 J. Nucl. Mater. 417 2Google Scholar

    [7]

    Wakai E, Hashimoto N, Miwa Y, Robertson J P, Klueh R L, Shiba K, Jitsukawa S 2000 J. Nucl. Mater. 283-287 799Google Scholar

    [8]

    Chernikov V N, Zakharov A P, Kazansky P R 1988 J. Nucl. Mater. 155-157 1142Google Scholar

    [9]

    Kawakami T, Tokunaga K, Yoshida N 2006 Fusion Eng. Des. 81 335Google Scholar

    [10]

    Johnson W H 1975 Proceedings of the Royal Society of London 23 168

    [11]

    Tolstolutskaya G D, Ruzhytskiy V V, Kopanets I E, Karpov S A, Bryk V V, Voyevodin V, Garner F A 2006 J. Nucl. Mater. 356 136Google Scholar

    [12]

    Garner F A, Simonen E P, Oliver B, Greenwood L, Grossbeck M L, Wolfer W G Scott P M 2006 J. Nucl. Mater. 356 122Google Scholar

    [13]

    Garner F A, Oliver B, Greenwood L, James M R, Ferguson P D, Maloy S A, Sommer W 2001 J. Nucl. Mater. 296 66Google Scholar

    [14]

    Nagai Y, Takadate K, Tang Z, Ohkubo H, Sunaga H, Takizawa H, Hasegawa M 2003 Phys. Rev. B 67 224202Google Scholar

    [15]

    He S M, van Dijk N H, Schut H, Peekstok E R, van der Zwaag S 2010 Phys. Rev. B 81 094103Google Scholar

    [16]

    Hari Babu S, Rajaraman R, Amarendra G, Govindaraj R, Lalla N P, Dasgupta Arup, Bhalerao Gopal, Sundar C S 2012 Philos. Mag. 92 2848Google Scholar

    [17]

    Cao X Z, Zhang P, Xu Q, Sato K, Tsuchida H, Cheng G D, Wu H B, Jiang X P, Yu R S, Wang B Y, Wei L 2013 J. Phys.: Conference Ser. 443 012017Google Scholar

    [18]

    Lynn K G, Goland A N 1976 Solid State Commun. 18 1549Google Scholar

    [19]

    Jensen K O, Eldrup M, Singh B N, Victoria M 1988 J. Phys. F: Met. Phys. 18 1069Google Scholar

    [20]

    Eldrup M M 1992 Mater. Sci. Forum 105-110 229Google Scholar

    [21]

    Jensen K O, Nieminen R M 1987 Phys. Rev. B 35 2087Google Scholar

    [22]

    Nieminen R M, Laakkonen J 1979 Appl. Phys. 20 181Google Scholar

    [23]

    Eldrup M, Jensen K O 1987 Phys. Status Solidi A 102 145Google Scholar

    [24]

    Jensen K O, Eldrup M, Singh B N, Horsewell A, Victoria M, Sommer W F 1987 Mater. Sci. Forum 15-18 913Google Scholar

    [25]

    Shivachev B L, Troev T, Yoshiie T 2002 J. Nucl. Mater. 306 105Google Scholar

    [26]

    Troev T, Popov E, Staikov P, Nankov N, Yoshiie T 2009 Nucl. Instrum Meth. B 267 535Google Scholar

    [27]

    Kimura A, Kasada R, Sugano R, Hasegawa A, Matsui H 2000 J. Nucl. Mater. 283-287 827Google Scholar

    [28]

    Ishizaki T, Xu Q, Yoshiie T, Nagata S, Troev T 2002 J. Nucl. Mater. 307-311 961Google Scholar

    [29]

    Han L H, Fa T, Zhao Y W 2017 Defect Diffus Forum 373 96Google Scholar

    [30]

    Xu Q, Yamasaki H, Sato K, Yoshiie T 2011 Philos. Mag. Lett. 91 724Google Scholar

    [31]

    Xu Q, Fukumoto K, Ishi Y, Kuriyama Y, Uesugi T, Sato K, Mori Y, Yoshiie T 2016 J. Nucl. Mater. 468 260Google Scholar

    [32]

    胡远超, 曹兴忠, 李玉晓, 张鹏, 靳硕学, 卢二阳, 于润升, 魏龙, 王宝义 2015 物理学报 64 247804Google Scholar

    Hu Y C, Cao X Z, Li Y X, Zhang P, Jin S X, Lu E Y, Yu R S, Wei L, Wang B Y 2015 Acta Phys. Sin. 64 247804Google Scholar

    [33]

    van Veen A, Schut H, de Vries J 1991 AIP Conf. Proc. 218 171Google Scholar

    [34]

    Lu E Y, Cao X Z, Jin S X, Zhang C X, Zhang P, Guo L P, Zhu T, Gong Y H, Wang B Y 2015 Nucl. Instrum Meth. B 356-357 94Google Scholar

    [35]

    Jin S X, Zhang P, Lu E Y, Wang B Y, Yuan D Q, Wei L, Cao X Z 2016 J. Nucl. Mater. 479 390Google Scholar

    [36]

    Zhu T, Jin S X, Zhang P, Song L G, Cao X Z, Wang B Y, 2018 J. Nucl. Mater. 505 69Google Scholar

    [37]

    Bai X M, Voter A F 2010 Science 327 1631Google Scholar

    [38]

    Ackland G 2010 Science 327 1587Google Scholar

    [39]

    Gong Y H, Cao X Z, Jin S X, Lu E Y, Hu Y C, Zhu T, Kuang P, Xu Q, Wang B Y 2016 J. Nucl. Mater. 482 93Google Scholar

    [40]

    胡远超 2016 硕士学位论文 (郑州: 郑州大学)

    Hu Y C 2016 M. S Thesis (Zhengzhou: Zhengzhou University) (in Chinese)

    [41]

    Jiang J, Wu Y C, Liu X B, Wang R S, Nagai Y, Inoue K, Shimizu Y, Toyama T 2015 J. Nucl. Mater. 458 326Google Scholar

    [42]

    Qiu J, Xin Y, Ju X, Guo L P, Wang B Y, Zhong Y R, Huang Q Y, Wu Y C 2009 Nucl. Instrum Meth. B 267 3162Google Scholar

    [43]

    Xin Y, Ju X, Qiu J, Guo L P, Li T C, Luo F F, Zhang P, Cao X Z, Wang B Y 2013 J. Nucl. Mater. 432 120Google Scholar

    [44]

    Yuan D Q, Zheng Y N, Zuo Y, Fan P, Zhou D M, Zhang Q L, Ma X Q, Cui B Q, Chen L H, Jiang W S, Wu Y C, Huang Q Y, Peng L, Cao X Z, Wang B Y, Wei L, Zhu S Y 2014 Chin. Phys. Lett. 31 046101Google Scholar

    [45]

    Tanaka T, Oka K, Ohnuki S 2004 J. Nucl. Mater. 329-333 294

    [46]

    Lee E H, Hunn J D, Rao G R 1999 J. Nucl. Mater. 271-272 385Google Scholar

    [47]

    Zhu Te, Jin S X, Guo L P, Hu Y C, Lu E Y, Wu J P, Wang B Y, Wei L, Cao X Z 2016 Philos. Mag. 96 253Google Scholar

    [48]

    Zhu X L, Zhang Y, Cheng L, Yuan Y, Temmerman Gregory De, Wang B Y, Cao X Z, Lu G H 2016 Nucl. Fusion 56 036010Google Scholar

    [49]

    Kong F H, Qu M, Yan S, Cao X Z, Peng S X, Zhang A L, Xue J M, Wang Y G, Zhang P, Wang B Y 2017 Nucl. Instrum Meth. B 409 192Google Scholar

    [50]

    Wilson W D, Bisson C L, Baskes M I 1981 Phys. Rev. B 24 5616Google Scholar

    [51]

    Thomas J, Bastasz R 1981 J. Appl. Phys. 52 6426Google Scholar

    [52]

    Gong Y H, Jin S X, Zhu T, Cheng L, Cao X Z, Lu G H, Guo L P, Wang B Y 2018 Nucl. Fusion 58 046011Google Scholar

    [53]

    Arakawa K, Imamura R, Ohota K 2001 J. Appl. Phys. 89 4752Google Scholar

    [54]

    Zhu T, Cao X Z, Jin S X, Wu J P, Gong Y H, Lu E Y, Wang B Y, Yu R S, Wei L 2015 J. Nucl. Mater. 466 522Google Scholar

    [55]

    Zhu T, Jin S X, Gong Y H, Lu E Y, Song L G, Xu Q, Guo L P, Cao X Z, Wang B Y 2017 J. Nucl. Mater. 495 244Google Scholar

    [56]

    朱特, 曹兴忠, 吴建平, 靳硕学, 卢二阳, 龚毅豪, 赖信, 张鹏, 王宝义 2015 功能材料 46 19001Google Scholar

    Zhu T, Cao X Z, Wu J P, Jin S X, Lu E Y, Gong Y H, Lai X, Zhang P, Wang B Y 2015 J. Funct. Mater. 46 19001Google Scholar

    [57]

    Blewer R S 1973 Appl. Phys. Lett. 23 593Google Scholar

    [58]

    Asoka-Kumar P, Alatalo M, Ghosh V J 1996 Phys. Rev. Lett. 77 2097Google Scholar

    [59]

    Xu Q, Yoshiie T, Sato K 2006 Phys. Rev. B 73 134115Google Scholar

    [60]

    Zhu T, Wu H B, Cao X Z, Jin S X, Zhang P, Xiao A N, Wang B Y 2017 Phys. Status Solidi A 214 1600785Google Scholar

    [61]

    Alatalo M, Kauppinen H, Saarinen K 1995 Phys. Rev. B 51 4176Google Scholar

    [62]

    Myler U, Goldberg R D, Knights A P 1996 Appl. Phys. Lett. 69 3333Google Scholar

    [63]

    Cao X Z, Zhu T, Jin S X, Kuang P, Zhang P, Lu E Y, Gong Y H, Guo L P, Wang B Y 2017 Appl. Phys. A 123 177

    [64]

    Sabelova V, Krsjak V, Kuriplach J 2014 J. Nucl. Mater. 450 54Google Scholar

    [65]

    Sato K, Ikemura K, Krsjak V, Vieh C, Brun R, Xu Q, Yoshiie T, Dai Y 2016 J. Nucl. Mater. 468 281Google Scholar

    [66]

    Xu Q, Ishizaki T, Sato K, Yoshiie T, Nagata S 2006 Mater. Trans. 47 2885Google Scholar

  • [1] 赵珀, 王建强, 陈梅清, 杨金学, 苏钲雄, 卢晨阳, 刘华军, 洪智勇, 高瑞. EuBa2Cu3O7–δ超导带材中掺杂相对He+离子辐照缺陷演化及超导电性的影响. 物理学报, 2024, 73(8): 087401. doi: 10.7498/aps.73.20240124
    [2] 叶凤娇, 张鹏, 张红强, 况鹏, 于润升, 王宝义, 曹兴忠. 正电子湮没符合多普勒展宽技术的材料学研究进展. 物理学报, 2024, 73(7): 077801. doi: 10.7498/aps.73.20231487
    [3] 但敏, 陈伦江, 贺岩斌, 吕兴旺, 万俊豪, 张虹, 张珂嘉, 杨莹, 金凡亚. H+离子辐照Y0.5Gd0.5Ba2Cu3O7-δ超导层中的缺陷演化. 物理学报, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20221612
    [4] 董烨, 朱特, 宋亚敏, 叶凤娇, 张鹏, 杨启贵, 刘福雁, 陈雨, 曹兴忠. 低活化马氏体钢中位错对氦辐照缺陷的影响. 物理学报, 2023, 72(18): 187801. doi: 10.7498/aps.72.20230694
    [5] 魏雯静, 高旭东, 吕亮亮, 许楠楠, 李公平. 中子对碲锌镉辐照损伤模拟研究. 物理学报, 2022, 71(22): 226102. doi: 10.7498/aps.71.20221195
    [6] 但敏, 陈伦江, 贺岩斌, 吕兴旺, 万俊豪, 张虹, 张珂嘉, 杨莹, 金凡亚. H+离子辐照Y0.5Gd0.5Ba2Cu3O7–δ超导层中的缺陷演化. 物理学报, 2022, 71(23): 237401. doi: 10.7498/aps.71.20221612
    [7] 高云亮, 朱芫江, 李进平. Al辐照损伤初期的第一性原理研究. 物理学报, 2017, 66(5): 057104. doi: 10.7498/aps.66.057104
    [8] 齐佳红, 胡建民, 盛延辉, 吴宜勇, 徐建文, 王月媛, 杨晓明, 张子锐, 周扬. 电子辐照下GaAs/Ge太阳电池载流子输运机理研究. 物理学报, 2015, 64(10): 108802. doi: 10.7498/aps.64.108802
    [9] 胡远超, 曹兴忠, 李玉晓, 张鹏, 靳硕学, 卢二阳, 于润升, 魏龙, 王宝义. 慢正电子束流技术在金属/合金微观缺陷研究中的应用. 物理学报, 2015, 64(24): 247804. doi: 10.7498/aps.64.247804
    [10] 张丽娟, 张传超, 廖威, 刘建党, 谷冰川, 袁晓东, 叶邦角. 氘化对KH2PO4晶体微观缺陷影响的正电子湮没研究. 物理学报, 2015, 64(9): 097802. doi: 10.7498/aps.64.097802
    [11] 姜少宁, 万发荣, 龙毅, 刘传歆, 詹倩, 大貫惣明. 氦、氘对纯铁辐照缺陷的影响. 物理学报, 2013, 62(16): 166801. doi: 10.7498/aps.62.166801
    [12] 吴宜勇, 岳龙, 胡建民, 蓝慕杰, 肖景东, 杨德庄, 何世禹, 张忠卫, 王训春, 钱勇, 陈鸣波. 位移损伤剂量法评估空间GaAs/Ge太阳电池辐照损伤过程. 物理学报, 2011, 60(9): 098110. doi: 10.7498/aps.60.098110
    [13] 汪俊, 张宝玲, 周宇璐, 侯氢. 金属钨中氦行为的分子动力学模拟. 物理学报, 2011, 60(10): 106601. doi: 10.7498/aps.60.106601
    [14] 祁宁, 王元为, 王栋, 王丹丹, 陈志权. Co掺杂纳米ZnO微结构的正电子湮没研究. 物理学报, 2011, 60(10): 107805. doi: 10.7498/aps.60.107805
    [15] 敖冰云, 汪小琳, 陈丕恒, 史鹏, 胡望宇, 杨剑瑜. 嵌入原子法计算金属钚中点缺陷的能量. 物理学报, 2010, 59(7): 4818-4825. doi: 10.7498/aps.59.4818
    [16] 周凯, 李辉, 王柱. 正电子湮没谱和光致发光谱研究掺锌GaSb质子辐照缺陷. 物理学报, 2010, 59(7): 5116-5121. doi: 10.7498/aps.59.5116
    [17] 王海云, 翁惠民, Ling C. C.. GaN/SiC异质结的慢正电子研究. 物理学报, 2008, 57(9): 5906-5910. doi: 10.7498/aps.57.5906
    [18] 杜晓明, 吴尔冬, 董宝中, 吴忠华, 苑学众. Ti-Mo合金氢化物微观缺陷的小角X射线散射研究. 物理学报, 2008, 57(9): 5782-5787. doi: 10.7498/aps.57.5782
    [19] 王海燕, 祝文军, 宋振飞, 刘绍军, 陈向荣, 贺红亮. 氦泡对铝的弹性性质的影响. 物理学报, 2008, 57(6): 3703-3708. doi: 10.7498/aps.57.3703
    [20] 刘丽华, 董成, 邓冬梅, 陈镇平, 张金仓. Fe掺杂YBCO体系结构变化与团簇效应的正电子实验研究. 物理学报, 2001, 50(4): 769-774. doi: 10.7498/aps.50.769
计量
  • 文章访问数:  9307
  • PDF下载量:  196
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-13
  • 修回日期:  2020-06-18
  • 上网日期:  2020-08-25
  • 刊出日期:  2020-09-05

/

返回文章
返回