搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

免分析光栅一次曝光相位衬度成像方法

姚春霞 何其利 张锦 付天宇 吴朝 王山峰 黄万霞 袁清习 刘鹏 王研 张凯

引用本文:
Citation:

免分析光栅一次曝光相位衬度成像方法

姚春霞, 何其利, 张锦, 付天宇, 吴朝, 王山峰, 黄万霞, 袁清习, 刘鹏, 王研, 张凯

Method of single exposure phase contrast imaging without analyser grating

Yao Chun-Xia, He Qi-Li, Zhang Jin, Fu Tian-Yu, Wu Zhao, Wang Shan-Feng, Huang Wan-Xia, Yuan Qing-Xi, Liu Peng, Wang Yan, Zhang Kai
PDF
HTML
导出引用
  • X射线光栅微分相位衬度成像技术可以观察到常规吸收衬度成像难以分辨的弱吸收物质的精细结构信息, 因而在医学、材料学等研究领域具有巨大的应用前景. 但传统的X射线光栅微分相位衬度成像技术由于采用分析光栅作为空间滤波器, 需要采用相位步进法扫描分析光栅来获得样品的多张投影图像才能够分离出样品的吸收、折射和散射信息, 因此存在样品曝光时间长、辐射剂量高以及X射线光通量利用率低等问题, 限制了其在各个学科领域的应用研究. 为克服上述问题, 本文提出一种基于免分析光栅相位衬度成像系统的一次曝光样品信息提取算法. 该算法只需要利用一块相位光栅, 进而采用高分辨探测器进行样品投影数据的一次采集即可提取样品的吸收、折射和散射信息. 理论和模拟研究结果表明: 与传统相位步进法相比, 该算法具有样品信息提取精度高, 且不受光栅的自成像周期需为探测器像素尺寸的整数倍条件的限制. 此外, 该算法还能够有效地减少对生物样品的辐射损伤, 因此在生物医学成像等研究领域中具有广泛的应用前景.
    X-ray differential phase contrast imaging technology can reveal the weakly absorbing fine structure which cannot be observed by the conventional X-ray absorption contrast imaging. Hence, it has potential applications in many fields such as medical science, and material science. But in the traditional X-ray grating differential phase contrast imaging system, the analyser grating is used as a spatial filter, and needs to be phase stepped, then multiple exposures are required for information extraction. Thus this leads to high-dose radiation exposure and low efficiency of X-ray utilization. All these disadvantages limit its application in various disciplines. In order to cope with the above issues, a new algorithm based on single-shot grating differential phase contrast imaging system without analyzer grating is proposed. In such a system the absorption, refraction and scattering information can be obtained from one projective image of the sample acquired by a high-resolution detector. The reliability of this new algorithm is confirmed by numerical simulation. Compared with the phase stepping algorithm, the proposed algorithm can provide very accurate and reliable information extraction results without requiring the grating period to match with detector pixel size. It facilitates the reduction of the radiation damage to sample. We emphasize that this method is highly compatible with the future X-ray phase contrast imaging clinical applications.
      通信作者: 王研, wangy@ihep.ac.cn ; 张凯, zhangk@ihep.ac.cn
    • 基金项目: 国家重点研发计划 (批准号: 2016YFA0400900)和国家自然科学基金(批准号: 11535015)资助的课题
      Corresponding author: Wang Yan, wangy@ihep.ac.cn ; Zhang Kai, zhangk@ihep.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0400900) and the National Natural Science Foundation of China (Grant No. 11535015)
    [1]

    Momose A, Kawamoto S, Koyama I, Hamaishi Y, Takai K, Suzuki Y 2003 Jpn. J. Appl. Phys. 42 L866Google Scholar

    [2]

    Pfeiffer F, Weitkamp T, Bunk O, David C 2006 Nat. Phys. 2 258Google Scholar

    [3]

    Zhu P P, Zhang K, Wang Z L, Liu Y J, Liu X S, Wu Z Y, McDonald S A, Marone F, Stampanoni M 2010 P. Natl Acad. Sci. USA. 107 13576Google Scholar

    [4]

    Endrizzi M, Astolfo A, Vittoria F A, Millard T P, Olivo A 2016 Sci. Rep. 6 25466Google Scholar

    [5]

    Fu J, Shi X H, Guo W, Peng P 2019 Sci. Rep. 9 1113Google Scholar

    [6]

    Wei C X, Wu Z, Wali F, Wei W B, Bao Y, Luo R H, Wang L, Liu G, Tian Y C 2017 Chin. Phys. B 26 108701Google Scholar

    [7]

    Ge Y S, Li K, Garrett J, Chen G H 2014 Opt. Express 22 14246Google Scholar

    [8]

    Balles A, Fella C, Dittmann J, Wiest W, Zabler S, Hanke R 2016 XRM 2014: Proceedings of the 12th International Conference on X-Ray Microscopy Melbourne, Austalia, January 28, 2016 p020043

    [9]

    Marathe S, Zdora M C, Zanette I, Cipiccia S, Rau C 2017 Developments in X-ray Tomography XI San Diego, US, October 11, 2017 p103910S

    [10]

    Wen H H, Bennett E E, Kopace R, Stein A F, Pai V 2010 Opt. Lett. 35 1932Google Scholar

    [11]

    Bennett E E, Kopace R, Stein A F, Wen H 2010 Med. Phys. 37 6047Google Scholar

    [12]

    Berry M V, Klein S 1996 J. Mod. Opt. 43 2139Google Scholar

    [13]

    Wernick M N, Wirjadi O, Chapman D, Zhong Z, Galatsanos N P, Yang Y, Brankov J G, Oltulu O, Anastasio M A, Muehleman C 2003 Phys. Med. Biol. 48 3875Google Scholar

    [14]

    Li P, Zhang K, Bao Y, Ren Y, Ju Z, Wang Y, He Q, Zhu Z, Huang W, Yuan Q 2016 Opt. Express 24 5829Google Scholar

    [15]

    Weitkamp T, Diaz A, David C, Pfeiffer F, Stampanoni M, Cloetens P, Ziegler E 2005 Opt. Express 13 6296Google Scholar

    [16]

    Diemoz P C, Coan P, Zanette I, Bravin A, Lang S, Glaser C, Weitkamp T 2011 Opt. Express 19 1691Google Scholar

    [17]

    Chou C Y, Anastasio M A, Brankov J G, Wernick M N, Brey E M, Connor Jr D M, Zhong Z 2007 Phys. Med. Biol. 52 1923Google Scholar

    [18]

    Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry E F, Brönnimann C, Grünzweig C, David C 2008 Nat. Mater. 7 134Google Scholar

    [19]

    Wang Z T, Kang K J, Huang Z F, Chen Z Q 2009 Appl. Phys. Lett. 95 094105Google Scholar

    [20]

    Momose A, Yashiro W, Takeda Y, Suzuki Y, Hattori T 2006 Jpn. J. Appl. Phys. 45 5254Google Scholar

    [21]

    Oltulu O, Zhong Z, Hasnah M, Wernick M N, Chapman D 2003 J. Phys. D: Appl. Phys. 36 2152Google Scholar

    [22]

    钱晓凡 2015 信息光学数字实验室 (Matlab版) (北京: 科学出版社) 第036039页

    Qian X F 2015 Information Optics Digital Laboratory (Matlab Ed.) p036039(Beijing: Science Press) (in Chinese)

    [23]

    王振天 2010 博士论文 (北京: 清华大学)

    Wang Z T 2010 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [24]

    Huang Z F, Kang K J, Zhang L, Chen Z Q, Ding F, Wang Z T, Fang Q G 2009 Phys. Rev. A 79 013815Google Scholar

  • 图 1  基于免分析光栅X射线相位衬度成像系统的装置成像示意图

    Fig. 1.  Schematic imaging diagram of the phase contrast imaging system without analyser grating.

    图 2  由采集到的投影图像组成的N张新投影图像中同一像素点的光强随X射线的偏折角$\psi = {{{x_{\rm{g}}}} / D}$的变化曲线(角度曲线)

    Fig. 2.  Plot of the new images’ intensity oscillation (shifting curve) of single pixel as a function of the deviation angle $\psi = {{{x_{\rm{g}}}} / D}$.

    图 3  模拟所用的样品示意图. 样品由直径为0.461 mm PMMA圆柱状和PMMA后不同厚度(0—3层)的纸组成, 其中PMMA圆柱状对X光具有吸收和折射效应, 而纸张对X光只有散射效应

    Fig. 3.  Schematic diagram of the simulation sample. The simulation sample has a 0.46 mm diameter PMMA cylinder that combined refraction and absorption effects. The PMMA cylinder overlie paper layers (0−3 layers) that exhibit the scattering effects.

    图 4  探测器上的样品投影图 (a) 探测器像素尺寸为0.60 μm (α = 0)时模拟样品的投影图像; (b) 图(a)的局部(红框内)放大图; (c) 探测器像素尺寸为0.66 μm (α ≠ 0)时模拟样品的投影图像; (d) 图(c)的局部放大图

    Fig. 4.  The projective images of the simulation sample: (a) The projective image of the simulation sample with pixel size of 0.60 μm (α = 0); (b) local enlarged drawing of Fig. (a); (c) the projective image of the simulation sample with pixel size of 0.66 μm (α ≠ 0); (d) local enlarged drawing of Fig. (c).

    图 5  由原始的样品投影图组成的4张新图像 (a)—(d) 探测器像素尺寸为0.60 μm (α = 0)时所得到的4张新投影图; (e)—(h) 探测器像素尺寸为0.66 μm ($\alpha \ne {\rm{0}}$)时所得到的4张新投影图

    Fig. 5.  Four new images extracted from one original projective image: (a)−d) Contain four new images with the pixel size of 0.60 μm (α = 0); (e)−(h) contain four new images with the pixel size of 0.66 μm (α ≠ 0).

    图 6  探测器像素尺寸为0.60 μm时模拟样品的信息提取结果 (a)—(c) PS算法时提取的吸收、折射和散射信息; (d)—(f) LS算法时提取的吸收、折射和散射信息; (g)—(i) 在虚线位置处(PS算法(绿色)和LS算法(紫色))的提取的吸收、折射和散射信息与理论值(蓝色)的对比图

    Fig. 6.  Sample information extracted with pixel size of 0.60 μm: (a)−(c) Depict the absorption, refraction and scattering information of the simulated sample obtained by PS algorithm; (d)−(f) depict the absorption, refraction and scattering information obtained by LS algorithm; (g)−(i) are profiles of the absorption, refraction and scattering images extracted by LS (purple) and PS (green) at the dotted lines in (a)−(f), as well as the theoretical values (blue).

    图 7  探测器像素尺寸为0.66 μm时模拟用样品的信息提取结果 (a)—(c) PS算法时提取的吸收、折射和散射信息; (d)—(f) LS算法时提取的吸收、折射和散射信息; (g)—(i) 在虚线位置处(PS算法(绿色)和LS算法(紫色))的提取的吸收、折射和散射信息与理论值(蓝色)的对比图

    Fig. 7.  Sample information extracted with pixel size of 0.66 μm: (a)−(c) Depict the absorption, refraction and scattering information of the simulated sample obtained by PS algorithm; (d)−(f) depict the absorption, refraction and scattering information obtained by LS algorithm; (g)−(i) are profiles of the absorption, refraction and scattering images extracted by LS (purple) and PS (green) at the dotted lines in Fig. (a)−(f), as well as the theoretical values (blue).

    图 8  不同像素尺寸的探测器提取样品的吸收、折射和散射信息 (a)—(c) 利用PS算法提取的样品吸收、折射和散射信息的强度曲线; (d)—(f) 利用LS算法提取的样品吸收、折射和散射信息的强度曲线

    Fig. 8.  The absorption, refraction, and scattering information of the simulated sample with different pixel sizes: (a)−(c) Depict the profiles of extracted absorption, refraction and scattering images with different pixel sizes by PS algorithm; (d)−(f) depict the profiles of extracted absorption, refraction and scattering images with different pixel sizes by LS algorithm.

    表 1  PS和LS算法的理论值和提取值的平均绝对误差

    Table 1.  Mean absolute error of theoretical and extracted information by PS and LS algorithm.

    探测器的
    像素尺寸
    M/${10^{ - 4}}$$\theta $/${10^{ - 9}}\;{\rm{ rad}}$${\sigma ^2}/{10^{ - 13}}\;{\rm{ ra}}{{\rm{d}}^{\rm{2}}}$
    PSLSPSLSPSLS
    0.60 μm2.102.104.534.531.361.36
    0.66 μm43.006.08115.9213.8035.805.90
    下载: 导出CSV
  • [1]

    Momose A, Kawamoto S, Koyama I, Hamaishi Y, Takai K, Suzuki Y 2003 Jpn. J. Appl. Phys. 42 L866Google Scholar

    [2]

    Pfeiffer F, Weitkamp T, Bunk O, David C 2006 Nat. Phys. 2 258Google Scholar

    [3]

    Zhu P P, Zhang K, Wang Z L, Liu Y J, Liu X S, Wu Z Y, McDonald S A, Marone F, Stampanoni M 2010 P. Natl Acad. Sci. USA. 107 13576Google Scholar

    [4]

    Endrizzi M, Astolfo A, Vittoria F A, Millard T P, Olivo A 2016 Sci. Rep. 6 25466Google Scholar

    [5]

    Fu J, Shi X H, Guo W, Peng P 2019 Sci. Rep. 9 1113Google Scholar

    [6]

    Wei C X, Wu Z, Wali F, Wei W B, Bao Y, Luo R H, Wang L, Liu G, Tian Y C 2017 Chin. Phys. B 26 108701Google Scholar

    [7]

    Ge Y S, Li K, Garrett J, Chen G H 2014 Opt. Express 22 14246Google Scholar

    [8]

    Balles A, Fella C, Dittmann J, Wiest W, Zabler S, Hanke R 2016 XRM 2014: Proceedings of the 12th International Conference on X-Ray Microscopy Melbourne, Austalia, January 28, 2016 p020043

    [9]

    Marathe S, Zdora M C, Zanette I, Cipiccia S, Rau C 2017 Developments in X-ray Tomography XI San Diego, US, October 11, 2017 p103910S

    [10]

    Wen H H, Bennett E E, Kopace R, Stein A F, Pai V 2010 Opt. Lett. 35 1932Google Scholar

    [11]

    Bennett E E, Kopace R, Stein A F, Wen H 2010 Med. Phys. 37 6047Google Scholar

    [12]

    Berry M V, Klein S 1996 J. Mod. Opt. 43 2139Google Scholar

    [13]

    Wernick M N, Wirjadi O, Chapman D, Zhong Z, Galatsanos N P, Yang Y, Brankov J G, Oltulu O, Anastasio M A, Muehleman C 2003 Phys. Med. Biol. 48 3875Google Scholar

    [14]

    Li P, Zhang K, Bao Y, Ren Y, Ju Z, Wang Y, He Q, Zhu Z, Huang W, Yuan Q 2016 Opt. Express 24 5829Google Scholar

    [15]

    Weitkamp T, Diaz A, David C, Pfeiffer F, Stampanoni M, Cloetens P, Ziegler E 2005 Opt. Express 13 6296Google Scholar

    [16]

    Diemoz P C, Coan P, Zanette I, Bravin A, Lang S, Glaser C, Weitkamp T 2011 Opt. Express 19 1691Google Scholar

    [17]

    Chou C Y, Anastasio M A, Brankov J G, Wernick M N, Brey E M, Connor Jr D M, Zhong Z 2007 Phys. Med. Biol. 52 1923Google Scholar

    [18]

    Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry E F, Brönnimann C, Grünzweig C, David C 2008 Nat. Mater. 7 134Google Scholar

    [19]

    Wang Z T, Kang K J, Huang Z F, Chen Z Q 2009 Appl. Phys. Lett. 95 094105Google Scholar

    [20]

    Momose A, Yashiro W, Takeda Y, Suzuki Y, Hattori T 2006 Jpn. J. Appl. Phys. 45 5254Google Scholar

    [21]

    Oltulu O, Zhong Z, Hasnah M, Wernick M N, Chapman D 2003 J. Phys. D: Appl. Phys. 36 2152Google Scholar

    [22]

    钱晓凡 2015 信息光学数字实验室 (Matlab版) (北京: 科学出版社) 第036039页

    Qian X F 2015 Information Optics Digital Laboratory (Matlab Ed.) p036039(Beijing: Science Press) (in Chinese)

    [23]

    王振天 2010 博士论文 (北京: 清华大学)

    Wang Z T 2010 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [24]

    Huang Z F, Kang K J, Zhang L, Chen Z Q, Ding F, Wang Z T, Fang Q G 2009 Phys. Rev. A 79 013815Google Scholar

  • [1] 陈子涵, 宋梦齐, 陈恒, 王志立. 双三角形相位光栅X射线干涉仪的条纹可见度. 物理学报, 2023, 72(14): 148701. doi: 10.7498/aps.72.20230461
    [2] 杨君, 吴浩, 罗琨皓, 郭金川, 宗方轲. 抑制傅里叶变换法恢复的X射线相衬像中的伪影. 物理学报, 2021, 70(10): 104101. doi: 10.7498/aps.70.20201781
    [3] 孙世峰. 基于可分离编码的高分辨X射线荧光成像技术研究. 物理学报, 2020, 69(19): 198701. doi: 10.7498/aps.69.20200674
    [4] 戚俊成, 陈荣昌, 刘宾, 陈平, 杜国浩, 肖体乔. 基于迭代重建算法的X射线光栅相位CT成像. 物理学报, 2017, 66(5): 054202. doi: 10.7498/aps.66.054202
    [5] 荣锋, 谢艳娜, 邰雪凤, 耿磊. 双能X射线光栅相衬成像的研究. 物理学报, 2017, 66(1): 018701. doi: 10.7498/aps.66.018701
    [6] 杜杨, 刘鑫, 雷耀虎, 黄建衡, 赵志刚, 林丹樱, 郭金川, 李冀, 牛憨笨. X射线光栅微分相衬成像视场分析. 物理学报, 2016, 65(5): 058701. doi: 10.7498/aps.65.058701
    [7] 黄建衡, 杜杨, 雷耀虎, 刘鑫, 郭金川, 牛憨笨. 硬X射线微分相衬成像的噪声特性分析. 物理学报, 2014, 63(16): 168702. doi: 10.7498/aps.63.168702
    [8] 杜杨, 雷耀虎, 刘鑫, 郭金川, 牛憨笨. 硬X射线光栅微分干涉相衬成像两步相移算法的理论与实验研究. 物理学报, 2013, 62(6): 068702. doi: 10.7498/aps.62.068702
    [9] 晏骥, 江少恩, 苏明, 巫顺超, 林稚伟. X射线相衬成像应用于惯性约束核聚变多层球壳靶丸检测. 物理学报, 2012, 61(6): 068703. doi: 10.7498/aps.61.068703
    [10] 杨强, 刘鑫, 郭金川, 雷耀虎, 黄建衡, 牛憨笨. 无吸收光栅的X射线相位衬度成像实验研究. 物理学报, 2012, 61(16): 160702. doi: 10.7498/aps.61.160702
    [11] 程冠晓, 胡超. X射线相衬成像光子筛. 物理学报, 2011, 60(8): 080703. doi: 10.7498/aps.60.080703
    [12] 厉以宇, 王媛媛, 陈浩, 朱德喜, 胡川, 瞿佳. 基于二维结构薄膜的偏振选择相位光栅的研究. 物理学报, 2010, 59(7): 5110-5115. doi: 10.7498/aps.59.5110
    [13] 刘鑫, 雷耀虎, 赵志刚, 郭金川, 牛憨笨. 硬X射线相位光栅的设计与研制. 物理学报, 2010, 59(10): 6927-6932. doi: 10.7498/aps.59.6927
    [14] 胡春红, 李辉, 罗述谦, 王雪艳, 张璐. 衍射增强成像信息分离方法研究. 物理学报, 2009, 58(4): 2423-2429. doi: 10.7498/aps.58.2423
    [15] 陈 博, 朱佩平, 刘宜晋, 王寯越, 袁清习, 黄万霞, 明 海, 吴自玉. X射线光栅相位成像的理论和方法. 物理学报, 2008, 57(3): 1576-1581. doi: 10.7498/aps.57.1576
    [16] 纪宪明, 徐淑武, 陆俊发, 徐冬梅, 印建平. 用错位相位光栅产生的可调光学双阱. 物理学报, 2008, 57(12): 7591-7599. doi: 10.7498/aps.57.7591
    [17] 刘丽想, 杜国浩, 胡 雯, 骆玉宇, 谢红兰, 陈 敏, 肖体乔. 利用定量相衬成像消除X射线同轴轮廓成像中散射的影响. 物理学报, 2006, 55(12): 6387-6394. doi: 10.7498/aps.55.6387
    [18] 于 斌, 彭 翔, 田劲东, 牛憨笨. 硬x射线同轴相衬成像的相位恢复. 物理学报, 2005, 54(5): 2034-2037. doi: 10.7498/aps.54.2034
    [19] 陈 敏, 肖体乔, 骆玉宇, 刘丽想, 魏 逊, 杜国浩, 徐洪杰. 微聚焦管硬x射线位相衬度成像. 物理学报, 2004, 53(9): 2953-2957. doi: 10.7498/aps.53.2953
    [20] 高大超, A.POGANY, A.W.STEVENSON, T.GUREYEV, S.W.WILKINS, 麦振洪. 硬X射线位相衬度成象. 物理学报, 2000, 49(12): 2357-2368. doi: 10.7498/aps.49.2357
计量
  • 文章访问数:  5618
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-22
  • 修回日期:  2020-09-15
  • 上网日期:  2021-01-03
  • 刊出日期:  2021-01-20

/

返回文章
返回