-
The field of squeezed state is an important quantum resource in the study of quantum optics. In the application of quantum information, the spectrum bandwidth of the squeezed light field is an important index to limit the information transmission capacity. Currently, the optical parametric oscillator (OPO) is one of the most efficient ways to generate high squeezed non-classical optical fields. In this paper, the degenerate singly-resonant and doubly-resonant OPO structures are introduced. Both OPOs are composed of concave mirrors and periodically poled potassium titanyl phosphate crystals (PPKTP). The length of PPKTP crystal is 10 mm. The curvature radius of the curved surface is 12 mm, and it has high reflectivity at 1550 nm and 775 nm. The plane surface is coated with anti-reflection coating. The air gap length is 21 mm. The concave mirror is an output coupling mirror, and its radius of curvature is 25 mm. In the singly-resonant OPO, only the signal light resonates in the cavity, and the pump light passes through the nonlinear crystal twice and then outputs out of the cavity. The reflectivity of OPO output coupling mirror to the wavelength of 1550 nm is 88%. The linewidth of the corresponding fundamental frequency wave is 77.4 MHz. For doubly-resonant OPO, both the signal light and the pump light resonate simultaneously in the cavity. The reflectivity of OPO output coupling mirror to 1550 nm and 775 nm is 85% and 97.5%, respectively. The linewidth of the corresponding fundamental frequency wave and harmonic is 97.1 MHz and 15.6 MHz, respectively. Then the threshold of OPO is calculated. The threshold pump power of OPO increases with signal light transmittance increasing, but the threshold value of doubly-resonant OPO is obviously smaller than that of singly-resonant OPO. After that, the variation of the squeezing bandwidth of the squeezed light field generated by OPO with the transmittance of the signal is analyzed. Finally, we complete the design of quantum squeezer with low threshold (18 mW), broadband (84.2 MHz) and high stability (the standard deviation of locking baseline is 0.32 MHz) experimentally. The results show that compared with the singly-resonant optical parametric oscillator, the doubly-resonant cavity has the characteristics of low threshold and high stability, which is more suitable for the preparation and practical application of broadband squeezed light field.
-
Keywords:
- squeezed light field /
- optical parametric oscillator /
- pump threshold /
- squeezing bandwidth
[1] Grote H, Danzmann K, Dooley K L, Schnabel R, Slutsky J, Vahlbruch H 2013 Phys. Rev. Lett. 110 181101Google Scholar
[2] Oelker E, Mansell G, Tse M, Miller J, Matichard F, Barsotti L, Fritschel P, McClelland D E, Evans M, Mavalvala N 2016 Optica 3 682Google Scholar
[3] 成健, 冯晋霞, 李渊骥, 张宽收 2018 物理学报 67 244202Google Scholar
Cheng J, Feng J X, Li Y J, Zhang K S 2018 Acta Phys. Sin. 67 244202Google Scholar
[4] 冯晋霞, 杜京师, 靳晓丽, 李渊骥, 张宽收 2018 物理学报 67 174203Google Scholar
Feng J X, Du J S, Jin X L, Li Y J, Zhang K S 2018 Acta Phys. Sin. 67 174203Google Scholar
[5] Su X L, Tian C X, Deng X W, Li Q, Xie C D, Peng K C 2016 Phys. Rev. Lett. 117 240503Google Scholar
[6] Huo M R, Qin J L, Cheng J L, Yan Z H, Qin Z Z, Su X L, Jia X J, Xie C D, Peng K C 2018 Sci. Adv. 4 eaas9401Google Scholar
[7] 聂敏, 张怡心, 杨光, 张美玲, 孙爱晶, 裴昌幸 2019 量子光学学报 25 395Google Scholar
Nie M, Zhang Y X, Yang G, Zhang M L, Sun A J, Pei C X 2019 Acta Sin. Quantum Opt. 25 395Google Scholar
[8] Shi S P, Wang Y J, Yang W H, Zheng Y H, Peng K C 2018 Opt. Lett. 43 5411Google Scholar
[9] 聂丹丹, 冯晋霞, 戚蒙, 李渊骥, 张宽收 2020 物理学报 69 094205Google Scholar
Nie D D, Feng J X, Qi M, Li Y J, Zhang K S 2020 Acta Phys. Sin. 69 094205Google Scholar
[10] 万振菊, 冯晋霞, 成健, 张宽收 2018 物理学报 67 024203Google Scholar
Wan Z J, Feng J X, Cheng J, Zhang K S 2018 Acta Phys. Sin. 67 024203Google Scholar
[11] 常彦红, 刘阿鹏 2019 量子光学学报 25 297Google Scholar
Chang Y H, Liu A P 2019 Acta Sin. Quantum Opt. 25 297Google Scholar
[12] 余胜, 刘焕章, 刘胜帅, 荆杰泰 2020 物理学报 69 090303Google Scholar
Yu S, Liu H Z, Liu S S, Jing J T 2020 Acta Phys. Sin. 69 090303Google Scholar
[13] Lloyd S 2008 Science 321 1463Google Scholar
[14] Zhang Z S, Mouradian S, Wong F N C, Shapiro J H 2015 Phys. Rev. Lett. 114 110506Google Scholar
[15] Zhang Z S, Tengner M, Zhong T, Wong F N C, Shapiro J H 2013 Phys. Rev. Lett. 111 010501Google Scholar
[16] Yang W H, Shi S P, Wang Y J, Ma W G, Zheng Y H, Peng K C 2017 Opt. Lett. 42 4553Google Scholar
[17] Rihan A, Andrieux E, Zanon-Willette T, Briaudeau S, Himbert M, Zondy J J 2011 Appl. Phys. B 102 367
[18] Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar
[19] Zhang W H, Wang J R, Zheng Y H, Wang Y J, Peng K C 2019 Appl. Phys. Lett. 115 171103Google Scholar
[20] Schönbeck A, Thies F, Schnabel R 2018 Opt. Lett. 43 110Google Scholar
[21] Mehmet M, Vahlbruch H, Lastzka N, Danzmann K, Schnabel R 2010 Phys. Rev. A 81 013814Google Scholar
[22] Ast S, Mehmet M, Schnabel R 2013 Opt. Express 21 13572Google Scholar
[23] Takeno Y, Yukawa M, Yonezawa H, Furusawa A 2007 Opt. Express 15 4321Google Scholar
[24] Samblowski A 2012 Ph. D. Dissertation (Hannover: Leibniz Universität Hannover)
[25] Emanueli S, Arie A 2003 Appl. Opt. 42 6661Google Scholar
[26] Vanherzeele H, Bierlein J D 1992 Opt. Lett. 17 982Google Scholar
[27] Schiller S, Schneider K, Mlynek J 1999 J. Opt. Soc. Am. B 16 1512Google Scholar
[28] Martinelli M, Zhang K S, Coudreau T, Maître A, Fabre C 2001 J. Opt. A: Pure Appl. Opt. 3 300Google Scholar
[29] 贾梦源, 赵刚, 周月婷, 刘建鑫, 郭松杰, 吴永前, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂 2018 物理学报 67 104207Google Scholar
Jia M Y, Zhao G, Zhou Y T, Liu J X, Gou S J, Wu Y Q, Ma W G, Zhang L, Dong L, Yi W B, Xiao L T, Jia S T 2018 Acta Phys. Sin. 67 104207Google Scholar
[30] 张宏宇, 王锦荣, 李庆回, 吉宇杰, 贺子洋, 杨荣草, 田龙 2019 量子光学学报 25 456Google Scholar
Zhang H Y, Wang J R, Li Q H, Ji Y J, He Z Y, Yang R C, Tian L 2019 Acta Sin. Quantum Opt. 25 456Google Scholar
-
-
[1] Grote H, Danzmann K, Dooley K L, Schnabel R, Slutsky J, Vahlbruch H 2013 Phys. Rev. Lett. 110 181101Google Scholar
[2] Oelker E, Mansell G, Tse M, Miller J, Matichard F, Barsotti L, Fritschel P, McClelland D E, Evans M, Mavalvala N 2016 Optica 3 682Google Scholar
[3] 成健, 冯晋霞, 李渊骥, 张宽收 2018 物理学报 67 244202Google Scholar
Cheng J, Feng J X, Li Y J, Zhang K S 2018 Acta Phys. Sin. 67 244202Google Scholar
[4] 冯晋霞, 杜京师, 靳晓丽, 李渊骥, 张宽收 2018 物理学报 67 174203Google Scholar
Feng J X, Du J S, Jin X L, Li Y J, Zhang K S 2018 Acta Phys. Sin. 67 174203Google Scholar
[5] Su X L, Tian C X, Deng X W, Li Q, Xie C D, Peng K C 2016 Phys. Rev. Lett. 117 240503Google Scholar
[6] Huo M R, Qin J L, Cheng J L, Yan Z H, Qin Z Z, Su X L, Jia X J, Xie C D, Peng K C 2018 Sci. Adv. 4 eaas9401Google Scholar
[7] 聂敏, 张怡心, 杨光, 张美玲, 孙爱晶, 裴昌幸 2019 量子光学学报 25 395Google Scholar
Nie M, Zhang Y X, Yang G, Zhang M L, Sun A J, Pei C X 2019 Acta Sin. Quantum Opt. 25 395Google Scholar
[8] Shi S P, Wang Y J, Yang W H, Zheng Y H, Peng K C 2018 Opt. Lett. 43 5411Google Scholar
[9] 聂丹丹, 冯晋霞, 戚蒙, 李渊骥, 张宽收 2020 物理学报 69 094205Google Scholar
Nie D D, Feng J X, Qi M, Li Y J, Zhang K S 2020 Acta Phys. Sin. 69 094205Google Scholar
[10] 万振菊, 冯晋霞, 成健, 张宽收 2018 物理学报 67 024203Google Scholar
Wan Z J, Feng J X, Cheng J, Zhang K S 2018 Acta Phys. Sin. 67 024203Google Scholar
[11] 常彦红, 刘阿鹏 2019 量子光学学报 25 297Google Scholar
Chang Y H, Liu A P 2019 Acta Sin. Quantum Opt. 25 297Google Scholar
[12] 余胜, 刘焕章, 刘胜帅, 荆杰泰 2020 物理学报 69 090303Google Scholar
Yu S, Liu H Z, Liu S S, Jing J T 2020 Acta Phys. Sin. 69 090303Google Scholar
[13] Lloyd S 2008 Science 321 1463Google Scholar
[14] Zhang Z S, Mouradian S, Wong F N C, Shapiro J H 2015 Phys. Rev. Lett. 114 110506Google Scholar
[15] Zhang Z S, Tengner M, Zhong T, Wong F N C, Shapiro J H 2013 Phys. Rev. Lett. 111 010501Google Scholar
[16] Yang W H, Shi S P, Wang Y J, Ma W G, Zheng Y H, Peng K C 2017 Opt. Lett. 42 4553Google Scholar
[17] Rihan A, Andrieux E, Zanon-Willette T, Briaudeau S, Himbert M, Zondy J J 2011 Appl. Phys. B 102 367
[18] Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar
[19] Zhang W H, Wang J R, Zheng Y H, Wang Y J, Peng K C 2019 Appl. Phys. Lett. 115 171103Google Scholar
[20] Schönbeck A, Thies F, Schnabel R 2018 Opt. Lett. 43 110Google Scholar
[21] Mehmet M, Vahlbruch H, Lastzka N, Danzmann K, Schnabel R 2010 Phys. Rev. A 81 013814Google Scholar
[22] Ast S, Mehmet M, Schnabel R 2013 Opt. Express 21 13572Google Scholar
[23] Takeno Y, Yukawa M, Yonezawa H, Furusawa A 2007 Opt. Express 15 4321Google Scholar
[24] Samblowski A 2012 Ph. D. Dissertation (Hannover: Leibniz Universität Hannover)
[25] Emanueli S, Arie A 2003 Appl. Opt. 42 6661Google Scholar
[26] Vanherzeele H, Bierlein J D 1992 Opt. Lett. 17 982Google Scholar
[27] Schiller S, Schneider K, Mlynek J 1999 J. Opt. Soc. Am. B 16 1512Google Scholar
[28] Martinelli M, Zhang K S, Coudreau T, Maître A, Fabre C 2001 J. Opt. A: Pure Appl. Opt. 3 300Google Scholar
[29] 贾梦源, 赵刚, 周月婷, 刘建鑫, 郭松杰, 吴永前, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂 2018 物理学报 67 104207Google Scholar
Jia M Y, Zhao G, Zhou Y T, Liu J X, Gou S J, Wu Y Q, Ma W G, Zhang L, Dong L, Yi W B, Xiao L T, Jia S T 2018 Acta Phys. Sin. 67 104207Google Scholar
[30] 张宏宇, 王锦荣, 李庆回, 吉宇杰, 贺子洋, 杨荣草, 田龙 2019 量子光学学报 25 456Google Scholar
Zhang H Y, Wang J R, Li Q H, Ji Y J, He Z Y, Yang R C, Tian L 2019 Acta Sin. Quantum Opt. 25 456Google Scholar
计量
- 文章访问数: 7086
- PDF下载量: 205
- 被引次数: 0