搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiC表面圆环槽边缘效应实验研究

于子恒 马春红 白少先

引用本文:
Citation:

SiC表面圆环槽边缘效应实验研究

于子恒, 马春红, 白少先

Effect of sharp edge of ring-groove-structures in SiC surface

Yu Zi-Heng, Ma Chun-Hong, Bai Shao-Xian
PDF
HTML
导出引用
  • 基于固体边缘效应, 对碳化硅(SiC)表面激光加工圆环形沟槽的润湿特性进行实验研究, 通过分析去离子水在圆环槽上的润湿性能及其在边缘处的铺展行为, 获得了环槽深度与环槽宽度对液滴在边缘处最大表观接触角的影响规律. 结果表明, SiC圆环槽阻碍液滴铺展, 光滑基体表面上接触角为70°, 激光加工圆环槽深度为290 μm, 宽度为1 mm时, 接触角可达138.5°. 随槽深的增大, 接触角呈现先增大后趋于稳定的趋势, 临界槽深为80 μm. 当槽深小于该极值时, 接触角随槽深的增大而线性增大; 当槽深大于该极值时, 液滴处于稳定钉扎状态, 接触角趋于稳定, 其稳定值符合Gibbs不等式. 环槽宽度存在一临界值40 μm. 当槽宽低于该值时, 液滴接触环槽外缘后越过沟槽继续在平面上铺展; 当槽宽大于该值时, 接触角趋于稳定, 液滴沿边缘铺展.
    To reduce the run-off of fluid in sealing system, especially in the multiphase medium and extreme operating conditions, it is necessary to investigate the wetting and spreading behavior in silicon carbon (SiC) sealing face. Considering the sealing performance, ring-grooved structures with a varying depth (h) and width (w) are fabricated on SiC substrates by laser marking machine. The radius of structure’ inner surface is 1.5 mm, less than the capillary length of water. Then, experimental equipment is designed to observe the profile and the spreading behaviors of droplet on the surface, and the wetting performance and pinning effect are discussed, and the influences of depth and width of ring-grooves on the wetting performance can be obtained. The results show that the contact angle (CA) and the advancing contact angle (ACA) of smooth SiC surface are 70° and 76.5°, respectively. And the values decrease to CA 50° and ACA 54° after laser processing, which may be due to the average roughness (Ra) increasing from 0.1 μm in smooth surface to 0.8 μm in laser machined surface, making the hydrophilic surface more hydrophilic. The CA on the edge of ring-grooves increases to 138.5°, the control of fluid can be realized. When the droplet spreads along the radius direction before reaching the edge of groove, its CA keeps 76.5°. Once it reaches the edge, the position of contact line remains constant or changes slowly along the wall of groove(we are more inclined to the latter), and thus making the CA increase with the droplet volume increasing, until reaching a maximum apparent contact angle (θmax). And θmax in the experiment is less than that from the Gibbs equation, which is perhaps because of the mechanical vibration, the roughness of the wall or the liquid viscosity effect. After that, the droplet collapses, and spreads along the groove area, or even flows over the outer edge of the ring groove. The influences of h and w of groove are then studied, showing that θmax first increases linearly and then tends to be stable with the increase of h, and the depth of groove has a critical value (hc) of 80 μm. When h < hc, the droplet moves along the wall to the bottom of groove, the droplet collapses after reaching the bottom under the surface tension function. However, when hhc, the droplet is in a stable condition, and collapses with the increase of volume. When h = 100 μm, a critical value of width (wc) of 40 μm exists for the geometrical relationships of ACA in wall between h and w. If w is too small, the droplet will contact the outer diameter of ring groove, which finally makes the droplet collapse and spread on the smooth surface. The present research can conduce to understanding the pinning effect in the solid edge and the spreading behavior of droplets in SiC surface.
      通信作者: 马春红, machunhong@126.com
    • 基金项目: 浙江省自然科学基金(批准号: LQ19E050002)、国家自然科学基金(批准号: 51775504)和浙江省属高校基本科研业务费专项资金(批准号: 2019QN01)资助的课题
      Corresponding author: Ma Chun-Hong, machunhong@126.com
    • Funds: Project supported by the Natural Science Foundation of Zhejiang Province (Grant No. LQ19E050002), Project supported by the National Natural Science Foundation of China (Grant No. 51775504), and Project supported by the Fundamental Research Funds for the Universities of Education of Zhejiang Province (Grant No. 2019QN01)
    [1]

    赵亚溥 2012 表面与界面物理力学 (北京: 科学出版社) 第171−200页

    Zhao Y P 2012 Surface and Interface Physical Mechanics (Beijing: Science Press) pp171−200 (in Chinese)

    [2]

    Fang G, Amirfazli A 2012 Langmuir 28 9421Google Scholar

    [3]

    Qiao X X, Zhang X J, Chen P, Tian Y, Meng Y G 2020 Chin. Phys. B 29 372Google Scholar

    [4]

    余剑武, 陆岳托, 罗红, 仝瑞庆, 宋金英 http://kns.cnki.net/kcms/detail/50.1083.TG.20200617.1532.036.html [2020-08-10]

    Yu J W, Lu Y T, Luo H, Tong R Q, Song J G http://kns.cnki.net/kcms/detail/50.1083.TG.20200617.1532.036.html [2020-08-10] (in Chinese)

    [5]

    叶学民, 张湘珊, 李明兰, 李春曦 2018 物理学报 67 156Google Scholar

    Ye X M, Zhang X S, Li M L, Li C X 2018 Acta. Phys. Sin. 67 156Google Scholar

    [6]

    焦云龙, 刘小君, 刘琨 2016 力学学报 48 353Google Scholar

    Jiao Y L, Liu X J, Liu K 2016 Chin. J. Theor. Appl. Mech. 48 353Google Scholar

    [7]

    雍佳乐, 杨青, 陈烽, 侯洵 2019 科学通报 64 1213Google Scholar

    Yong J L, Yang Q, Chen F, Hou X 2019 Chin. Sci. Bull. 64 1213Google Scholar

    [8]

    王鹏伟, 刘明杰, 江雷 2016 物理学报 65 61Google Scholar

    Wang P W, Liu M J, Jiang L 2016 Acta. Phys. Sin. 65 61Google Scholar

    [9]

    Chang B, Shah A, Routa I, Lipsanen H, Zhou Q 2014 J. Micro-Bio. Robot. 9 1Google Scholar

    [10]

    Dejarld M, Nothern D, Millunchick J M 2014 J. Appl. Phys. 115 106Google Scholar

    [11]

    Hong W, Tang L J, Sun W X, Ji B W, Yang B, Liu J Q 2019 J. Microelectromech. S. 99 1Google Scholar

    [12]

    Shardt O, Waghmare P R, Derksen J J, Mitra S K 2014 RSC. Adv. 4 14781Google Scholar

    [13]

    Hu L, Wu M, Chen W Y, Xie H B, Fu X 2017 Exp. Therm. Fluid. Sci. 87 50Google Scholar

    [14]

    郑益华 2020 博士学位论文 (长春: 吉林大学)

    Zheng Y H 2020 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese)

    [15]

    Gibbs J W, Donnan F G, Haas A (edited by) 1936 A commentary on the scientific writings of J. Willard Gibbs (Vol.1) (New Harven: Yale University Press) pp675−676

    [16]

    Du J, Michielsen S, Lee H J 2010 Langmuir 26 16000Google Scholar

    [17]

    乔小溪, 张向军, 陈平, 田煜, 孟永钢 2020 物理学报 69 205Google Scholar

    Qiao X X, Zhang X J, Chen P, Tian Y, Meng Y G 2020 Acta. Phys. Sin. 69 205Google Scholar

    [18]

    Kim D, Jeong M, Kang K W, Ryu S 2020 Langmuir 36 6061Google Scholar

    [19]

    Wang Z L, Kui L, Zhao Y P 2019 J. Collid. Interf. Sci. 552 563Google Scholar

    [20]

    Ma B J, Shan L, Dogruoz B, Agonafer D 2019 Langmuir 35 12264Google Scholar

    [21]

    Tóth T, Ferraro D, Chiarello E, Pierno M, Mistura G, Bissacco G, Semprebon C 2011 Langmuir 27 4742Google Scholar

    [22]

    Oliver J F, Huh C, Mason S G 1977 J. Collid. Interf. Sci. 59 568Google Scholar

    [23]

    Zhang J, Gao X, Jiang L 2007 Langmuir 23 3230Google Scholar

    [24]

    Kalinin Y V, Berejnov V, Thorne R E 2009 Langmuir 25 5391Google Scholar

    [25]

    Tsoumpas Y, Dehaeck S, Galvagno M, Rednikov A, Ottevaere H 2014 Langmuir 30 11847Google Scholar

    [26]

    Mueller J, Haghparastmojaveri N, Alan T, Neild A 2013 Appl. Phys. Lett. 102 041605Google Scholar

    [27]

    Wang Z L, Chen E H, Zhao Y P 2018 Sci. China Tech. Sci. 61 309Google Scholar

    [28]

    Extrand C W 2005 Langmuir 21 10370Google Scholar

    [29]

    王茜, 韩素立, 郭峰, 李超 2019 摩擦学学报 39 340Google Scholar

    Wang Q, Han S L, Guo F, Li C 2019 Tribology 39 340Google Scholar

    [30]

    Young T 1805 Phil. Trans. 95 65Google Scholar

    [31]

    赵亚溥 2020 理性力学教程 (北京: 科学出版社) 第492页

    Zhao Y P 2020 Course of Rational Mechanics (Beijing: Science Press) p492 (in Chinese)

    [32]

    Mayama H, Nonomura Y 2011 Langmuir 27 3550Google Scholar

  • 图 1  实验装置原理图

    Fig. 1.  Schematic diagram of experiment device.

    图 2  液滴在圆环形槽表面铺展原理图

    Fig. 2.  Schematic diagram of droplet spreading on ring-grooved structures.

    图 3  圆环槽形貌示意图 (a) 表面形貌图; (b) 二维轮廓图(di = 3 mm, h = 100 μm, w = 1 mm)

    Fig. 3.  Schematic diagram of ring groove topography: (a) Surface topography; (b) 2D contour map (di = 3 mm, h = 100 μm, w = 1 mm).

    图 4  SiC圆环槽表面接触角 (a) 光滑平面固态接触角; (b) 光滑表面前进接触角; (c) 织构表面固有接触角; (d) 织构表面前进接触角

    Fig. 4.  SiC ring groove surface contact angle: (a)Smooth plane static contact angle; (b) smooth surface advancing contact angle; (c) static contact angle of textured surface; (d) advancing contact angle of textured surface.

    图 5  液滴在SiC圆环槽的铺展行为 (a)内表面前进液滴; (b) 内边缘前进液滴; (c) 内边缘临界液滴; (d) 破裂液滴

    Fig. 5.  Spreading behavior of liquid drop in SiC ring groove: (a) Advancing drop on the inner surface; (b) advancing drop on inner edge; (c) inner edge critical drop; (d) breaking up.

    图 6  液滴在SiC圆环形槽内表面边缘处的接触角(h = 290 µm, w = 1 mm)

    Fig. 6.  Contact angle of the droplet at the edge of the inner surface of the SiC circular groove (h = 290 µm, w = 1 mm).

    图 7  最大接触角随槽深的变化曲线(di =3 mm, w = 1 mm)

    Fig. 7.  Variation curve of maximum contact angle with groove depth(di = 3 mm, w = 1 mm).

    图 8  最大接触角随槽宽的变化曲线

    Fig. 8.  Variation curve of maximum contact angle with groove width.

    表 1  SiC圆环槽几何参数表

    Table 1.  Structural parameters of ring grooved on SiC surface.

    序号内径di/ mm槽深h/μm槽宽w/μm序号内径di/mm槽深h/μm槽宽w/μm
    132010002310020
    5040
    8060
    10080
    200100
    290200
    480
    620
    下载: 导出CSV
  • [1]

    赵亚溥 2012 表面与界面物理力学 (北京: 科学出版社) 第171−200页

    Zhao Y P 2012 Surface and Interface Physical Mechanics (Beijing: Science Press) pp171−200 (in Chinese)

    [2]

    Fang G, Amirfazli A 2012 Langmuir 28 9421Google Scholar

    [3]

    Qiao X X, Zhang X J, Chen P, Tian Y, Meng Y G 2020 Chin. Phys. B 29 372Google Scholar

    [4]

    余剑武, 陆岳托, 罗红, 仝瑞庆, 宋金英 http://kns.cnki.net/kcms/detail/50.1083.TG.20200617.1532.036.html [2020-08-10]

    Yu J W, Lu Y T, Luo H, Tong R Q, Song J G http://kns.cnki.net/kcms/detail/50.1083.TG.20200617.1532.036.html [2020-08-10] (in Chinese)

    [5]

    叶学民, 张湘珊, 李明兰, 李春曦 2018 物理学报 67 156Google Scholar

    Ye X M, Zhang X S, Li M L, Li C X 2018 Acta. Phys. Sin. 67 156Google Scholar

    [6]

    焦云龙, 刘小君, 刘琨 2016 力学学报 48 353Google Scholar

    Jiao Y L, Liu X J, Liu K 2016 Chin. J. Theor. Appl. Mech. 48 353Google Scholar

    [7]

    雍佳乐, 杨青, 陈烽, 侯洵 2019 科学通报 64 1213Google Scholar

    Yong J L, Yang Q, Chen F, Hou X 2019 Chin. Sci. Bull. 64 1213Google Scholar

    [8]

    王鹏伟, 刘明杰, 江雷 2016 物理学报 65 61Google Scholar

    Wang P W, Liu M J, Jiang L 2016 Acta. Phys. Sin. 65 61Google Scholar

    [9]

    Chang B, Shah A, Routa I, Lipsanen H, Zhou Q 2014 J. Micro-Bio. Robot. 9 1Google Scholar

    [10]

    Dejarld M, Nothern D, Millunchick J M 2014 J. Appl. Phys. 115 106Google Scholar

    [11]

    Hong W, Tang L J, Sun W X, Ji B W, Yang B, Liu J Q 2019 J. Microelectromech. S. 99 1Google Scholar

    [12]

    Shardt O, Waghmare P R, Derksen J J, Mitra S K 2014 RSC. Adv. 4 14781Google Scholar

    [13]

    Hu L, Wu M, Chen W Y, Xie H B, Fu X 2017 Exp. Therm. Fluid. Sci. 87 50Google Scholar

    [14]

    郑益华 2020 博士学位论文 (长春: 吉林大学)

    Zheng Y H 2020 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese)

    [15]

    Gibbs J W, Donnan F G, Haas A (edited by) 1936 A commentary on the scientific writings of J. Willard Gibbs (Vol.1) (New Harven: Yale University Press) pp675−676

    [16]

    Du J, Michielsen S, Lee H J 2010 Langmuir 26 16000Google Scholar

    [17]

    乔小溪, 张向军, 陈平, 田煜, 孟永钢 2020 物理学报 69 205Google Scholar

    Qiao X X, Zhang X J, Chen P, Tian Y, Meng Y G 2020 Acta. Phys. Sin. 69 205Google Scholar

    [18]

    Kim D, Jeong M, Kang K W, Ryu S 2020 Langmuir 36 6061Google Scholar

    [19]

    Wang Z L, Kui L, Zhao Y P 2019 J. Collid. Interf. Sci. 552 563Google Scholar

    [20]

    Ma B J, Shan L, Dogruoz B, Agonafer D 2019 Langmuir 35 12264Google Scholar

    [21]

    Tóth T, Ferraro D, Chiarello E, Pierno M, Mistura G, Bissacco G, Semprebon C 2011 Langmuir 27 4742Google Scholar

    [22]

    Oliver J F, Huh C, Mason S G 1977 J. Collid. Interf. Sci. 59 568Google Scholar

    [23]

    Zhang J, Gao X, Jiang L 2007 Langmuir 23 3230Google Scholar

    [24]

    Kalinin Y V, Berejnov V, Thorne R E 2009 Langmuir 25 5391Google Scholar

    [25]

    Tsoumpas Y, Dehaeck S, Galvagno M, Rednikov A, Ottevaere H 2014 Langmuir 30 11847Google Scholar

    [26]

    Mueller J, Haghparastmojaveri N, Alan T, Neild A 2013 Appl. Phys. Lett. 102 041605Google Scholar

    [27]

    Wang Z L, Chen E H, Zhao Y P 2018 Sci. China Tech. Sci. 61 309Google Scholar

    [28]

    Extrand C W 2005 Langmuir 21 10370Google Scholar

    [29]

    王茜, 韩素立, 郭峰, 李超 2019 摩擦学学报 39 340Google Scholar

    Wang Q, Han S L, Guo F, Li C 2019 Tribology 39 340Google Scholar

    [30]

    Young T 1805 Phil. Trans. 95 65Google Scholar

    [31]

    赵亚溥 2020 理性力学教程 (北京: 科学出版社) 第492页

    Zhao Y P 2020 Course of Rational Mechanics (Beijing: Science Press) p492 (in Chinese)

    [32]

    Mayama H, Nonomura Y 2011 Langmuir 27 3550Google Scholar

  • [1] 陈晶晶, 赵洪坡, 王葵, 占慧敏, 罗泽宇. SiC基底覆多层石墨烯力学强化性能分子动力学模拟. 物理学报, 2024, 73(10): 109601. doi: 10.7498/aps.73.20232031
    [2] 刘远峰, 李斌成, 赵斌兴, 刘红. SiC光学材料亚表面缺陷的光热辐射检测. 物理学报, 2023, 72(2): 024208. doi: 10.7498/aps.72.20221303
    [3] 邓旭良, 冀先飞, 王德君, 黄玲琴. 石墨烯过渡层对金属/SiC接触肖特基势垒调控的第一性原理研究. 物理学报, 2022, 71(5): 058102. doi: 10.7498/aps.71.20211796
    [4] 黄毅华, 江东亮, 张辉, 陈忠明, 黄政仁. Al掺杂6H-SiC的磁性研究与理论计算. 物理学报, 2017, 66(1): 017501. doi: 10.7498/aps.66.017501
    [5] 卢吴越, 张永平, 陈之战, 程越, 谈嘉慧, 石旺舟. 不同退火方式对Ni/SiC接触界面性质的影响. 物理学报, 2015, 64(6): 067303. doi: 10.7498/aps.64.067303
    [6] 杨帅, 汤晓燕, 张玉明, 宋庆文, 张义门. 电荷失配对SiC半超结垂直双扩散金属氧化物半导体场效应管击穿电压的影响. 物理学报, 2014, 63(20): 208501. doi: 10.7498/aps.63.208501
    [7] 高尚鹏, 祝桐. 基于自洽GW方法的碳化硅准粒子能带结构计算. 物理学报, 2012, 61(13): 137103. doi: 10.7498/aps.61.137103
    [8] 宋坤, 柴常春, 杨银堂, 张现军, 陈斌. 栅漏间表面外延层对4H-SiC功率MESFET击穿特性的改善机理与结构优化. 物理学报, 2012, 61(2): 027202. doi: 10.7498/aps.61.027202
    [9] 贺平逆, 吕晓丹, 赵成利, 宁建平, 秦尤敏, 苟富均. F原子与SiC(100)表面相互作用的分子动力学模拟. 物理学报, 2011, 60(9): 095203. doi: 10.7498/aps.60.095203
    [10] 韩茹, 樊晓桠, 杨银堂. n-SiC拉曼散射光谱的温度特性. 物理学报, 2010, 59(6): 4261-4266. doi: 10.7498/aps.59.4261
    [11] 张勇, 张崇宏, 周丽宏, 李炳生, 杨义涛. 氦离子注入4H-SiC晶体的纳米硬度研究. 物理学报, 2010, 59(6): 4130-4135. doi: 10.7498/aps.59.4130
    [12] 张云, 邵晓红, 王治强. 3C-SiC材料p型掺杂的第一性原理研究. 物理学报, 2010, 59(8): 5652-5660. doi: 10.7498/aps.59.5652
    [13] 金华, 安立楠, 卜凡亮, 李丽华, 王蓉, 杨为佑, 张立功. SiC纳米棒的紫外发光研究. 物理学报, 2009, 58(4): 2594-2598. doi: 10.7498/aps.58.2594
    [14] 黄维, 陈之战, 陈博源, 张静玉, 严成锋, 肖兵, 施尔畏. 氢氟酸刻蚀对Ni/6H-SiC接触性质的作用. 物理学报, 2009, 58(5): 3443-3447. doi: 10.7498/aps.58.3443
    [15] 马格林, 张玉明, 张义门, 马仲发. SiC表面C 1s谱最优拟合参数的研究. 物理学报, 2008, 57(7): 4125-4129. doi: 10.7498/aps.57.4125
    [16] 马格林, 张玉明, 张义门, 马仲发. SiC外延层表面化学态的研究. 物理学报, 2008, 57(7): 4119-4124. doi: 10.7498/aps.57.4119
    [17] 郜锦侠, 张义门, 汤晓燕, 张玉明. C-V法提取SiC隐埋沟道MOSFET沟道载流子浓度. 物理学报, 2006, 55(6): 2992-2996. doi: 10.7498/aps.55.2992
    [18] 徐彭寿, 李拥华, 潘海斌. β-SiC(001)-(2×1)表面结构的第一性原理研究. 物理学报, 2005, 54(12): 5824-5829. doi: 10.7498/aps.54.5824
    [19] 尚也淳, 刘忠立, 王姝睿. SiC Schottky结反向特性的研究. 物理学报, 2003, 52(1): 211-216. doi: 10.7498/aps.52.211
    [20] 姜振益, 许小红, 武海顺, 张富强, 金志浩. SiC多型体几何结构与电子结构研究. 物理学报, 2002, 51(7): 1586-1590. doi: 10.7498/aps.51.1586
计量
  • 文章访问数:  5697
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-10
  • 修回日期:  2020-09-22
  • 上网日期:  2021-02-02
  • 刊出日期:  2021-02-20

/

返回文章
返回