-
针对硅空位自旋磁共振信号射频场非均匀展宽问题, 提出并设计了一种双螺线圈射频共振结构, 利用双螺线圈平行对称特性, 构建射频场均匀区, 非均匀性小于0.9%, 相比单根直线性结构, 均匀性提高了56.889倍. 同时, 利用射频信号近距离互感耦合共振特性, 实现了射频场的增强, 相比单线圈结构增强了1.587倍, 等效的自旋传感灵敏度提高了4.833倍. 实验中搭建基于SiC硅色心自旋磁共振效应的光探测磁共振传感测量系统, 通过对比不同类型的射频天线, 测试得到基于双螺线圈射频共振天线结构的硅空位色心自旋磁共振信号对比度提高了6倍, 通过调制解调信息解算方法得到传感器的灵敏度提高了4.833倍, 传感器噪声降低了8倍, 提高了硅空位自旋传感测量灵敏度, 结合SiC晶圆芯片制造技术, 为高精度、芯片级自旋量子传感器件的制造提供了技术支撑.
Due to the power instability and field non-uniformity of radio frequency (RF), microwave (MW) and laser signals, inhomogeneous broadening of spin magnetic resonance line causes the absorption to decrease in a nuclear resonance system, which can reduce the sensitivity of spin-based sensing and testing technology. In this paper, we propose and design a double solenoid coil RF resonance antenna structure. The nearly uniform RF field density is produced by the two solenoid coil antenna structures that are parallel to the symmetry axis. The size of the uniformity in the center region of double solenoid coil RF resonance antenna structure is about π×375 mm2 × 10 mm. And the non-uniformity is less than 0.9%. Comparing with a single straight wire antenna and the single solenoid coil RF resonance antenna structure, the uniformity is improved by about 56.889 times and 42.889 times, respectively. At the same time, based on the near-field mutual inductance coupled resonance effect, the intensities of RF field in the center region of the two-solenoid coil antenna structure is enhanced. Comparing with the single solenoid coil antenna structures, it is enhanced by about 1.587 times. And the equivalent sensitivity of the silicon vacancy color center spin based sensor is enhanced by about 4.833 times. In the experiment, an optical detection magnetic resonance measurement system based on the spin magnetic resonance effect of silicon vacancy color center in single crystal SiC is built. Comparing with the single straight wire antenna and the single solenoid coil RF resonance antenna structure, the contrast of the silicon vacancy color center spin magnetic resonance signals of the double solenoid coil RF resonance antenna structure increases about 6 times and 2.4 times, respectively. The sensitivity of the spin-based sensor is increased by 4.833 times and 2.071 times through using the modulation and demodulation method, and the noise decreases by 8 times and twice. Hence, based on this double solenoid coil RF resonance antenna structure, the sensitivity of the silicon vacancy spin sensor can be improved. Combined with chip manufacturing technology of SiC wafer, it proves to be a potential approach to developing the high precision, chip scale spin sensor devices and measurement technology. -
Keywords:
- silicon vacancy color center /
- RF resonant antenna /
- uniform field /
- spin sensing /
- sensitivity
[1] Seo H, Falk A L, Klimov P V, Miao K C, Galli G, Awschalom D D 2016 Nat. Commun. 7 12935Google Scholar
[2] van der Heijden J, Kobayashi T, House M G, Salfi J, Barraud S, Lavieville R, Simmons M Y, Rogge S 2018 Sci. Adv. 4 aat9199Google Scholar
[3] Widmann M, Niethammer M, Fedyanin D Y, Khramtsov I A, Rendler T, Booker I D, Hassan J U, Morioka N, Chen Y C, Ivanov I G, Nguyen Tien S, Ohshima T, Bockstedte M, Gali A, Bonato C, Lee S Y, Wrachtrup J 2019 Nano Lett. 19 7173Google Scholar
[4] Wang J, Zhou Y, Zhang X, Liu F, Li Y, Li K, Liu Z, Wang G, Gao W 2017 Phys. Rev. Appl. 7 064021Google Scholar
[5] Christle D J, Klimov P V, Casas C F d l, Szasz K, Ivady V, Jokubavicius V, Hassan J U, Syvajarvi M, Koehl W F, Ohshima T, Son N T, Janzen E, Gali A, Awschalom D D 2017 Phys. Rev. X 7 021046
[6] Dubrovkin A M, Qiang B, Salim T, Nam D, Zheludev N I, Wang Q J 2020 Nat. Commun. 11 1863Google Scholar
[7] Niethammer M, Widmann M, Rendler T, Morioka N, Chen Y C, Stoehr R, Ul Hassan J, Onoda S, Ohshima T, Lee S Y, Mukherjee A, Isoya J, Nguyen Tien S, Wrachtrup J 2019 Nat. Commun. 10 5569Google Scholar
[8] Awschalom D D, Hanson R, Wrachtrup J, Zhou B B 2018 Nat. Photonics 12 516Google Scholar
[9] Dzurak A 2011 Nature 479 47Google Scholar
[10] Li Q, Wang J F, Yan F F, Cheng Z D, Liu Z H, Zhou K, Guo L P, Zhou X, Zhang W P, Wang X X, Huang W, Xu J S, Li C F, Guo G C 2019 Nanoscale 11 20554Google Scholar
[11] Kraus H, Simin D, Kasper C, Suda Y, Kawabata S, Kada W, Honda T, Hijikata Y, Ohshima T, Dyakonov V, Astakhov G V 2017 Nano Lett. 17 2865Google Scholar
[12] 王磊, 郭浩, 陈宇雷, 伍大锦, 赵锐, 刘文耀, 李春明, 夏美晶, 赵彬彬, 朱强, 唐军, 刘俊 2018 物理学报 67 047601Google Scholar
Wang L, Guo H, Chen Y L, Wu D J, Zhao R, Liu W Y, Li C M, Xia M J, Zhao B B, Zhu Q, Tang J, Liu J 2018 Acta Phys. Sin. 67 047601Google Scholar
[13] Chen Y C, Salter P S, Niethammer M, Widmann M, Kaiser F, Nagy R, Morioka N, Babin C, Erlekampf J, Berwian P, Booth M J, Wrachtrup J 2019 Nano Lett. 19 2377Google Scholar
[14] Soltamov V A, Kasper C, Poshakinskiy A V, Anisimov A N, Mokhov E N, Sperlich A, Tarasenko S A, Baranov P G, Astakhov G V, Dyakonov V 2019 Nat. Commun. 10 1678Google Scholar
[15] Scheuer J, Schwartz I, Mueller S, Chen Q, Dhand I, Plenio M B, Naydenov B, Jelezko F 2017 Phys. Rev. B 96 174436Google Scholar
[16] Glenn D R, Bucher D B, Lee J, Lukin M D, Park H, Walsworth R L 2018 Nature 555 351Google Scholar
[17] Laucht A, Kalra R, Simmons S, Dehollain J P, Muhonen J T, Mohiyaddin F A, Freer S, Hudson F E, Itoh K M, Jamieson D N, McCallum J C, Dzurak A S, Morello A 2017 Nat. Nanotechnol. 12 61Google Scholar
[18] Whiteley S J, Wolfowicz G, Anderson C P, Bourassa A, Ma H, Ye M, Koolstra G, Satzinger K J, Holt M V, Heremans F J, Cleland A N, Schuster D I, Galli G, Awschalom D D 2019 Nat. Phys. 15 490Google Scholar
[19] Nagy R, Niethammer M, Widmann M, Chen Y C, Udvarhelyi P, Bonato C, Hassan J U, Karhu R, Ivanov I G, Son N T, Maze J R, Ohshima T, Soykal Ö O, Gali Á, Lee S Y, Kaiser F, Wrachtrup J 2019 Nat. Commun. 10 1954Google Scholar
[20] Riedel D, Fuchs F, Kraus H, Väth S, Sperlich A, Dyakonov V, Soltamova A A, Baranov P G, Ilyin V A, Astakhov G V 2012 Phys. Rev. Lett. 109 226402Google Scholar
[21] 彭世杰, 刘颖, 马文超, 石发展, 杜江峰 2018 物理学报 67 167601Google Scholar
Peng S J, Liu Y, Ma W C, Shi F Z, Du J F 2018 Acta Phys. Sin. 67 167601Google Scholar
[22] Clevenson H, Trusheim M E, Teale C, Schroeder T, Braje D, Englund D 2015 Nat. Phys. 11 393Google Scholar
[23] Childress L, Dutt M V G, Taylor J M, Zibrov A S, Jelezko F, Wrachtrup J, Hemmer P R, Lukin M D 2006 Science 314 281Google Scholar
[24] Sasaki K, Monnai Y, Saijo S, Fujita R, Watanabe H, Ishi-Hayase J, Itoh K M, Abe E 2016 Rev. Sci. Instrum. 87 053904Google Scholar
[25] Kim D J, Jo E S, Cho Y K, Hur J, Kim C K, Kim C H, Park B, Kim D, Choi Y K 2018 Sci. Rep. 8 14996Google Scholar
[26] Tang L, Kocabas S E, Latif S, Okyay A K, Ly Gagnon D S, Saraswat K C, Miller D A B 2008 Nat. Photonics 2 226Google Scholar
[27] Frank M, Thorsell M, Enoksson P 2018 IEEE Trans. Microwave Theory Tech. 66 2141Google Scholar
[28] Liu C R, Guo Y X, Xiao S Q 2014 IEEE Trans. Antennas Propag. 62 6027Google Scholar
[29] Morlaas C, Souny B, Chabory A 2015 IEEE Trans. Antennas Propag. 63 4693Google Scholar
[30] Rondin L, Tetienne J P, Hingant T, Roch J F, Maletinsky P, Jacques V 2014 Rep. Prog. Phys. 77 056503Google Scholar
[31] Blank A, Shapiro G, Fischer R, London P, Gershoni D 2015 Appl. Phys. Lett. 106 034102Google Scholar
[32] Bauch E, Hart C A, Schloss J M, Turner M J, Barry J F, Kehayias P, Singh S, Walsworth R L 2018 Phys. Rev. X 8 031025
[33] El-Ella H A R, Ahmadi S, Wojciechowski A M, Huck A, Andersen U L 2017 Opt. Express 25 14809Google Scholar
[34] Rugar D, Budakian R, Mamin H J, Chui B W 2004 Nature 430 329Google Scholar
[35] Payne A, Ambal K, Boehme C, Williams C C 2015 Phys. Rev. B 91 195433Google Scholar
-
图 1 (a) DHCRA结构示意图, 红色部分为碳化硅样品, 黄色部分为天线, 绿色部分为碳化硅硅空位色心激发用的红光730 nm激光器, 色心发出的光为红外890—1000 nm; (b) DHCRA设计参数: 天线铜线线宽d = 0.4 mm, 天线铜线线间距w = 0.73 mm, 天线铜线厚度t = 0.035 mm, 双天线之间的距离s = 10 mm, 输入接口线宽d1 = 0.67 mm, d2 = 1.2 mm
Fig. 1. (a) Schematic diagram of double helical coil resonant antenna, the red part is the silicon carbide sample, the yellow part is the antenna, the green part is the red light 730 nm laser used for the excitation of the vacancy color center of silicon carbide silicon, the light emitted by the color center is infrared 890−1000 nm; (b) spiral antenna design parameters: antenna copper wire width d = 0.4 mm, antenna copper wire spacing w = 0.73 mm, antenna copper wire thickness t = 0.035 mm, distance between dual antennas s = 10 mm, input interface line width d1 = 0.67 mm, d2 = 1.2 mm.
图 3 (a) 70 MHz下X-Z平面的场强仿真分布图(图中的
$\varepsilon $ 为非均匀度); (b) 70 MHz下的X-Y平面的场强仿真分布图; (c) 70 MHz下的均匀区(X = 14.86 mm)Z轴方向场强仿真曲线图; (d) 70 MHz下X轴方向的场强仿真曲线图Fig. 3. (a) Simulated distribution of the magnetic field in the X-Z plane at 70 MHz (In the figure
$\varepsilon $ is the non-uniformity); (b) simulated distribution of magnetic field in the X-Y plane at 70 MHz; (c) simulation curve of magnetic field in the X-axis direction at 70 MHz; (d) simulation curve of magnetic field in the Z-axis direction of the uniform zone (X = 14.68 mm) at 70 MHz.图 6 (a)光学检测共振光路与频率调制系统; (b)三种结构的光学检测共振谱分布; (c) 70 MHz共振频率下三种结构的噪声波动图; (d) 三种结构的解调测试结果图
Fig. 6. (a) Optical detection resonance light path and signal modulation system; (b) resonance spectrum distribution of three structures for optical detection; (c) noise fluctuation graphs of three structures at 70 MHz resonance frequency; (d) demodulation test results of three structures.
-
[1] Seo H, Falk A L, Klimov P V, Miao K C, Galli G, Awschalom D D 2016 Nat. Commun. 7 12935Google Scholar
[2] van der Heijden J, Kobayashi T, House M G, Salfi J, Barraud S, Lavieville R, Simmons M Y, Rogge S 2018 Sci. Adv. 4 aat9199Google Scholar
[3] Widmann M, Niethammer M, Fedyanin D Y, Khramtsov I A, Rendler T, Booker I D, Hassan J U, Morioka N, Chen Y C, Ivanov I G, Nguyen Tien S, Ohshima T, Bockstedte M, Gali A, Bonato C, Lee S Y, Wrachtrup J 2019 Nano Lett. 19 7173Google Scholar
[4] Wang J, Zhou Y, Zhang X, Liu F, Li Y, Li K, Liu Z, Wang G, Gao W 2017 Phys. Rev. Appl. 7 064021Google Scholar
[5] Christle D J, Klimov P V, Casas C F d l, Szasz K, Ivady V, Jokubavicius V, Hassan J U, Syvajarvi M, Koehl W F, Ohshima T, Son N T, Janzen E, Gali A, Awschalom D D 2017 Phys. Rev. X 7 021046
[6] Dubrovkin A M, Qiang B, Salim T, Nam D, Zheludev N I, Wang Q J 2020 Nat. Commun. 11 1863Google Scholar
[7] Niethammer M, Widmann M, Rendler T, Morioka N, Chen Y C, Stoehr R, Ul Hassan J, Onoda S, Ohshima T, Lee S Y, Mukherjee A, Isoya J, Nguyen Tien S, Wrachtrup J 2019 Nat. Commun. 10 5569Google Scholar
[8] Awschalom D D, Hanson R, Wrachtrup J, Zhou B B 2018 Nat. Photonics 12 516Google Scholar
[9] Dzurak A 2011 Nature 479 47Google Scholar
[10] Li Q, Wang J F, Yan F F, Cheng Z D, Liu Z H, Zhou K, Guo L P, Zhou X, Zhang W P, Wang X X, Huang W, Xu J S, Li C F, Guo G C 2019 Nanoscale 11 20554Google Scholar
[11] Kraus H, Simin D, Kasper C, Suda Y, Kawabata S, Kada W, Honda T, Hijikata Y, Ohshima T, Dyakonov V, Astakhov G V 2017 Nano Lett. 17 2865Google Scholar
[12] 王磊, 郭浩, 陈宇雷, 伍大锦, 赵锐, 刘文耀, 李春明, 夏美晶, 赵彬彬, 朱强, 唐军, 刘俊 2018 物理学报 67 047601Google Scholar
Wang L, Guo H, Chen Y L, Wu D J, Zhao R, Liu W Y, Li C M, Xia M J, Zhao B B, Zhu Q, Tang J, Liu J 2018 Acta Phys. Sin. 67 047601Google Scholar
[13] Chen Y C, Salter P S, Niethammer M, Widmann M, Kaiser F, Nagy R, Morioka N, Babin C, Erlekampf J, Berwian P, Booth M J, Wrachtrup J 2019 Nano Lett. 19 2377Google Scholar
[14] Soltamov V A, Kasper C, Poshakinskiy A V, Anisimov A N, Mokhov E N, Sperlich A, Tarasenko S A, Baranov P G, Astakhov G V, Dyakonov V 2019 Nat. Commun. 10 1678Google Scholar
[15] Scheuer J, Schwartz I, Mueller S, Chen Q, Dhand I, Plenio M B, Naydenov B, Jelezko F 2017 Phys. Rev. B 96 174436Google Scholar
[16] Glenn D R, Bucher D B, Lee J, Lukin M D, Park H, Walsworth R L 2018 Nature 555 351Google Scholar
[17] Laucht A, Kalra R, Simmons S, Dehollain J P, Muhonen J T, Mohiyaddin F A, Freer S, Hudson F E, Itoh K M, Jamieson D N, McCallum J C, Dzurak A S, Morello A 2017 Nat. Nanotechnol. 12 61Google Scholar
[18] Whiteley S J, Wolfowicz G, Anderson C P, Bourassa A, Ma H, Ye M, Koolstra G, Satzinger K J, Holt M V, Heremans F J, Cleland A N, Schuster D I, Galli G, Awschalom D D 2019 Nat. Phys. 15 490Google Scholar
[19] Nagy R, Niethammer M, Widmann M, Chen Y C, Udvarhelyi P, Bonato C, Hassan J U, Karhu R, Ivanov I G, Son N T, Maze J R, Ohshima T, Soykal Ö O, Gali Á, Lee S Y, Kaiser F, Wrachtrup J 2019 Nat. Commun. 10 1954Google Scholar
[20] Riedel D, Fuchs F, Kraus H, Väth S, Sperlich A, Dyakonov V, Soltamova A A, Baranov P G, Ilyin V A, Astakhov G V 2012 Phys. Rev. Lett. 109 226402Google Scholar
[21] 彭世杰, 刘颖, 马文超, 石发展, 杜江峰 2018 物理学报 67 167601Google Scholar
Peng S J, Liu Y, Ma W C, Shi F Z, Du J F 2018 Acta Phys. Sin. 67 167601Google Scholar
[22] Clevenson H, Trusheim M E, Teale C, Schroeder T, Braje D, Englund D 2015 Nat. Phys. 11 393Google Scholar
[23] Childress L, Dutt M V G, Taylor J M, Zibrov A S, Jelezko F, Wrachtrup J, Hemmer P R, Lukin M D 2006 Science 314 281Google Scholar
[24] Sasaki K, Monnai Y, Saijo S, Fujita R, Watanabe H, Ishi-Hayase J, Itoh K M, Abe E 2016 Rev. Sci. Instrum. 87 053904Google Scholar
[25] Kim D J, Jo E S, Cho Y K, Hur J, Kim C K, Kim C H, Park B, Kim D, Choi Y K 2018 Sci. Rep. 8 14996Google Scholar
[26] Tang L, Kocabas S E, Latif S, Okyay A K, Ly Gagnon D S, Saraswat K C, Miller D A B 2008 Nat. Photonics 2 226Google Scholar
[27] Frank M, Thorsell M, Enoksson P 2018 IEEE Trans. Microwave Theory Tech. 66 2141Google Scholar
[28] Liu C R, Guo Y X, Xiao S Q 2014 IEEE Trans. Antennas Propag. 62 6027Google Scholar
[29] Morlaas C, Souny B, Chabory A 2015 IEEE Trans. Antennas Propag. 63 4693Google Scholar
[30] Rondin L, Tetienne J P, Hingant T, Roch J F, Maletinsky P, Jacques V 2014 Rep. Prog. Phys. 77 056503Google Scholar
[31] Blank A, Shapiro G, Fischer R, London P, Gershoni D 2015 Appl. Phys. Lett. 106 034102Google Scholar
[32] Bauch E, Hart C A, Schloss J M, Turner M J, Barry J F, Kehayias P, Singh S, Walsworth R L 2018 Phys. Rev. X 8 031025
[33] El-Ella H A R, Ahmadi S, Wojciechowski A M, Huck A, Andersen U L 2017 Opt. Express 25 14809Google Scholar
[34] Rugar D, Budakian R, Mamin H J, Chui B W 2004 Nature 430 329Google Scholar
[35] Payne A, Ambal K, Boehme C, Williams C C 2015 Phys. Rev. B 91 195433Google Scholar
计量
- 文章访问数: 7646
- PDF下载量: 94
- 被引次数: 0