搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双螺线圈射频共振结构增强硅空位自旋传感灵敏度方法

张文杰 刘郁松 郭浩 韩星程 蔡安江 李圣昆 赵鹏飞 刘俊

引用本文:
Citation:

双螺线圈射频共振结构增强硅空位自旋传感灵敏度方法

张文杰, 刘郁松, 郭浩, 韩星程, 蔡安江, 李圣昆, 赵鹏飞, 刘俊

Methodology of improving sensitivity of silicon vacancy spin-based sensors based on double spiral coil RF resonance structure

Zhang Wen-Jie, Liu Yu-Song, Guo Hao, Han Xing-Cheng, Cai An-Jiang, Li Sheng-Kun, Zhao Peng-Fei, Liu Jun
PDF
HTML
导出引用
  • 针对硅空位自旋磁共振信号射频场非均匀展宽问题, 提出并设计了一种双螺线圈射频共振结构, 利用双螺线圈平行对称特性, 构建射频场均匀区, 非均匀性小于0.9%, 相比单根直线性结构, 均匀性提高了56.889倍. 同时, 利用射频信号近距离互感耦合共振特性, 实现了射频场的增强, 相比单线圈结构增强了1.587倍, 等效的自旋传感灵敏度提高了4.833倍. 实验中搭建基于SiC硅色心自旋磁共振效应的光探测磁共振传感测量系统, 通过对比不同类型的射频天线, 测试得到基于双螺线圈射频共振天线结构的硅空位色心自旋磁共振信号对比度提高了6倍, 通过调制解调信息解算方法得到传感器的灵敏度提高了4.833倍, 传感器噪声降低了8倍, 提高了硅空位自旋传感测量灵敏度, 结合SiC晶圆芯片制造技术, 为高精度、芯片级自旋量子传感器件的制造提供了技术支撑.
    Due to the power instability and field non-uniformity of radio frequency (RF), microwave (MW) and laser signals, inhomogeneous broadening of spin magnetic resonance line causes the absorption to decrease in a nuclear resonance system, which can reduce the sensitivity of spin-based sensing and testing technology. In this paper, we propose and design a double solenoid coil RF resonance antenna structure. The nearly uniform RF field density is produced by the two solenoid coil antenna structures that are parallel to the symmetry axis. The size of the uniformity in the center region of double solenoid coil RF resonance antenna structure is about π×375 mm2 × 10 mm. And the non-uniformity is less than 0.9%. Comparing with a single straight wire antenna and the single solenoid coil RF resonance antenna structure, the uniformity is improved by about 56.889 times and 42.889 times, respectively. At the same time, based on the near-field mutual inductance coupled resonance effect, the intensities of RF field in the center region of the two-solenoid coil antenna structure is enhanced. Comparing with the single solenoid coil antenna structures, it is enhanced by about 1.587 times. And the equivalent sensitivity of the silicon vacancy color center spin based sensor is enhanced by about 4.833 times. In the experiment, an optical detection magnetic resonance measurement system based on the spin magnetic resonance effect of silicon vacancy color center in single crystal SiC is built. Comparing with the single straight wire antenna and the single solenoid coil RF resonance antenna structure, the contrast of the silicon vacancy color center spin magnetic resonance signals of the double solenoid coil RF resonance antenna structure increases about 6 times and 2.4 times, respectively. The sensitivity of the spin-based sensor is increased by 4.833 times and 2.071 times through using the modulation and demodulation method, and the noise decreases by 8 times and twice. Hence, based on this double solenoid coil RF resonance antenna structure, the sensitivity of the silicon vacancy spin sensor can be improved. Combined with chip manufacturing technology of SiC wafer, it proves to be a potential approach to developing the high precision, chip scale spin sensor devices and measurement technology.
      通信作者: 郭浩, guohao@nuc.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFB0503100)、博士后创新人才支持计划(批准号: BX20180276)、国家自然科学基金(批准号: 51805493, 51922009, 51727808, 51775522)、中国博士后科学基金(批准号: 2018M641684)、山西省应用基础研究项目(批准号: 201801D221202, 201901D111011(ZD), 201801D121164)、山西省重点研发计划(批准号: 201803D121067)、重点实验室基金(批准号: 6142001180410, 6142001180409)、山西省重点实验室(批准号: 201905D121001)、中北大学青年学术带头人(批准号: QX201901)和山西省1331工程重点学科建设计划(1331Project)资助的课题.
      Corresponding author: Guo Hao, guohao@nuc.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFB0503100), the China Postdoctoral Innovative Talents Support Program (Grant No. BX20180276), the National Natural Science Foundation of China (Grant Nos. 51805493, 51922009, 51727808, 51775522), the China Postdoctoral Science Foundation (Grant No. 2018M641684), the Applied Basic Research Program in Shanxi Province, China (Grant Nos. 201801D221202, 201901D111011(ZD), 201801D121164), the Key R&D Program in Shanxi Province, China (Grant No. 201803D121067), the Key Laboratory Project Fund (Grant Nos. 6142001180410, 6142001180409), the Key Laboratory of Shanxi Province, China (Grant No. 201905D121001), the Foundation for Young Academic Leaders of North University of China (Grant No. QX201901), and the Shanxi “1331Project”, China.
    [1]

    Seo H, Falk A L, Klimov P V, Miao K C, Galli G, Awschalom D D 2016 Nat. Commun. 7 12935Google Scholar

    [2]

    van der Heijden J, Kobayashi T, House M G, Salfi J, Barraud S, Lavieville R, Simmons M Y, Rogge S 2018 Sci. Adv. 4 aat9199Google Scholar

    [3]

    Widmann M, Niethammer M, Fedyanin D Y, Khramtsov I A, Rendler T, Booker I D, Hassan J U, Morioka N, Chen Y C, Ivanov I G, Nguyen Tien S, Ohshima T, Bockstedte M, Gali A, Bonato C, Lee S Y, Wrachtrup J 2019 Nano Lett. 19 7173Google Scholar

    [4]

    Wang J, Zhou Y, Zhang X, Liu F, Li Y, Li K, Liu Z, Wang G, Gao W 2017 Phys. Rev. Appl. 7 064021Google Scholar

    [5]

    Christle D J, Klimov P V, Casas C F d l, Szasz K, Ivady V, Jokubavicius V, Hassan J U, Syvajarvi M, Koehl W F, Ohshima T, Son N T, Janzen E, Gali A, Awschalom D D 2017 Phys. Rev. X 7 021046

    [6]

    Dubrovkin A M, Qiang B, Salim T, Nam D, Zheludev N I, Wang Q J 2020 Nat. Commun. 11 1863Google Scholar

    [7]

    Niethammer M, Widmann M, Rendler T, Morioka N, Chen Y C, Stoehr R, Ul Hassan J, Onoda S, Ohshima T, Lee S Y, Mukherjee A, Isoya J, Nguyen Tien S, Wrachtrup J 2019 Nat. Commun. 10 5569Google Scholar

    [8]

    Awschalom D D, Hanson R, Wrachtrup J, Zhou B B 2018 Nat. Photonics 12 516Google Scholar

    [9]

    Dzurak A 2011 Nature 479 47Google Scholar

    [10]

    Li Q, Wang J F, Yan F F, Cheng Z D, Liu Z H, Zhou K, Guo L P, Zhou X, Zhang W P, Wang X X, Huang W, Xu J S, Li C F, Guo G C 2019 Nanoscale 11 20554Google Scholar

    [11]

    Kraus H, Simin D, Kasper C, Suda Y, Kawabata S, Kada W, Honda T, Hijikata Y, Ohshima T, Dyakonov V, Astakhov G V 2017 Nano Lett. 17 2865Google Scholar

    [12]

    王磊, 郭浩, 陈宇雷, 伍大锦, 赵锐, 刘文耀, 李春明, 夏美晶, 赵彬彬, 朱强, 唐军, 刘俊 2018 物理学报 67 047601Google Scholar

    Wang L, Guo H, Chen Y L, Wu D J, Zhao R, Liu W Y, Li C M, Xia M J, Zhao B B, Zhu Q, Tang J, Liu J 2018 Acta Phys. Sin. 67 047601Google Scholar

    [13]

    Chen Y C, Salter P S, Niethammer M, Widmann M, Kaiser F, Nagy R, Morioka N, Babin C, Erlekampf J, Berwian P, Booth M J, Wrachtrup J 2019 Nano Lett. 19 2377Google Scholar

    [14]

    Soltamov V A, Kasper C, Poshakinskiy A V, Anisimov A N, Mokhov E N, Sperlich A, Tarasenko S A, Baranov P G, Astakhov G V, Dyakonov V 2019 Nat. Commun. 10 1678Google Scholar

    [15]

    Scheuer J, Schwartz I, Mueller S, Chen Q, Dhand I, Plenio M B, Naydenov B, Jelezko F 2017 Phys. Rev. B 96 174436Google Scholar

    [16]

    Glenn D R, Bucher D B, Lee J, Lukin M D, Park H, Walsworth R L 2018 Nature 555 351Google Scholar

    [17]

    Laucht A, Kalra R, Simmons S, Dehollain J P, Muhonen J T, Mohiyaddin F A, Freer S, Hudson F E, Itoh K M, Jamieson D N, McCallum J C, Dzurak A S, Morello A 2017 Nat. Nanotechnol. 12 61Google Scholar

    [18]

    Whiteley S J, Wolfowicz G, Anderson C P, Bourassa A, Ma H, Ye M, Koolstra G, Satzinger K J, Holt M V, Heremans F J, Cleland A N, Schuster D I, Galli G, Awschalom D D 2019 Nat. Phys. 15 490Google Scholar

    [19]

    Nagy R, Niethammer M, Widmann M, Chen Y C, Udvarhelyi P, Bonato C, Hassan J U, Karhu R, Ivanov I G, Son N T, Maze J R, Ohshima T, Soykal Ö O, Gali Á, Lee S Y, Kaiser F, Wrachtrup J 2019 Nat. Commun. 10 1954Google Scholar

    [20]

    Riedel D, Fuchs F, Kraus H, Väth S, Sperlich A, Dyakonov V, Soltamova A A, Baranov P G, Ilyin V A, Astakhov G V 2012 Phys. Rev. Lett. 109 226402Google Scholar

    [21]

    彭世杰, 刘颖, 马文超, 石发展, 杜江峰 2018 物理学报 67 167601Google Scholar

    Peng S J, Liu Y, Ma W C, Shi F Z, Du J F 2018 Acta Phys. Sin. 67 167601Google Scholar

    [22]

    Clevenson H, Trusheim M E, Teale C, Schroeder T, Braje D, Englund D 2015 Nat. Phys. 11 393Google Scholar

    [23]

    Childress L, Dutt M V G, Taylor J M, Zibrov A S, Jelezko F, Wrachtrup J, Hemmer P R, Lukin M D 2006 Science 314 281Google Scholar

    [24]

    Sasaki K, Monnai Y, Saijo S, Fujita R, Watanabe H, Ishi-Hayase J, Itoh K M, Abe E 2016 Rev. Sci. Instrum. 87 053904Google Scholar

    [25]

    Kim D J, Jo E S, Cho Y K, Hur J, Kim C K, Kim C H, Park B, Kim D, Choi Y K 2018 Sci. Rep. 8 14996Google Scholar

    [26]

    Tang L, Kocabas S E, Latif S, Okyay A K, Ly Gagnon D S, Saraswat K C, Miller D A B 2008 Nat. Photonics 2 226Google Scholar

    [27]

    Frank M, Thorsell M, Enoksson P 2018 IEEE Trans. Microwave Theory Tech. 66 2141Google Scholar

    [28]

    Liu C R, Guo Y X, Xiao S Q 2014 IEEE Trans. Antennas Propag. 62 6027Google Scholar

    [29]

    Morlaas C, Souny B, Chabory A 2015 IEEE Trans. Antennas Propag. 63 4693Google Scholar

    [30]

    Rondin L, Tetienne J P, Hingant T, Roch J F, Maletinsky P, Jacques V 2014 Rep. Prog. Phys. 77 056503Google Scholar

    [31]

    Blank A, Shapiro G, Fischer R, London P, Gershoni D 2015 Appl. Phys. Lett. 106 034102Google Scholar

    [32]

    Bauch E, Hart C A, Schloss J M, Turner M J, Barry J F, Kehayias P, Singh S, Walsworth R L 2018 Phys. Rev. X 8 031025

    [33]

    El-Ella H A R, Ahmadi S, Wojciechowski A M, Huck A, Andersen U L 2017 Opt. Express 25 14809Google Scholar

    [34]

    Rugar D, Budakian R, Mamin H J, Chui B W 2004 Nature 430 329Google Scholar

    [35]

    Payne A, Ambal K, Boehme C, Williams C C 2015 Phys. Rev. B 91 195433Google Scholar

  • 图 1  (a) DHCRA结构示意图, 红色部分为碳化硅样品, 黄色部分为天线, 绿色部分为碳化硅硅空位色心激发用的红光730 nm激光器, 色心发出的光为红外890—1000 nm; (b) DHCRA设计参数: 天线铜线线宽d = 0.4 mm, 天线铜线线间距w = 0.73 mm, 天线铜线厚度t = 0.035 mm, 双天线之间的距离s = 10 mm, 输入接口线宽d1 = 0.67 mm, d2 = 1.2 mm

    Fig. 1.  (a) Schematic diagram of double helical coil resonant antenna, the red part is the silicon carbide sample, the yellow part is the antenna, the green part is the red light 730 nm laser used for the excitation of the vacancy color center of silicon carbide silicon, the light emitted by the color center is infrared 890−1000 nm; (b) spiral antenna design parameters: antenna copper wire width d = 0.4 mm, antenna copper wire spacing w = 0.73 mm, antenna copper wire thickness t = 0.035 mm, distance between dual antennas s = 10 mm, input interface line width d1 = 0.67 mm, d2 = 1.2 mm.

    图 2  (a)本文设计的天线结构的X-Z平面磁场分布图; (b) DHCRA结构的S11仿真结果与测试结果. 插图为DHCRA的实物照片

    Fig. 2.  (a) Magnetic field distribution in the X-Z plane of our antenna structure; (b) simulation results and measurement results of the parameter S11 of the DHCRA structure. The inset shows the physical photograph of DHCRA.

    图 3  (a) 70 MHz下X-Z平面的场强仿真分布图(图中的$\varepsilon $为非均匀度); (b) 70 MHz下的X-Y平面的场强仿真分布图; (c) 70 MHz下的均匀区(X = 14.86 mm)Z轴方向场强仿真曲线图; (d) 70 MHz下X轴方向的场强仿真曲线图

    Fig. 3.  (a) Simulated distribution of the magnetic field in the X-Z plane at 70 MHz (In the figure $\varepsilon $is the non-uniformity); (b) simulated distribution of magnetic field in the X-Y plane at 70 MHz; (c) simulation curve of magnetic field in the X-axis direction at 70 MHz; (d) simulation curve of magnetic field in the Z-axis direction of the uniform zone (X = 14.68 mm) at 70 MHz.

    图 4  (a)未加入样品时X-Z平面磁场仿真分布图; (b)加入碳化硅样品后X-Z磁场仿真分布图

    Fig. 4.  (a) Simulation distribution of X-Z plane magnetic field without adding samples; (b) X-Z magnetic field simulation distribution after adding silicon carbide sample.

    图 5  (a) SCA, SLA与DHCRA的三维结构示意图; (b)三种结构磁场强度仿真分析图与非均匀度参数示意图

    Fig. 5.  (a) Three-dimensional structure diagram of SCA, SLA and DHCRA; (b) three kinds of structure magnetic field strength simulation analysis diagram and non-uniformity parameter diagram.

    图 6  (a)光学检测共振光路与频率调制系统; (b)三种结构的光学检测共振谱分布; (c) 70 MHz共振频率下三种结构的噪声波动图; (d) 三种结构的解调测试结果图

    Fig. 6.  (a) Optical detection resonance light path and signal modulation system; (b) resonance spectrum distribution of three structures for optical detection; (c) noise fluctuation graphs of three structures at 70 MHz resonance frequency; (d) demodulation test results of three structures.

  • [1]

    Seo H, Falk A L, Klimov P V, Miao K C, Galli G, Awschalom D D 2016 Nat. Commun. 7 12935Google Scholar

    [2]

    van der Heijden J, Kobayashi T, House M G, Salfi J, Barraud S, Lavieville R, Simmons M Y, Rogge S 2018 Sci. Adv. 4 aat9199Google Scholar

    [3]

    Widmann M, Niethammer M, Fedyanin D Y, Khramtsov I A, Rendler T, Booker I D, Hassan J U, Morioka N, Chen Y C, Ivanov I G, Nguyen Tien S, Ohshima T, Bockstedte M, Gali A, Bonato C, Lee S Y, Wrachtrup J 2019 Nano Lett. 19 7173Google Scholar

    [4]

    Wang J, Zhou Y, Zhang X, Liu F, Li Y, Li K, Liu Z, Wang G, Gao W 2017 Phys. Rev. Appl. 7 064021Google Scholar

    [5]

    Christle D J, Klimov P V, Casas C F d l, Szasz K, Ivady V, Jokubavicius V, Hassan J U, Syvajarvi M, Koehl W F, Ohshima T, Son N T, Janzen E, Gali A, Awschalom D D 2017 Phys. Rev. X 7 021046

    [6]

    Dubrovkin A M, Qiang B, Salim T, Nam D, Zheludev N I, Wang Q J 2020 Nat. Commun. 11 1863Google Scholar

    [7]

    Niethammer M, Widmann M, Rendler T, Morioka N, Chen Y C, Stoehr R, Ul Hassan J, Onoda S, Ohshima T, Lee S Y, Mukherjee A, Isoya J, Nguyen Tien S, Wrachtrup J 2019 Nat. Commun. 10 5569Google Scholar

    [8]

    Awschalom D D, Hanson R, Wrachtrup J, Zhou B B 2018 Nat. Photonics 12 516Google Scholar

    [9]

    Dzurak A 2011 Nature 479 47Google Scholar

    [10]

    Li Q, Wang J F, Yan F F, Cheng Z D, Liu Z H, Zhou K, Guo L P, Zhou X, Zhang W P, Wang X X, Huang W, Xu J S, Li C F, Guo G C 2019 Nanoscale 11 20554Google Scholar

    [11]

    Kraus H, Simin D, Kasper C, Suda Y, Kawabata S, Kada W, Honda T, Hijikata Y, Ohshima T, Dyakonov V, Astakhov G V 2017 Nano Lett. 17 2865Google Scholar

    [12]

    王磊, 郭浩, 陈宇雷, 伍大锦, 赵锐, 刘文耀, 李春明, 夏美晶, 赵彬彬, 朱强, 唐军, 刘俊 2018 物理学报 67 047601Google Scholar

    Wang L, Guo H, Chen Y L, Wu D J, Zhao R, Liu W Y, Li C M, Xia M J, Zhao B B, Zhu Q, Tang J, Liu J 2018 Acta Phys. Sin. 67 047601Google Scholar

    [13]

    Chen Y C, Salter P S, Niethammer M, Widmann M, Kaiser F, Nagy R, Morioka N, Babin C, Erlekampf J, Berwian P, Booth M J, Wrachtrup J 2019 Nano Lett. 19 2377Google Scholar

    [14]

    Soltamov V A, Kasper C, Poshakinskiy A V, Anisimov A N, Mokhov E N, Sperlich A, Tarasenko S A, Baranov P G, Astakhov G V, Dyakonov V 2019 Nat. Commun. 10 1678Google Scholar

    [15]

    Scheuer J, Schwartz I, Mueller S, Chen Q, Dhand I, Plenio M B, Naydenov B, Jelezko F 2017 Phys. Rev. B 96 174436Google Scholar

    [16]

    Glenn D R, Bucher D B, Lee J, Lukin M D, Park H, Walsworth R L 2018 Nature 555 351Google Scholar

    [17]

    Laucht A, Kalra R, Simmons S, Dehollain J P, Muhonen J T, Mohiyaddin F A, Freer S, Hudson F E, Itoh K M, Jamieson D N, McCallum J C, Dzurak A S, Morello A 2017 Nat. Nanotechnol. 12 61Google Scholar

    [18]

    Whiteley S J, Wolfowicz G, Anderson C P, Bourassa A, Ma H, Ye M, Koolstra G, Satzinger K J, Holt M V, Heremans F J, Cleland A N, Schuster D I, Galli G, Awschalom D D 2019 Nat. Phys. 15 490Google Scholar

    [19]

    Nagy R, Niethammer M, Widmann M, Chen Y C, Udvarhelyi P, Bonato C, Hassan J U, Karhu R, Ivanov I G, Son N T, Maze J R, Ohshima T, Soykal Ö O, Gali Á, Lee S Y, Kaiser F, Wrachtrup J 2019 Nat. Commun. 10 1954Google Scholar

    [20]

    Riedel D, Fuchs F, Kraus H, Väth S, Sperlich A, Dyakonov V, Soltamova A A, Baranov P G, Ilyin V A, Astakhov G V 2012 Phys. Rev. Lett. 109 226402Google Scholar

    [21]

    彭世杰, 刘颖, 马文超, 石发展, 杜江峰 2018 物理学报 67 167601Google Scholar

    Peng S J, Liu Y, Ma W C, Shi F Z, Du J F 2018 Acta Phys. Sin. 67 167601Google Scholar

    [22]

    Clevenson H, Trusheim M E, Teale C, Schroeder T, Braje D, Englund D 2015 Nat. Phys. 11 393Google Scholar

    [23]

    Childress L, Dutt M V G, Taylor J M, Zibrov A S, Jelezko F, Wrachtrup J, Hemmer P R, Lukin M D 2006 Science 314 281Google Scholar

    [24]

    Sasaki K, Monnai Y, Saijo S, Fujita R, Watanabe H, Ishi-Hayase J, Itoh K M, Abe E 2016 Rev. Sci. Instrum. 87 053904Google Scholar

    [25]

    Kim D J, Jo E S, Cho Y K, Hur J, Kim C K, Kim C H, Park B, Kim D, Choi Y K 2018 Sci. Rep. 8 14996Google Scholar

    [26]

    Tang L, Kocabas S E, Latif S, Okyay A K, Ly Gagnon D S, Saraswat K C, Miller D A B 2008 Nat. Photonics 2 226Google Scholar

    [27]

    Frank M, Thorsell M, Enoksson P 2018 IEEE Trans. Microwave Theory Tech. 66 2141Google Scholar

    [28]

    Liu C R, Guo Y X, Xiao S Q 2014 IEEE Trans. Antennas Propag. 62 6027Google Scholar

    [29]

    Morlaas C, Souny B, Chabory A 2015 IEEE Trans. Antennas Propag. 63 4693Google Scholar

    [30]

    Rondin L, Tetienne J P, Hingant T, Roch J F, Maletinsky P, Jacques V 2014 Rep. Prog. Phys. 77 056503Google Scholar

    [31]

    Blank A, Shapiro G, Fischer R, London P, Gershoni D 2015 Appl. Phys. Lett. 106 034102Google Scholar

    [32]

    Bauch E, Hart C A, Schloss J M, Turner M J, Barry J F, Kehayias P, Singh S, Walsworth R L 2018 Phys. Rev. X 8 031025

    [33]

    El-Ella H A R, Ahmadi S, Wojciechowski A M, Huck A, Andersen U L 2017 Opt. Express 25 14809Google Scholar

    [34]

    Rugar D, Budakian R, Mamin H J, Chui B W 2004 Nature 430 329Google Scholar

    [35]

    Payne A, Ambal K, Boehme C, Williams C C 2015 Phys. Rev. B 91 195433Google Scholar

  • [1] 寇科, 王错, 王晛, 连天虹, 焦明星, 樊毓臻. 线性调频激光回馈粒度探测灵敏度提升方法. 物理学报, 2023, 72(16): 169501. doi: 10.7498/aps.72.20230569
    [2] 安腾远, 丁霄. 基于角谱域和时间反演的任意均匀场的生成方法. 物理学报, 2023, 72(18): 180201. doi: 10.7498/aps.72.20230418
    [3] 李俊鹏, 任泽阳, 张金风, 王晗雪, 马源辰, 费一帆, 黄思源, 丁森川, 张进成, 郝跃. 多晶金刚石薄膜硅空位色心形成机理及调控. 物理学报, 2023, 72(3): 038102. doi: 10.7498/aps.72.20221437
    [4] 马欲飞. 基于石英增强光声光谱的气体传感技术研究进展. 物理学报, 2021, 70(16): 160702. doi: 10.7498/aps.70.20210685
    [5] 刘旭阳, 张贺秋, 李冰冰, 刘俊, 薛东阳, 王恒山, 梁红伟, 夏晓川. AlGaN/GaN高电子迁移率晶体管温度传感器特性. 物理学报, 2020, 69(4): 047201. doi: 10.7498/aps.69.20190640
    [6] 陈隆, 陈成克, 李晓, 胡晓君. 氧化对单颗粒层纳米金刚石薄膜硅空位发光和微结构的影响. 物理学报, 2019, 68(16): 168101. doi: 10.7498/aps.68.20190422
    [7] 左小杰, 孙颍榕, 闫智辉, 贾晓军. 高灵敏度的量子迈克耳孙干涉仪. 物理学报, 2018, 67(13): 134202. doi: 10.7498/aps.67.20172563
    [8] 胡泽华, 叶涛, 刘雄国, 王佳. 抽样法与灵敏度法keff不确定度量化. 物理学报, 2017, 66(1): 012801. doi: 10.7498/aps.66.012801
    [9] 史生才, 李婧, 张文, 缪巍. 超高灵敏度太赫兹超导探测器. 物理学报, 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [10] 廖文英, 范万德, 李海鹏, 隋佳男, 曹学伟. 准晶体结构光纤表面等离子体共振传感器特性研究. 物理学报, 2015, 64(6): 064213. doi: 10.7498/aps.64.064213
    [11] 王俊平, 戚苏阳, 刘士钢. 基于版图优化的综合灵敏度模型. 物理学报, 2014, 63(12): 128503. doi: 10.7498/aps.63.128503
    [12] 江莺, 梁大开, 曾捷, 倪晓宇. 监测点波长对高双折射光纤环镜轴向应变灵敏度的影响. 物理学报, 2013, 62(6): 064216. doi: 10.7498/aps.62.064216
    [13] 田会娟, 牛萍娟. 基于delta-P1近似模型的空间分辨漫反射一阶散射参量灵敏度研究. 物理学报, 2013, 62(3): 034201. doi: 10.7498/aps.62.034201
    [14] 徐晋, 谢品华, 司福祺, 李昂, 周海金, 吴丰成, 王杨, 刘建国, 刘文清. 基于机载平台的NO2 垂直廓线反演灵敏度研究. 物理学报, 2013, 62(10): 104214. doi: 10.7498/aps.62.104214
    [15] 陈国云, 辛勇, 黄福成, 魏志勇, 雷升杰, 黄三玻, 朱立, 赵经武, 马加一. 用于反应堆中子/ 射线混合场测量的涂硼电离室性能. 物理学报, 2012, 61(8): 082901. doi: 10.7498/aps.61.082901
    [16] 龚元, 郭宇, 饶云江, 赵天, 吴宇, 冉曾令. 光纤法布里-珀罗复合结构折射率传感器的灵敏度分析. 物理学报, 2011, 60(6): 064202. doi: 10.7498/aps.60.064202
    [17] 侯建平, 宁韬, 盖双龙, 李鹏, 郝建苹, 赵建林. 基于光子晶体光纤模间干涉的折射率测量灵敏度分析. 物理学报, 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
    [18] 任利春, 周林, 李润兵, 刘敏, 王谨, 詹明生. 不同序列拉曼光脉冲对原子重力仪灵敏度的影响. 物理学报, 2009, 58(12): 8230-8235. doi: 10.7498/aps.58.8230
    [19] 张显鹏, 欧阳晓平, 张忠兵, 田 耕, 陈彦丽, 李大海, 张小东. 组合式Si-PIN 14 MeV中子探测器. 物理学报, 2008, 57(1): 82-87. doi: 10.7498/aps.57.82
    [20] 刘 迎, 王利军, 郭云峰, 张小娟, 高宗慧, 田会娟. 空间分辨漫反射的高阶参量灵敏度. 物理学报, 2007, 56(4): 2119-2123. doi: 10.7498/aps.56.2119
计量
  • 文章访问数:  7236
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-20
  • 修回日期:  2020-06-26
  • 上网日期:  2020-11-27
  • 刊出日期:  2020-12-05

/

返回文章
返回