搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应用太赫兹焦平面成像方法研究氧化镁晶体在太赫兹波段的双折射特性

姜伟 赵欢 汪国崔 王新柯 韩鹏 孙文峰 叶佳声 冯胜飞 张岩

引用本文:
Citation:

应用太赫兹焦平面成像方法研究氧化镁晶体在太赫兹波段的双折射特性

姜伟, 赵欢, 汪国崔, 王新柯, 韩鹏, 孙文峰, 叶佳声, 冯胜飞, 张岩

Birefringence characteristics of magnesium oxide crystal in terahertz frequency region by using terahertz focal plane imaging

Jiang Wei, Zhao Huan, Wang Guo-Cui, Wang Xin-Ke, Han Peng, Sun Wen-Feng, Ye Jia-Sheng, Feng Sheng-Fei, Zhang Yan
PDF
HTML
导出引用
  • 高效可集成太赫兹波片和偏振片是重要的太赫兹光学元器件. 由传统的石英晶体及液晶等材料制作的太赫兹波片和偏振片由于其对太赫兹光响应度低并难于集成而难以应用于太赫兹集成光学领域. 为了寻找用以制备高效可集成太赫兹偏振元件的材料, 本工作应用太赫兹焦平面成像方法研究了$\left\langle {100} \right\rangle $晶向的氧化镁晶体对太赫兹波段圆偏振光偏振态的影响. 通过实验观察到氧化镁晶体可以使入射的圆偏振光转化成为线偏振光. 为了进一步验证氧化镁晶体对太赫兹光相位的影响, 还应用透射式太赫兹时域光谱系统测量了氧化镁晶体在太赫兹波段的寻常光和非寻常光的折射率. 通过对比氧化镁晶体中寻常光和非寻常光的位相差, 证明氧化镁晶体在太赫兹焦平面成像实验中起到了1/4波片的作用. 这一结果表明氧化镁晶体是一种制备太赫兹频段可集成波片及其相关偏振器件的重要材料.
    Fabricating integratable and high-efficiency optical polarization devices is one of the fundamentally important challenges in the field of terahertz optics. Compared with the traditional polarization materials such as quartz crystal and liquid crystal, MgO crystal is one of the most important potential candidates for fabricating terahertz optical devices due to its high transmittance in terahertz frequency region. To determine the birefringence characteristics of MgO crystal in the terahertz frequency region, the modulation of the polartization state of a terahtertz wave through a $\left\langle {100} \right\rangle $ crystalline MgO flake is studied using terahertz focal plane imaging method. Within this approach, the polarization of a terahertz wave can be intuitively identified from the imaging of the amplitude and the phase of the z-direction component of terahertz electronic field. By measuring the imaging of both the amplitude and the phase of terahertz field with and without passing through the $\left\langle {100} \right\rangle $ crystalline MgO flake, it is found that the left and right circularly polarized light are converted into perpendicular linearly-polarized light after passing through the MgO flake. The polarization direction of the linearly polarized light changes with the rotating of MgO flake along the direction perpendicular to the light propagation. The conversion between the linearly polarized light and the circularly polarized light is analyzed by using the Jones matrix approach. These properties indicate that the $\left\langle {100} \right\rangle $ crystalline MgO flake acts as a quarter wave plate for terahertz waves. To further identify the character of terahertz quarter wave plate, the refractive index of the ordinary and extrordinary light within terahertz frequency region of crystalline MgO crystal are measured by using transmission terahertz time-domain spectroscopy system. By comparing the phase difference between the ordinary and extraordinary light after passing through the MgO flake, it is shown that a quarter of wavelength difference between the ordinary and extraordinary light is obtained. These results indicate that the $\left\langle {100} \right\rangle $ crystalline MgO crystals can be used to fabricate quarter wave plates and relevant polarization devices in the terahertz band.
      通信作者: 韩鹏, hanpeng0523@163.com
    • 基金项目: 国家自然科学基金(批准号: 11774243, 11774246)、首都师范大学青年创新团队(批准号: 19530050146)和首都师范大学科技创新能力建设项目(批准号: 19530050170, 19530050180)资助的课题
      Corresponding author: Han Peng, hanpeng0523@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774243, 11774246), the Youth Innovative Research Team of Capital Normal University, China (Grant No. 19530050146), and the Science and Technology Innovation Ability Construction Project of Capical Normal University, China (Grant Nos. 19530050170, 19530050180)
    [1]

    成彬彬, 李慧萍, 安健飞, 江舸, 邓贤进, 张健 2005 太赫兹科学与电子信息学报 13 843

    Cheng B B, Li H P, An J F, Jiang G, Deng X J, Zhang J 2005 J. Terahertz Sci. Electron. Inf. Technol. 13 843

    [2]

    沈飞, 应义斌 2009 光谱学与光谱分析 29 1445Google Scholar

    Shen F, Ying Y B 2009 Spectrosc. Spectral Anal. 29 1445Google Scholar

    [3]

    Woodward R M, Cole B E, Wallace V P, Pye R J, Arnone D D, Linfield E H, Pepper M 2002 Phys. Med. Biol. 47 3853Google Scholar

    [4]

    韩晓, 安景新, 钟玲玲 2018 电子世界 3 5

    Han X, An J X, Zhong L L 2018 Electron. World 3 5

    [5]

    苏兴华, 于春香, 王瀚卿 2014 太赫兹科学与电子信息学报 12 37

    Su X H, Yu C X, Wang H Q 2014 J. Terahertz Sci. Electron. Inf. Technol. 12 37

    [6]

    Leahy-Hoppa M R, Fitch M J, Zheng X, Hayden L M, Osiander R 2007 Chem. Phys. Lett. 434 227Google Scholar

    [7]

    Feng W 2012 J. Semicond. 33 0310011

    [8]

    Corinna L, Dandolo K, Filtenborg T, Skou-Hansen J, Jepsen P U 2015 Appl. Phys. A 121 981Google Scholar

    [9]

    Han P Y, CHO G C, Zhang X C 2000 Opt. Lett. 25 242Google Scholar

    [10]

    Gong Y D, Dong H, Hong M H 2009 34th International Conference On Infrared, Millimeter, And Terahertz Waves 1-2 57

    [11]

    Ramonova A G, Kibizov D D, Kozyrev E N, Zaalishvili V B, Grigorkina G S, Fukutani K, Magkoev T T 2018 Russ. J. Phys. Chem. A 92 122

    [12]

    Ren G H, Zhao H W, Zhang J B, Tian Z, Gu J Q, Ouyang C M, Han J G, Zhang W L 2017 Infrared Laser Eng. 46 08250011

    [13]

    Wiesauer K, Jordens C 2013 J. Infrared Milli Terahz Waves 34 663Google Scholar

    [14]

    Nick C J, van der Valk, Willemine A M, van der Marel, Paul C M, Planken 2005 Opt. Lett. 30 2802Google Scholar

    [15]

    Kanda N, Konishi K, Kuwata-Gonokami M 2007 Opt. Express 15 11117Google Scholar

    [16]

    Zhang R X, Cui Y, Sun W F, Zhang Y 2008 Appl. Opt. 47 6422Google Scholar

    [17]

    Wang X K, Cui Y, Sun W F, Ye J S, Zhang Y 2010 J. Opt. Soc. Am. A 27 2387Google Scholar

    [18]

    Wang X K, Shi J, Sun W F, Feng S F, Han P, Ye J S, Zhang Y 2016 Opt. Express 24 7178Google Scholar

    [19]

    Wang X K, Wang S, Xie Z W, Sun W F, Feng S F, Cui Y, Ye J S, Zhang Y 2014 Opt. Express 22 24622Google Scholar

    [20]

    Shang Y J, Wang X K, Sun W F, Han P, Yu Y, Feng S F, Ye J S, Zhang Y 2018 Opt. Lett. 43 5508Google Scholar

    [21]

    Fu M X, Quan B G, He J W, Yao Z H, Gu C Z, Li J J, Zhang Y 2016 Appl. Phys. Lett. 108 1219041

    [22]

    Boivin A, Wolf E 1965 Phys. Rev. 138 B1561Google Scholar

    [23]

    沈长宇, 金尚忠 2017 光学原理 (第2版) (北京: 清华大学出版社) 第184−188页

    Shen C Y, Jin S Z 2017 Principles of Optics (2th Ed.) (Beijing: Tsinghua University Press) pp184−188 (in Chinese)

    [24]

    姚启钧 2014 光学教程 (北京: 高等教育出版社) 第224页

    Yao Q J 2014 Optical Tutorial (Beijing: Higher Education Press) p224 (in Chinese)

  • 图 1  焦平面成像系统示意图

    Fig. 1.  Schematic diagram of focal plane imaging system.

    图 2  基于会聚太赫兹波纵向场$ {E}_{z} $的偏振测定方法原理

    Fig. 2.  Principle of polarization determination method based on the longitudinal field Ez of converged THz wave.

    图 3  (a) 左旋圆偏振光和右旋圆偏振光的相位和振幅图像; (b) 振动方向与水平夹角为0°, 50°, 90°和140°方向的线偏振光的相位和振幅图像. 上面为相位图像, 下面为振幅图像, 模拟频率均为0.62 THz

    Fig. 3.  (a) Phase and amplitude images of left circular polarization and right circular polarization; (b) phase and amplitude images of linear polarization with 0°, 50°, 90° and 140°angles between the vibration direction and the horizontal. The top is the phase image, the bottom is the amplitude image, the simulation frequency is 0.62 THz.

    图 4  (a) 左旋圆偏振光和右旋圆偏振光的相位和振幅; (b), (c) 左右旋圆偏振分别照射样品时在不同角度下的结果

    Fig. 4.  (a) Phase and amplitude of left and right circularly polarized light; (b), (c) the results of left and right circularly polarized light through the samples at different angles, respectively.

    图 5  (a), (b)空气、o光和e光的时域信号和频域信号; (c) o光和e光的折射率; (d) 在不同频率下o光和e光的折射率差值与波长之间的关系

    Fig. 5.  (a), (b) The time domain signal and the frequency domain signal of air, ordinary light, and extraordinary light respectively; (c) the real part of the refractive index of ordinary light and extraordinary light; (d) relationship between the refractive index difference and wavelength at different frequencies.

  • [1]

    成彬彬, 李慧萍, 安健飞, 江舸, 邓贤进, 张健 2005 太赫兹科学与电子信息学报 13 843

    Cheng B B, Li H P, An J F, Jiang G, Deng X J, Zhang J 2005 J. Terahertz Sci. Electron. Inf. Technol. 13 843

    [2]

    沈飞, 应义斌 2009 光谱学与光谱分析 29 1445Google Scholar

    Shen F, Ying Y B 2009 Spectrosc. Spectral Anal. 29 1445Google Scholar

    [3]

    Woodward R M, Cole B E, Wallace V P, Pye R J, Arnone D D, Linfield E H, Pepper M 2002 Phys. Med. Biol. 47 3853Google Scholar

    [4]

    韩晓, 安景新, 钟玲玲 2018 电子世界 3 5

    Han X, An J X, Zhong L L 2018 Electron. World 3 5

    [5]

    苏兴华, 于春香, 王瀚卿 2014 太赫兹科学与电子信息学报 12 37

    Su X H, Yu C X, Wang H Q 2014 J. Terahertz Sci. Electron. Inf. Technol. 12 37

    [6]

    Leahy-Hoppa M R, Fitch M J, Zheng X, Hayden L M, Osiander R 2007 Chem. Phys. Lett. 434 227Google Scholar

    [7]

    Feng W 2012 J. Semicond. 33 0310011

    [8]

    Corinna L, Dandolo K, Filtenborg T, Skou-Hansen J, Jepsen P U 2015 Appl. Phys. A 121 981Google Scholar

    [9]

    Han P Y, CHO G C, Zhang X C 2000 Opt. Lett. 25 242Google Scholar

    [10]

    Gong Y D, Dong H, Hong M H 2009 34th International Conference On Infrared, Millimeter, And Terahertz Waves 1-2 57

    [11]

    Ramonova A G, Kibizov D D, Kozyrev E N, Zaalishvili V B, Grigorkina G S, Fukutani K, Magkoev T T 2018 Russ. J. Phys. Chem. A 92 122

    [12]

    Ren G H, Zhao H W, Zhang J B, Tian Z, Gu J Q, Ouyang C M, Han J G, Zhang W L 2017 Infrared Laser Eng. 46 08250011

    [13]

    Wiesauer K, Jordens C 2013 J. Infrared Milli Terahz Waves 34 663Google Scholar

    [14]

    Nick C J, van der Valk, Willemine A M, van der Marel, Paul C M, Planken 2005 Opt. Lett. 30 2802Google Scholar

    [15]

    Kanda N, Konishi K, Kuwata-Gonokami M 2007 Opt. Express 15 11117Google Scholar

    [16]

    Zhang R X, Cui Y, Sun W F, Zhang Y 2008 Appl. Opt. 47 6422Google Scholar

    [17]

    Wang X K, Cui Y, Sun W F, Ye J S, Zhang Y 2010 J. Opt. Soc. Am. A 27 2387Google Scholar

    [18]

    Wang X K, Shi J, Sun W F, Feng S F, Han P, Ye J S, Zhang Y 2016 Opt. Express 24 7178Google Scholar

    [19]

    Wang X K, Wang S, Xie Z W, Sun W F, Feng S F, Cui Y, Ye J S, Zhang Y 2014 Opt. Express 22 24622Google Scholar

    [20]

    Shang Y J, Wang X K, Sun W F, Han P, Yu Y, Feng S F, Ye J S, Zhang Y 2018 Opt. Lett. 43 5508Google Scholar

    [21]

    Fu M X, Quan B G, He J W, Yao Z H, Gu C Z, Li J J, Zhang Y 2016 Appl. Phys. Lett. 108 1219041

    [22]

    Boivin A, Wolf E 1965 Phys. Rev. 138 B1561Google Scholar

    [23]

    沈长宇, 金尚忠 2017 光学原理 (第2版) (北京: 清华大学出版社) 第184−188页

    Shen C Y, Jin S Z 2017 Principles of Optics (2th Ed.) (Beijing: Tsinghua University Press) pp184−188 (in Chinese)

    [24]

    姚启钧 2014 光学教程 (北京: 高等教育出版社) 第224页

    Yao Q J 2014 Optical Tutorial (Beijing: Higher Education Press) p224 (in Chinese)

  • [1] 冯龙呈, 杜琛, 杨圣新, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨. 太赫兹实时近场光谱成像研究. 物理学报, 2022, 71(16): 164201. doi: 10.7498/aps.71.20220131
    [2] 王鑫, 王俊林. 太赫兹波段电磁超材料吸波器折射率传感特性. 物理学报, 2021, 70(3): 038102. doi: 10.7498/aps.70.20201054
    [3] 严德贤, 李九生, 王怡. 基于向日葵型圆形光子晶体的高灵敏度太赫兹折射率传感器. 物理学报, 2019, 68(20): 207801. doi: 10.7498/aps.68.20191024
    [4] 牛海莎, 祝连庆, 宋建军, 董明利, 娄小平. 激光器内腔频差对双折射外腔激光回馈系统输出影响的理论及实验研究. 物理学报, 2018, 67(15): 154201. doi: 10.7498/aps.67.20180230
    [5] 李建欣, 柏财勋, 刘勤, 沈燕, 徐文辉, 许逸轩. 新型干涉高光谱成像系统的光束剪切特性分析. 物理学报, 2017, 66(19): 190704. doi: 10.7498/aps.66.190704
    [6] 代冰, 王朋, 周宇, 游承武, 胡江胜, 杨振刚, 王可嘉, 刘劲松. 小波变换在太赫兹三维成像探测内部缺陷中的应用. 物理学报, 2017, 66(8): 088701. doi: 10.7498/aps.66.088701
    [7] 李长胜, 陈佳. 去除光学器件弹光双折射的方法. 物理学报, 2016, 65(3): 037801. doi: 10.7498/aps.65.037801
    [8] 王伟, 杨博, 宋鸿儒, 范岳. 八边形高双折射双零色散点光子晶体光纤特性分析. 物理学报, 2012, 61(14): 144601. doi: 10.7498/aps.61.144601
    [9] 王伟, 杨博. 菱形纤芯光子晶体光纤色散与双折射特性分析. 物理学报, 2012, 61(6): 064601. doi: 10.7498/aps.61.064601
    [10] 陈吴玉婷, 韩鹏昱, Kuo Mei-Ling, Lin Shawn-Yu, 张希成. 具有缓变折射率的太赫兹宽带增透器件. 物理学报, 2012, 61(8): 088401. doi: 10.7498/aps.61.088401
    [11] 王晓琰, 李曙光, 刘硕, 张磊, 尹国冰, 冯荣普. 中红外高双折射高非线性宽带正常色散As2 S3光子晶体光纤. 物理学报, 2011, 60(6): 064213. doi: 10.7498/aps.60.064213
    [12] 付晓霞, 陈明阳. 用于太赫兹波传输的低损耗、高双折射光纤研究. 物理学报, 2011, 60(7): 074222. doi: 10.7498/aps.60.074222
    [13] 汪静丽, 姚建铨, 陈鹤鸣, 邴丕彬, 李忠洋, 钟凯. 高双折射的混合格子太赫兹光子晶体光纤的设计与研究. 物理学报, 2011, 60(10): 104219. doi: 10.7498/aps.60.104219
    [14] 白晋军, 王昌辉, 霍丙忠, 王湘晖, 常胜江. 低损宽频高双折射太赫兹光子带隙光纤. 物理学报, 2011, 60(9): 098702. doi: 10.7498/aps.60.098702
    [15] 杨倩倩, 侯蓝田. 八边形结构的双折射光子晶体光纤. 物理学报, 2009, 58(12): 8345-8351. doi: 10.7498/aps.58.8345
    [16] 付博, 李曙光, 姚艳艳, 张磊, 张美艳, 刘司英. 双芯高双折射光子晶体光纤耦合特性研究. 物理学报, 2009, 58(11): 7708-7715. doi: 10.7498/aps.58.7708
    [17] 延凤平, 李一凡, 王 琳, 龚桃荣, 刘 鹏, 刘 洋, 陶沛琳, 曲美霞, 简水生. 近椭圆内包层高双折射偏振稳定光子晶体光纤设计及特性分析. 物理学报, 2008, 57(9): 5735-5741. doi: 10.7498/aps.57.5735
    [18] 李曙光, 邢光龙, 周桂耀, 侯蓝田. 空气孔正方形排列的低损耗高双折射光子晶体光纤的数值模拟. 物理学报, 2006, 55(1): 238-243. doi: 10.7498/aps.55.238
    [19] 贾维国, 杨性愉. 强双折射光纤中任意偏振方向矢量调制不稳定性. 物理学报, 2005, 54(3): 1053-1058. doi: 10.7498/aps.54.1053
    [20] 祁胜文, 杨秀芹, 陈 宽, 张春平, 张连顺, 王新宇, 许 棠, 柳永亮, 张光寅. 偶氮材料——乙基橙的光致双折射特性. 物理学报, 2005, 54(7): 3189-3193. doi: 10.7498/aps.54.3189
计量
  • 文章访问数:  6385
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-20
  • 修回日期:  2020-06-12
  • 上网日期:  2020-10-14
  • 刊出日期:  2020-10-20

/

返回文章
返回