搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拓扑超导体FeSexTe1–x单晶超导性能与磁通钉扎

梁超 张洁 赵可 羊新胜 赵勇

引用本文:
Citation:

拓扑超导体FeSexTe1–x单晶超导性能与磁通钉扎

梁超, 张洁, 赵可, 羊新胜, 赵勇

Superconducting and flux pinning properties of FeSexTe1–x topological superconductors

Liang Chao, Zhang Jie, Zhao Ke, Yang Xin-Sheng, Zhao Yong
PDF
HTML
导出引用
  • 铁基超导体FeSexTe1–x由于其具有上临界场高、各向异性小、临界电流密度大等优点, 备受研究者的广泛关注. 本文采用自助溶剂法生长得到了几种Se/Te组分比例不同的FeSexTe1–x单晶样品, 对其结构和形貌进行了表征, 并且对样品在低温下的磁性进行了测量. 对样品超导态下临界电流密度、磁通钉扎力和磁场的关系进行了分析, 讨论了样品在低温下的磁通钉扎模式. 通过分析Se和Te的不同比例对上述性能的影响, 确定了超导性能最佳的组分, 为今后进一步研究FeSexTe1–x的超导与拓扑性质提供了参考.
    Iron-based superconductor FeSexTe1–x has attracted attention because of its high upper critical field, low anisotropy, and high critical current density. Also, it is predicted to have nontrivial topological properties, so that it is a candidate of realizing Majorana fermion, when the superconductivity is combined with topological features. However, its flux pinning behavior and mechanism in superconducting state with varying Se/Te ratio have not been systematically studied . We use self-flux method to grow single crystal samples of FeSexTe1–x with different x values (0.3, 0.4, 0.5 and 0.6). The structural and morphological properties of the monocrystalline samples are characterized by XRD and SEM. All samples show that they possess the expected crystalline structures and their lattice parameters vary with x value. The magnetic properties at low temperatures are also measured, showing that all samples have good superconductivity. Superconducting properties, such as critical current densities and flux pinning force densities, are extracted from the magnetic measurements and analyzed, and the flux pinning behavior is discussed. The best Se:Te ratio is determined to be nearly 0.4/0.6 based on the comparison among these properties of different samples. By utilizing the Dew-Hughes theory and analyzing the pinning force density peak, the flux pinning mechanism in the best samples (x = 0.4, 0.5) can be regarded as the mixture of normal point pinning and Δκ volume pinning. This work provides important information for the further study of the topological and superconducting properties of FeSexTe1–x.
      通信作者: 赵可, zhaoke@swjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51271155, 51377138, 51877180)、国家重点研发计划(批准号: 2017YFE0301402)、国家高技术研究发展计划(批准号: 2014AA032701)和四川应用基础研究项目(批准号: 2018JY0003)资助的课题
      Corresponding author: Zhao Ke, zhaoke@swjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51271155, 51377138, 51877180), the National Key R&D Program of China (Grant No. 2017YFE0301402), the National High Technology Research and Development Program of China (Grant No. 2014AA032701), and the Sichuan Applied Basic Research Project, China (Grant No. 2018JY0003)
    [1]

    Kamihara Y, Hiramatsu H, Hirano M, Kawamura R, Yanagi H, Kamiya T, Hosono H 2006 J. Am. Chem. Soc. 128 10012Google Scholar

    [2]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296Google Scholar

    [3]

    Xu G X, Huang H, Zhang X P, Huang S Y, Ma Y M 2018 Acta. Phys. Sin-Ch. Ed. 20 67

    [4]

    Wu Z F, Wang Z H, T ao J, Qiu L, Yang S G, Wen H H 2016 Supercond. Sci. Technol. 29 035006Google Scholar

    [5]

    Tapp J H, Tang Z, Lv B, et al. 2008 Phys. Rev. B 78 060505Google Scholar

    [6]

    Yuan F, Iida K, Grinenko V, Chekhonin P, Pukenas A, Skrotzki W, Sakoda M, Naio M, Sala A, Putti M, Yamashita A, Takano Y, Shi Z, Nielsch K, Hiihne R 2017 Aip. Adv. 7 065015Google Scholar

    [7]

    Bao W, Qiu Y, Huang Q, Green Q M, Zajdel P, Fitzsimmons M R, Zhernenkov M, Chang S, Fang M, Qian Q, Vehstedt E Q, Yang J, Pham H M, Spinu L, Mao Z Q 2009 Phys. Rev. Lett. 102 247001Google Scholar

    [8]

    Fiamozzi Zignani C, De Marzi G, Corato V, Mancini V, Vannozzi A, Rufoloni A, Leo1 V, Guarino A, Galluzzi A, Nigro A, Polichetti M, della Corte A, Pace S, Grimaldi G 2018 J. Mater. Sci. 132 84084

    [9]

    Sun Y, Tsuchiyab Y, Yamadab T, Taenb T, Pyonb S, Shia Z X, Tamegai T 2014 Physica C 113 8656

    [10]

    Abe H, Noji T, Kato M, Koike Y 2010 Physica C 980 8579

    [11]

    Rößler S, Cherian D, Harikrishnan S, Bhat H L, Elizabeth S, Mydosh J A, Tjeng L H, Steglich F, Wirth S 2010 Phys. Rev. B 82 144523Google Scholar

    [12]

    Yadav C S, Paulose P L 2009 New J. Phys. 11 103046Google Scholar

    [13]

    Cieplaka M Z, Bezusyya V L 2015 Philos. Mag. 1478 6435

    [14]

    Migita M, Takikawa Y, Takeda M, Uehara M, Kuramoto T, Takano Y, Kimishima Y 2011 Physica C 471 916Google Scholar

    [15]

    Wu Z F, Wang Z H, Tao J, Qiu L, Yang S G, Wen H H 2016 Supercond. Sci. Technol. 29 4

    [16]

    Leo A, Guarino A, Grimaldi G, Nigro A, Pace S, Bellingeri E, Giannini E 2014 J. Phys.: Conf. Ser. 507 012029Google Scholar

    [17]

    Wu Z, Tao J, Xu X, Qiu L, Yang S, Wang Z 2016 Physica C 528 39Google Scholar

    [18]

    Zhuang J C, Yeoh W K, Cui X Y, Xu X, Du Y, Shi Z X, Ringer P S, Wang X I, Dou S X 2014 Sci. Rep.-Uk. 4 7273

    [19]

    Gomez K W 2010 J. Nov. Magn. 23 551Google Scholar

    [20]

    Imai Y, Sawada Y, Nabeshima F, Maeda A 2015 Proc. Natl. Acad. Sci. 122 193

    [21]

    Wang A F, Ying J J, Yan Y J, Liu R H, Luo X G, Li Z Y, Wang X F, Zhang M, Ye G J, Cheng P, Xiang Z J, Chen X H 2011 Phys. Rev. B 83 060512Google Scholar

    [22]

    Yeh K W, Huang T W, Huang Y I, Chen T K, Hsu F C, Wu P M, Lee Y C, Chu Y Y, Chen C L, Luo J Y, Yan D C, Wu M K 2008 Europhys. Lett. 84 37002Google Scholar

    [23]

    Bean C P 1994 Rev. Mod. Phys. 36 31

    [24]

    Kumar R, Sudesh, Varma G D 2018 Aip. Adv. 8 055819Google Scholar

    [25]

    Bonura M, Giannini E, Viennois R, Senatore C 2012 Phys. Rev. B 85 134532Google Scholar

    [26]

    Shen B, Cheng P, Wang Z S, Fang L, Ren C, Shan L, Gu C Z, Wen H H 2010 Phys. Rev. B 81 014503Google Scholar

    [27]

    Galluzzi A, Buchkov K, Nazarova E, Tomov V, Grimaldi G, Leo A, Pace A, Polichetti M 2018 J. Appl. Phys. 123 233904Google Scholar

  • 图 1  (a) FeSexTe1–x 单晶样品X射线衍射图谱; (b) (001)随组分比例x的变化; (c)晶格参数cx的变化

    Fig. 1.  (a) X-ray diffraction pattern of FeSexTe1–x single crystal sample; (b) the (001) peak shifts with changing x; (c) lattice parameter c changes with Se content x.

    图 2  FeSexTe1–x 样品的SEM图谱 (a) x = 0.3; (b) x = 0.4; (c) x = 0.5; (d) x = 0.6, 其中(b)图右上角为同一样品的另一个区域

    Fig. 2.  SEM images of FeSexTe1–x samples: (a) x = 0.3; (b) x = 0.4; (c) x = 0.5; (d) x = 0.6. The upper right corner of Fig. (b) is another region of the same sample.

    图 3  FeSexTe1–x (x = 0.3, 0.4, 0.5, 0.6)样品的磁化强度-温度(ZFC, FC)曲线

    Fig. 3.  M-T (ZFC, FC) curves of FeSexTe1–x (x = 0.3, 0.4, 0.5, 0.6) samples.

    图 4  FeSexTe1–x样品在磁场平行于样品c轴时不同温度下的磁滞回线 (a) x = 0.3; (b) x = 0.4; (c) x = 0.5; (d) x = 0.6

    Fig. 4.  Hysteresis loops of FeSexTe1–x samples at different temperatures under the field parallel to c axis: (a) x = 0.3; (b) x = 0.4; (c) x = 0.5; (d) x = 0.6.

    图 5  (a), (b)不同Se含量的FeSexTe1–x样品的Jc- H曲线 (a) T = 2 K, (b) T = 4 K; (c), (d) 不同Se含量的FeSexTe1-x样品归一化的钉扎力密度和约化磁场的关系 (c)T = 2 K, (d)T = 4 K

    Fig. 5.  Jc- H curves of FeSexTe1–x samples with different Se contents: (a) T = 2 K, (b) T = 4 K; Fp/Fpmax - normalized field curves: (c) T = 2 K, (d) T = 4 K.

    表 1  Fp-h曲线的Dew-Hughes公式拟合参数值

    Table 1.  Fitted parameters of Fp curves.

    T = 2 KT = 4 K
    pqFp峰位pqFp峰位
    x = 0.41.6472.4610.40131.9962.2330.4654
    x = 0.51.6322.8700.35522.0012.3350.4398
    下载: 导出CSV
  • [1]

    Kamihara Y, Hiramatsu H, Hirano M, Kawamura R, Yanagi H, Kamiya T, Hosono H 2006 J. Am. Chem. Soc. 128 10012Google Scholar

    [2]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296Google Scholar

    [3]

    Xu G X, Huang H, Zhang X P, Huang S Y, Ma Y M 2018 Acta. Phys. Sin-Ch. Ed. 20 67

    [4]

    Wu Z F, Wang Z H, T ao J, Qiu L, Yang S G, Wen H H 2016 Supercond. Sci. Technol. 29 035006Google Scholar

    [5]

    Tapp J H, Tang Z, Lv B, et al. 2008 Phys. Rev. B 78 060505Google Scholar

    [6]

    Yuan F, Iida K, Grinenko V, Chekhonin P, Pukenas A, Skrotzki W, Sakoda M, Naio M, Sala A, Putti M, Yamashita A, Takano Y, Shi Z, Nielsch K, Hiihne R 2017 Aip. Adv. 7 065015Google Scholar

    [7]

    Bao W, Qiu Y, Huang Q, Green Q M, Zajdel P, Fitzsimmons M R, Zhernenkov M, Chang S, Fang M, Qian Q, Vehstedt E Q, Yang J, Pham H M, Spinu L, Mao Z Q 2009 Phys. Rev. Lett. 102 247001Google Scholar

    [8]

    Fiamozzi Zignani C, De Marzi G, Corato V, Mancini V, Vannozzi A, Rufoloni A, Leo1 V, Guarino A, Galluzzi A, Nigro A, Polichetti M, della Corte A, Pace S, Grimaldi G 2018 J. Mater. Sci. 132 84084

    [9]

    Sun Y, Tsuchiyab Y, Yamadab T, Taenb T, Pyonb S, Shia Z X, Tamegai T 2014 Physica C 113 8656

    [10]

    Abe H, Noji T, Kato M, Koike Y 2010 Physica C 980 8579

    [11]

    Rößler S, Cherian D, Harikrishnan S, Bhat H L, Elizabeth S, Mydosh J A, Tjeng L H, Steglich F, Wirth S 2010 Phys. Rev. B 82 144523Google Scholar

    [12]

    Yadav C S, Paulose P L 2009 New J. Phys. 11 103046Google Scholar

    [13]

    Cieplaka M Z, Bezusyya V L 2015 Philos. Mag. 1478 6435

    [14]

    Migita M, Takikawa Y, Takeda M, Uehara M, Kuramoto T, Takano Y, Kimishima Y 2011 Physica C 471 916Google Scholar

    [15]

    Wu Z F, Wang Z H, Tao J, Qiu L, Yang S G, Wen H H 2016 Supercond. Sci. Technol. 29 4

    [16]

    Leo A, Guarino A, Grimaldi G, Nigro A, Pace S, Bellingeri E, Giannini E 2014 J. Phys.: Conf. Ser. 507 012029Google Scholar

    [17]

    Wu Z, Tao J, Xu X, Qiu L, Yang S, Wang Z 2016 Physica C 528 39Google Scholar

    [18]

    Zhuang J C, Yeoh W K, Cui X Y, Xu X, Du Y, Shi Z X, Ringer P S, Wang X I, Dou S X 2014 Sci. Rep.-Uk. 4 7273

    [19]

    Gomez K W 2010 J. Nov. Magn. 23 551Google Scholar

    [20]

    Imai Y, Sawada Y, Nabeshima F, Maeda A 2015 Proc. Natl. Acad. Sci. 122 193

    [21]

    Wang A F, Ying J J, Yan Y J, Liu R H, Luo X G, Li Z Y, Wang X F, Zhang M, Ye G J, Cheng P, Xiang Z J, Chen X H 2011 Phys. Rev. B 83 060512Google Scholar

    [22]

    Yeh K W, Huang T W, Huang Y I, Chen T K, Hsu F C, Wu P M, Lee Y C, Chu Y Y, Chen C L, Luo J Y, Yan D C, Wu M K 2008 Europhys. Lett. 84 37002Google Scholar

    [23]

    Bean C P 1994 Rev. Mod. Phys. 36 31

    [24]

    Kumar R, Sudesh, Varma G D 2018 Aip. Adv. 8 055819Google Scholar

    [25]

    Bonura M, Giannini E, Viennois R, Senatore C 2012 Phys. Rev. B 85 134532Google Scholar

    [26]

    Shen B, Cheng P, Wang Z S, Fang L, Ren C, Shan L, Gu C Z, Wen H H 2010 Phys. Rev. B 81 014503Google Scholar

    [27]

    Galluzzi A, Buchkov K, Nazarova E, Tomov V, Grimaldi G, Leo A, Pace A, Polichetti M 2018 J. Appl. Phys. 123 233904Google Scholar

  • [1] 吴海滨, 刘迎娣, 刘彦军, 李金花, 刘建军. 量子点耦合强度对手性Majorana费米子共振交换的调制. 物理学报, 2024, 73(13): 130502. doi: 10.7498/aps.73.20240739
    [2] 赵珀, 王建强, 陈梅清, 杨金学, 苏钲雄, 卢晨阳, 刘华军, 洪智勇, 高瑞. EuBa2Cu3O7–δ超导带材中掺杂相对He+离子辐照缺陷演化及超导电性的影响. 物理学报, 2024, 73(8): 087401. doi: 10.7498/aps.73.20240124
    [3] 姜达, 余东洋, 郑沾, 曹晓超, 林强, 刘伍明. 面向量子计算的拓扑超导体材料、物理和器件研究. 物理学报, 2022, 71(16): 160302. doi: 10.7498/aps.71.20220596
    [4] 闻海虎. 高温超导体磁通钉扎和磁通动力学研究简介. 物理学报, 2021, 70(1): 017405. doi: 10.7498/aps.70.20201881
    [5] 陈晨, 刘琴, 张童, 封东来. 电子型FeSe基高温超导体的磁通束缚态与Majorana零能模. 物理学报, 2021, 70(1): 017401. doi: 10.7498/aps.70.20201673
    [6] 李牮. 基于Yu-Shiba-Rusinov态的拓扑超导理论. 物理学报, 2020, 69(11): 117401. doi: 10.7498/aps.69.20200831
    [7] 程鹏, 杨育梅. 临界电流密度对圆柱状超导体力学特性的影响. 物理学报, 2019, 68(18): 187402. doi: 10.7498/aps.68.20190759
    [8] 董晓莉, 袁洁, 黄裕龙, 冯中沛, 倪顺利, 田金朋, 周放, 金魁, 赵忠贤. 铁硒基超导研究新进展:高质量(Li,Fe)OHFeSe单晶薄膜. 物理学报, 2018, 67(12): 127403. doi: 10.7498/aps.67.20180770
    [9] 王三胜, 李方, 吴晗, 张竺立, 蒋雯, 赵鹏. 低能离子对高温超导YBa2Cu3O7-薄膜的表面改性和机理. 物理学报, 2018, 67(3): 036103. doi: 10.7498/aps.67.20170822
    [10] 王妙, 邬华春, 杨万民, 杨芃焘, 王小梅, 郝大鹏, 党文佳, 张明, 胡成西. BaO掺杂对单畴GdBCO超导块材性能的影响(二). 物理学报, 2017, 66(16): 167401. doi: 10.7498/aps.66.167401
    [11] 张晓娟, 张玉凤, 彭里其, 周文礼, 徐燕, 周迪帆, 和泉充. 纳米微粒BaFe12O19掺杂对单畴超导块材GdBa2Cu3O7-δ性能的影响. 物理学报, 2015, 64(24): 247401. doi: 10.7498/aps.64.247401
    [12] 于红云. 超导磁体剩余磁场对软磁材料测试的影响. 物理学报, 2014, 63(4): 047502. doi: 10.7498/aps.63.047502
    [13] 陈艺灵, 张辰, 何法, 王达, 王越, 冯庆荣. MgB2超导膜的厚度与其Jc(5K,0T)的关系. 物理学报, 2013, 62(19): 197401. doi: 10.7498/aps.62.197401
    [14] 丁发柱, 古宏伟, 张腾, 王洪艳, 屈飞, 彭星煜, 周微微. 掺杂Y2O3和BaCeO3提高MOD-YBCO超导性能的研究. 物理学报, 2013, 62(13): 137401. doi: 10.7498/aps.62.137401
    [15] 丁发柱, 古宏伟. 前驱液成分对TFA-MOD法制备YBa2Cu3O7-x薄膜超导性能的影响. 物理学报, 2010, 59(11): 8142-8147. doi: 10.7498/aps.59.8142
    [16] 陈昌兆, 蔡传兵, 刘志勇, 应利良, 高 波, 刘金磊, 鲁玉明. NdBa2Cu3O7-δ/YBa2Cu3O7-δ多层膜体系的外延结构和磁通钉扎的研究. 物理学报, 2008, 57(7): 4371-4378. doi: 10.7498/aps.57.4371
    [17] 王峰, 孙国庆, 孔祥木, 单磊, 金新, 张宏. YBa2Cu3O7-δ熔融织构样品的磁响应研究. 物理学报, 2001, 50(8): 1590-1595. doi: 10.7498/aps.50.1590
    [18] 胡立发, 周廉, 张平祥, 王金星. 高温超导体的磁化与磁滞损耗. 物理学报, 2001, 50(7): 1359-1365. doi: 10.7498/aps.50.1359
    [19] 冯 勇, 周 廉, 杨万民, 张翠萍, 汪京荣, 于泽铭, 吴晓祖. PMP法YGdBaCuO超导体的磁通钉扎研究. 物理学报, 2000, 49(1): 146-152. doi: 10.7498/aps.49.146
    [20] 丁世英, 史可信, 曾朝阳, 余正, 施智祥, 邱里. Tl2Ba2Ca2Cu3Oy超导体磁通钉扎能的分布. 物理学报, 1991, 40(6): 985-989. doi: 10.7498/aps.40.985
计量
  • 文章访问数:  8201
  • PDF下载量:  217
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-01
  • 修回日期:  2020-08-12
  • 上网日期:  2020-12-08
  • 刊出日期:  2020-12-05

/

返回文章
返回