搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水中微小波纹圆柱体声散射低频共振调控

周彦玲 王斌 范军

引用本文:
Citation:

水中微小波纹圆柱体声散射低频共振调控

周彦玲, 王斌, 范军

Manipulation of low-frequency resonance scattering from submerged slightly deformed polymer cylinders

Zhou Yan-Ling, Wang Bin, Fan Jun
PDF
HTML
导出引用
  • 塑料类高分子材料甲基丙烯酸甲酯-亚克力(PMMA)圆柱中亚音速Rayleigh波低频隧穿共振可引起反向散射增强, 在低频标准散射体设计等领域具有重要应用价值. 提出一种微弱形变的规则波纹表面结构, 可实现水中PMMA圆柱反向散射低频共振频率的无源调控. 利用微扰法推导了水中微弱形变规则波纹圆柱反向散射低频共振频率偏移的近似解, 讨论了波纹微扰系数、周期对规则波纹圆柱共振频率偏移的影响规律. 基于Rayleigh波相位匹配方法分析了低频共振频率偏移的机理. 研究表明: 微弱形变规则波纹圆柱中亚音速Rayleigh波沿微弱形变波纹表面传播, 与光滑圆柱体相比, 传播路径的改变引起Rayleigh波传播相位变化, 导致了Rayleigh波低频共振频率发生偏移. 最后开展了微弱形变规则波纹圆柱体声散射特性水池实验, 获取了其反向散射共振频率, 明显观察到了规则波纹圆柱共振频率偏移现象, 与理论预报结果吻合较好.
    Backscattering enhancement associated with subsonic Rayleigh wave resonance of a polymethlmethacrylate (PMMA) cylinder is observed at low frequencies in water, which suggests that the PMMA cylinders may have essential applications in the low-frequency standard scatterer design. A slightly deformed surface structure with regular corrugation is presented to manipulate the low-frequency backscattering resonance frequency of PMMA cylinder passively. Using the perturbation method, the approximate resonance frequency shift is derived for an infinite slightly deformed cylinder with regular corrugations. Based on the phase matching of Rayleigh waves, the mechanism of low-frequency resonance frequency shift is revealed. Studies show that compared with a bare cylinder, a small boundary deformation can cause the propagation path of Rayleigh waves to change, namely, the Rayleigh waves propagate along the slightly deformed surface with regular corrugations. The modified propagation path can cause the propagation phase to change, which brings about the low-frequency backscattering resonance frequency shift of a PMMA cylinder. Furthermore, how the resonance frequency shifts with the deformation coefficient and period of the corrugation is discussed in detail. The backscattering resonance frequency of the regular corrugated cylinder shifts to low frequency with the increase of ξ under the condition of the deformation coefficient ξ > 0, but shifts to high frequency with the decrease of ξ at ξ < 0, and the resonance frequency shift increases with the increase of absolute value of deformation coefficient. When corrugation period m < 10, the phase variation with m is too small, so the corrugation period has little effect on the resonance frequency shift. Finally, acoustic scattering experiment of the regular corrugated cylinder is conducted in the tank. The resonance frequency shift is obviously observed in the experiment, which is in good agreement with the theoretical prediction. Hence, the characteristics of backscattering enhancement associated with subsonic Rayleigh wave and the resonance frequency shifts make the PMMA deformed cylinder have potential applications such as in standard scatter design and identification using “AcoustiCode”.
      通信作者: 王斌, bin_wang@sjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11774229)资助的课题
      Corresponding author: Wang Bin, bin_wang@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11774229)
    [1]

    Ge L, Song Q H, Redding B, Eberspacher A, Wiersig J, Cao H 2013 Phys. Rev. A. 88 043801Google Scholar

    [2]

    Ge L, Song Q H, Redding B, Cao H 2013 H Phys. Rev. A. 87 023833.1Google Scholar

    [3]

    Fawcett J A 2016 IEEE J. Ocean. Eng. 41 682Google Scholar

    [4]

    Zhang L G, Sun N H, Marston P L 1992 J. Acoust. Soc. Am. 91 1862Google Scholar

    [5]

    Fawcett J A 2001 J. Acoust. Soc. Am. 109 1312Google Scholar

    [6]

    Guel-Tapia J A, Villa-Villa F, Mendoza-Suarez A, Perez-Aguilar H 2016 Archives of Acoustics 41 461Google Scholar

    [7]

    Hartmann B, Jarzynski B 1974 J. Acoust. Soc. Am. 56 1469Google Scholar

    [8]

    Hefner B T, Marston P L 2000 J. Acoust. Soc. Am. 107 1930Google Scholar

    [9]

    Satish A, Trivett D, Sabra K G 2020 J. Acoust. Soc. Am. 147 EL517Google Scholar

    [10]

    Srivastava P, Nichols B, Sabra K G 2017 J. Acoust. Soc. Am. 142 EL573Google Scholar

    [11]

    Doolittle R D, Überall H, Uginčius P 1968 J. Acoust. Soc. Am. 43 1Google Scholar

    [12]

    Dubertrand R, Bogomolny E, Djellali N, Lebental M, Schmit C 2008 Phys. Rev. A. 77 013804.1Google Scholar

    [13]

    Donald B, Gaunaurd G C 1983 J. Acoust. Soc. Am. 73 1448Google Scholar

    [14]

    龙云亮, 文希理, 谢处方 1994 数值计算与计算机应用 2 88Google Scholar

    You Y L, Wen X L, Xie C F 1994 Journal on Numerical Methods and Computer Applications 2 88Google Scholar

    [15]

    汤渭霖 1995 声学学报 06 456Google Scholar

    Tang W L 1995 ACTA. ACUSTICA. 06 456Google Scholar

    [16]

    Marston P L, Sun N H 1995 J. Acoust. Soc. Am. 97 777Google Scholar

    [17]

    周彦玲, 范军, 王斌 2019 物理学报 68 214301Google Scholar

    Zhou Y L, Fan J, Wang B 2019 Acta Phys. Sin. 68 214301Google Scholar

    [18]

    汤渭霖, 范军, 马忠诚 著 2018 水中目标声散射 (北京: 科学出版社) 第99—104页

    Tang W L, Fan J, Ma Z C 2018 Acoustic Scattering of Underwater Targets (Beijing: Science Press) pp99–104 (in Chinese)

    [19]

    彭茜蕤, 周彦玲, 范军 2018 声学技术 37 528

    Peng X R, Zhou Y L, Fan J 2018 Technical Acoustics 37 528

    [20]

    程建春 著 2019 声学原理 (北京: 科学出版社) 第615—619页

    Cheng J C 2019 Acoustical Principle (Beijing: Science Press) pp615–619 (in Chinese)

  • 图 1  无限长微弱形变规则波纹表面圆柱体

    Fig. 1.  Infinite regular-corrugated cylinder.

    图 2  基于微扰法无限长规则波纹圆柱形态函数幅频特性 (a)反向散射; (b)局部放大

    Fig. 2.  Form function of the infinite regular-corrugated cylinder based on the perturbation method: (a) Backscattering; (b) local enlargement.

    图 3  PMMA圆柱中Rayleigh波相速度频散曲线(黑色线), 曲线$2{\text{π}}a{f_0}/M$(蓝色点划线)和曲线$Sf/M$(红色虚线)

    Fig. 3.  Dispersion curve of subsonic Rayleigh waves (black line), curve $2{\text{π}}a{f_0}/M$ (blue dashed-dotted line) and curve $Sf/M$(red dotted line).

    图 4  亚音速Rayleigh波传播路径 (a)光滑圆柱; (b)规则波纹圆柱

    Fig. 4.  Ray diagram for subsonic Rayleigh waves propagating around: (a) Bare cylinder; (b) regular-corrugated cylinder.

    图 5  不同方法获取共振频率误差

    Fig. 5.  The relative error of resonance frequencies obtained by different methods.

    图 6  (a)频率-波纹微扰系数谱; (b)频率-波纹周期谱

    Fig. 6.  (a) Frequency-height spectra; (b) frequency-period spectra.

    图 7  不同波纹周期对应相位变化量

    Fig. 7.  Phase varying with corrugated period.

    图 8  实验模型

    Fig. 8.  Experimental objects.

    图 9  实验布放

    Fig. 9.  Diagram of experimental system setup.

    图 10  光滑圆柱和规则波纹表面圆柱反向散射形态函数实验结果

    Fig. 10.  Backscattering form function of regular-corrugated cylinders in the experiment.

    图 11  实验和(16)式获取得的共振频率对比 (a) ξ = –3%; (b) ξ = –10%; (c)相对误差

    Fig. 11.  Resonance frequencies obtained by experiment and Eq. (16): (a) ξ = –3%; (b) ξ = –10%; (c) relative error.

    图 12  规则波纹圆柱频率-角度谱 (a) ξ = 0; (b) ξ = –3%; (c) ξ = –10%

    Fig. 12.  Frequency-angle spectra: (a) ξ = 0; (b) ξ = –3%; (c) ξ = –10%.

    表 1  计算所用材料参数

    Table 1.  Material parameters used in the calculations.

    材料密度/(kg·m–3)纵波波速/(m·s–1)剪切波波速/(m·s–1)
    PMMA119026901340
    10001500
    下载: 导出CSV

    表 2  无限长PMMA圆柱和规则波纹圆柱共振频率

    Table 2.  Resonance frequency of PMMA bare and corrugated cylinder

    l${f_0}$/Hz$f_0^{\prime}$/Hz${f_\xi }$ /Hz$f_\xi^{\prime}$/Hz
    16419642062596240
    29953995597049700
    313383133851304813050
    416790167901637016375
    下载: 导出CSV

    表 3  实验模型共振峰频率

    Table 3.  Resonance frequencies of experimental objects.

    l${f_0}$/Hz${f_{\xi_ 1} }$/Hz$f_{\xi_1} ^{\prime}$ /Hz${f_{\xi_ 2} }$/Hz$f_{\xi_ 2}^{\prime}$/Hz
    166496748.768526981.46966
    286438772.690989075.19294
    31241012596.01299613031.013192
    下载: 导出CSV
  • [1]

    Ge L, Song Q H, Redding B, Eberspacher A, Wiersig J, Cao H 2013 Phys. Rev. A. 88 043801Google Scholar

    [2]

    Ge L, Song Q H, Redding B, Cao H 2013 H Phys. Rev. A. 87 023833.1Google Scholar

    [3]

    Fawcett J A 2016 IEEE J. Ocean. Eng. 41 682Google Scholar

    [4]

    Zhang L G, Sun N H, Marston P L 1992 J. Acoust. Soc. Am. 91 1862Google Scholar

    [5]

    Fawcett J A 2001 J. Acoust. Soc. Am. 109 1312Google Scholar

    [6]

    Guel-Tapia J A, Villa-Villa F, Mendoza-Suarez A, Perez-Aguilar H 2016 Archives of Acoustics 41 461Google Scholar

    [7]

    Hartmann B, Jarzynski B 1974 J. Acoust. Soc. Am. 56 1469Google Scholar

    [8]

    Hefner B T, Marston P L 2000 J. Acoust. Soc. Am. 107 1930Google Scholar

    [9]

    Satish A, Trivett D, Sabra K G 2020 J. Acoust. Soc. Am. 147 EL517Google Scholar

    [10]

    Srivastava P, Nichols B, Sabra K G 2017 J. Acoust. Soc. Am. 142 EL573Google Scholar

    [11]

    Doolittle R D, Überall H, Uginčius P 1968 J. Acoust. Soc. Am. 43 1Google Scholar

    [12]

    Dubertrand R, Bogomolny E, Djellali N, Lebental M, Schmit C 2008 Phys. Rev. A. 77 013804.1Google Scholar

    [13]

    Donald B, Gaunaurd G C 1983 J. Acoust. Soc. Am. 73 1448Google Scholar

    [14]

    龙云亮, 文希理, 谢处方 1994 数值计算与计算机应用 2 88Google Scholar

    You Y L, Wen X L, Xie C F 1994 Journal on Numerical Methods and Computer Applications 2 88Google Scholar

    [15]

    汤渭霖 1995 声学学报 06 456Google Scholar

    Tang W L 1995 ACTA. ACUSTICA. 06 456Google Scholar

    [16]

    Marston P L, Sun N H 1995 J. Acoust. Soc. Am. 97 777Google Scholar

    [17]

    周彦玲, 范军, 王斌 2019 物理学报 68 214301Google Scholar

    Zhou Y L, Fan J, Wang B 2019 Acta Phys. Sin. 68 214301Google Scholar

    [18]

    汤渭霖, 范军, 马忠诚 著 2018 水中目标声散射 (北京: 科学出版社) 第99—104页

    Tang W L, Fan J, Ma Z C 2018 Acoustic Scattering of Underwater Targets (Beijing: Science Press) pp99–104 (in Chinese)

    [19]

    彭茜蕤, 周彦玲, 范军 2018 声学技术 37 528

    Peng X R, Zhou Y L, Fan J 2018 Technical Acoustics 37 528

    [20]

    程建春 著 2019 声学原理 (北京: 科学出版社) 第615—619页

    Cheng J C 2019 Acoustical Principle (Beijing: Science Press) pp615–619 (in Chinese)

  • [1] 田志富, 吴迪, 胡涛. 圆柱曲面单光子量子雷达散射截面的理论研究. 物理学报, 2022, 71(3): 034204. doi: 10.7498/aps.71.20211295
    [2] 周彦玲, 范军, 王斌, 李兵. 水下环形凹槽圆柱体散射声场空间指向性调控. 物理学报, 2021, 70(17): 174301. doi: 10.7498/aps.70.20210111
    [3] 田志富, 吴迪, 胡涛. 圆柱曲面单光子量子雷达散射截面的理论研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211295
    [4] 张兴坊, 刘凤收, 闫昕, 梁兰菊, 韦德全. 同心椭圆柱-纳米管结构的双重Fano共振研究. 物理学报, 2019, 68(6): 067301. doi: 10.7498/aps.68.20182249
    [5] 金国梁, 尹剑飞, 温激鸿, 温熙森. 基于等效参数反演的敷设声学覆盖层的水下圆柱壳体声散射研究. 物理学报, 2016, 65(1): 014305. doi: 10.7498/aps.65.014305
    [6] 潘安, 范军, 王斌, 陈志刚, 郑国垠. 双层周期加肋有限长圆柱壳声散射精细特征研究. 物理学报, 2014, 63(21): 214301. doi: 10.7498/aps.63.214301
    [7] 刘建晓, 张郡亮, 苏明敏. 基于时域有限差分法的各向异性铁氧体圆柱电磁散射分析. 物理学报, 2014, 63(13): 137501. doi: 10.7498/aps.63.137501
    [8] 潘安, 范军, 卓琳凯. 准周期加隔板有限长圆柱壳声散射. 物理学报, 2013, 62(2): 024301. doi: 10.7498/aps.62.024301
    [9] 刘敏, 侯志林, 傅秀军. 二维正方排列圆柱状亥姆赫兹共振腔阵列局域共振声带隙的研究. 物理学报, 2012, 61(10): 104302. doi: 10.7498/aps.61.104302
    [10] 潘安, 范军, 卓琳凯. 周期性加隔板有限长圆柱壳声散射. 物理学报, 2012, 61(21): 214301. doi: 10.7498/aps.61.214301
    [11] 王运华, 张彦敏, 郭立新. 两相邻有限长圆柱的复合电磁散射研究. 物理学报, 2011, 60(2): 021102. doi: 10.7498/aps.60.021102
    [12] 王泽锋, 胡永明, 罗洪, 孟洲, 倪明, 熊水东. 腔壁弹性对水下小型圆柱形亥姆霍兹共振器共振频率的影响. 物理学报, 2009, 58(4): 2507-2512. doi: 10.7498/aps.58.2507
    [13] 王泽锋, 胡永明, 孟 洲, 倪 明. 水下圆柱形Helmholtz共振器的声学特性分析. 物理学报, 2008, 57(11): 7022-7029. doi: 10.7498/aps.57.7022
    [14] 伍瑞新, 王耀俊. 各向同性媒质中球体声散射的共振模式缺损. 物理学报, 2003, 52(8): 1948-1953. doi: 10.7498/aps.52.1948
    [15] 周宇峰, 王耀俊, 马力, 高天赋. 流体饱和多孔圆柱体的声波散射. 物理学报, 2000, 49(3): 480-486. doi: 10.7498/aps.49.480
    [16] 董正超. 多层金属圆柱线中量子输运的表面和界面散射效应. 物理学报, 1999, 48(1): 127-133. doi: 10.7498/aps.48.127
    [17] 宫野, 温晓军, 张鹏云, 邓新绿. 圆柱模型下电子回旋共振微波等离子体离子输运过程的数值研究. 物理学报, 1997, 46(12): 2376-2383. doi: 10.7498/aps.46.2376
    [18] 叶芃生. 重子共振态的选择规则. 物理学报, 1965, 21(11): 1924-1926. doi: 10.7498/aps.21.1924
    [19] 竺迺宜. 低能π-N散射p波共振中交叉过程的贡献. 物理学报, 1964, 20(5): 411-417. doi: 10.7498/aps.20.411
    [20] 蒲富恪, 郑庆祺. 自旋波之间的散射对铁磁共振曲线的影响. 物理学报, 1962, 18(2): 81-90. doi: 10.7498/aps.18.81
计量
  • 文章访问数:  4981
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-15
  • 修回日期:  2020-10-28
  • 上网日期:  2021-02-26
  • 刊出日期:  2021-03-05

/

返回文章
返回